Introduction to Asymptotic Methods

Maxim Efremov

Institut für Quantenphysik, Universität Ulm

WS 2017-2018

Sheet 1

Exercise 1

Proof the following estimation for $x \to +\infty$:

$$\log \left(e^{2x\cos(x)} + e^x\right) = \mathcal{O}(x)$$
(1 Point)

Exercise 2

Derive the following estimation for $x \to +\infty$:

$$\left[x+1+\mathcal{O}\left(\frac{1}{x}\right)\right]^x = e\,x^x + \mathcal{O}(x^{x-1}). \tag{1 Point}$$

Exercise 3

Let the function f(x) have an asymptotic expansion for $x \to +\infty$

$$f(x) \sim f_0 + \frac{f_1}{x} + \frac{f_2}{x^2} + \dots$$

For $f_0 \neq 0$ we can define the asymptotic expansion for the function

$$\frac{1}{f(x)} \sim a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots$$

Find the first three coefficients a_0, a_1, a_2 in terms of f_n with n = 0, 1, 2, ... (2 Points)

Exercise 4

For $x \to +\infty$, the function $f(x) \sim x^{\nu}$ with $\text{Re}(\nu) = -1$ and $\text{Im}(\nu) \neq 0$. By considering an example of such a function, $f(x) = x^{\nu} + 1/(x \log^{\mu}(x))$ with $\mu > 0$, find the condition on the parameter μ , under which the following estimation of the integral

$$\int_{a}^{x} f(t)dt = \mathcal{O}(1)$$

for $x \to +\infty$ and any finite a > 0 is correct.

(2 Points)

Date: 18.10.2017 Discussion: 24.10.2017