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Abstract

In this thesis I report the coherent transfer of ultracold molecules from weakly to
deeply bound states using two different techniques. While these transfers allow the
manipulation of the internal quantum state of the molecules, their external state is
determined by confining them in an optical lattice. This gives ultimate control over all
molecular degrees of freedom and opens the way towards controlled quantum chemistry.

Our experiments start from an atomic Bose-Einstein condensate of 87Rubidium that
is loaded into a three-dimensional optical lattice. A pure sample of diatomic molecules
is formed by ramping over a magnetic Feshbach resonance at 1007.4 G, and remov-
ing the remaining unbound atoms. These very weakly bound Feshbach molecules are
transferred to more deeply bound states with two different methods.

We have developed a novel transfer scheme based on the combination of a radio
frequency pulse with an adiabatic ramp of the magnetic bias field. Using this method,
molecules can be transferred across avoided crossings of different molecular states with
an efficiency of more than 99%. The broad applicability of this scheme is demonstrated
by bringing the Feshbach molecules from a magnetic field of more than 1000 G to 0G
with a series of nine radio frequency transfers. The molecular binding energy thereby
increases from 24MHz×h to about 3.6 GHz×h.

In order to transfer the Feshbach molecules to deeply bound states we use STimulated
Raman Adiabatic Passage (STIRAP), an optical Raman transfer scheme. Feshbach
molecules are transferred with an efficiency of close to 90% into the rovibrational ground
state of the a3Σ+

u triplet potential, where they have a binding energy of more than
7 THz×h.

After the transfer into the triplet ground state we observe coherent molecular os-
cillations in the optical lattice. These oscillations occur because the lattice potential
is much weaker for the ground state molecules than for the Feshbach molecules. A
numerical model taking the lattice band structure into account reproduces this behav-
ior. For the molecules remaining after the lattice-induced dynamics we find a lifetime
exceeding 200ms. This allows the investigation of the presently unknown collisional
properties of triplet ground state molecules and marks an important step towards the
realization of a Bose-Einstein condensate of deeply bound molecules.
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Zusammenfassung

In der vorliegenden Arbeit beschreibe ich den kohärenten Transfer ultrakalter Molekü-
le von schwach- zu tief gebundenen Zuständen mit zwei unterschiedlichen Verfahren.
Während durch diese Transfers der interne Quantenzustand der Moleküle manipuliert
werden kann, ist ihr externer Zustand durch den Einschluss in ein optisches Gitter
bestimmt. Dies erlaubt ultimative Kontrolle über alle molekularen Freiheitsgrade und
weist den Weg Richtung kontrollierte Quantenchemie.

Unsere Experimente werden ausgehend von einem Bose-Einstein Kondensat aus
87Rubidium-Atomen durchgeführt, welches in ein dreidimensionales optisches Gitter
geladen wird. Ein reines Ensemble zweitomiger Moleküle wird durch Rampen über eine
magnetische Feshbachresonanz sowie das Entfernen der verbleibenden einzelnen Atome
erzeugt. Diese äußerst schwach gebundenen Feshbachmoleküle werden anschließend mit
zwei unterschiedlichen Techniken in tiefer gebundene Zustände transferiert.

Wir haben ein neuartiges Transferschema entwickelt, das auf der Kombination eines
Radiofrequenzpulses mit einer adiabatischen Rampe des magnetischen Feldes beruht.
Mit dieser Methode können Moleküle mit einer Effizienz von mehr als 99% über ver-
miedene Kreuzungen unterschiedlicher molekularer Zustände transferiert werden. Wir
demonstrieren die breite Anwendbarkeit dieses Verfahrens durch eine Serie von neun
Radiofrequenztransfers, mit denen die Feshbachmoleküle von einem Magnetfeld von
mehr als 1000G zu 0G transferiert werden. Die molekulare Bindungsenergie erhöht
sich dabei von 24MHz×h auf etwa 3.6GHz×h.

Um die Feshbachmoleküle in tief gebundene Zustände zu transferieren, verwenden
wir STimulated Raman Adiabatic Passage (STIRAP), eine optische Raman-Transfer-
methode. Damit werden Feshbachmoleküle mit einer Effizienz von nahezu 90% in
den rovibronischen Grundzustand des a3Σ+

u Triplettpotentials transferiert, wo sie eine
Bindungsenergie von mehr als 7THz×h aufweisen.

Nach dem Transfer in den Triplett-Grundzustand beobachten wir kohärente Oszilla-
tionen der Moleküle im optischen Gitter. Diese treten aufgrund der Tatsache auf, dass
das Gitterpotential für die Grundzustandsmoleküle wesentlich schwächer ist als für die
Feshbachmoleküle. Mit Hilfe eines numerisches Modells, welches die Bandstruktur des
Gitters berücksichtigt, kann dieses Verhalten reproduziert werden. Für die nach den
gitterbedingten Oszillationen verbleibenden Moleküle messen wir eine Lebenszeit von
über 200 ms. Dies erlaubt die Untersuchung der derzeit unbekannten Kollisionseigen-
schaften von Molekülen im Triplett-Grundzustand und stellt einen wichtigen Schritt
auf dem Weg zur Realisierung eines Bose-Einstein Kondensats tiefgebundener Moleküle
dar.
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1 Introduction

The development of laser cooling and trapping techniques for atoms during the 1980s
[Metc 02] allowed unprecedented control over their internal and external degrees of
freedom. With the added benefit of evaporative cooling one can reach the regime where
the de-Broglie wavelength associated with the atomic motion becomes comparable with
the mean interparticle distance, and the behavior of the system is strongly governed
by quantum statistics. Bose-Einstein condensation (BEC) occurs when at extremely
low temperatures the single-particle ground state of the system becomes occupied by
a macroscopic particle number, and a macroscopic matter wave is formed. In 1995, 70
years after Einstein’s initial proposal [Eins 25] based on paper of Bose [Bose 24], this
effect was finally observed in dilute atomic gases [Ande 95, Davi 95]. This achievement,
as well as the pioneering work in laser cooling were honored with Nobel prizes in 1997
and 2001.

In the following years Bose-Einstein condensates were employed in numerous spectac-
ular experiments. An - inevitably incomplete - list of highlights comprises for example
the confirmation of the predicted behavior of a BEC as a macroscopic quantum matter
wave by interference of two independent condensates [Andr 97] and the realization of
an atom laser [Mewe 97]. The superfluid nature of a BEC was proven through the
excitation of vortices [Matt 99, Abo 01], and the observation of solitons [Dens 00]
demonstrated the nonlinear behavior of BEC matter waves.

With the implementation of an optical lattice, a periodic potential for the atoms can
be added. This regime closely resembles solid state systems, but has the advantage
of offering various tunable parameters, while lattice defects and undesired relaxation
mechanisms are strongly suppressed. Hence, ultracold Bosons in an optical lattice
represent an almost perfect realization of the Bose-Hubbard-Hamiltonian [Jaks 98],
which was confirmed by the observation of the quantum phase transition from the
superfluid BEC to a Mott insulator [Grei 02].

1.1 Ultracold molecules

After the great successes achieved with ultracold atoms, there has been a growing
interest in the investigation of cold molecules. Compared to atoms, molecules have
additional rotational and vibrational degrees of freedom. Furthermore heteronuclear
molecules carry in general a permanent electric dipole moment, and have been sug-
gested to be employed in quantum computation [DeMi 02], the search for an electric
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1 Introduction

dipole moment of the electron [Hind 97, Huds 05] or the realization of novel phases in
ultracold gases [Sant 00, Buch 07].

Due to their rich internal structure and the resulting numerous decay channels,
molecules cannot be laser cooled as easily as atoms. Accordingly, alternative meth-
ods like buffer gas cooling [Wein 98], Stark deceleration [Beth 99], velocity filtering
[Rieg 05], or single collision scattering [Elio 03] have been developed. While these
methods were shown to work for a broad range of molecules, the phase-space densities
presently achieved are still far from quantum degeneracy.

An alternative approach for the production of cold molecules is to form them from
pre-cooled atoms. Photoassociation via one or two photons is widely applied for this
purpose [Jone 06], and the production of molecules in the vibrational ground state has
been recently demonstrated [Vite 08, Deig 08]. However, the transfer schemes applied
to date suffer from relatively low efficiency, and as photoassociation is commonly carried
out in magneto-optical traps, only modest phase space densities have been reached.

Starting from an atomic sample that is close to quantum degeneracy, however, mag-
netic Feshbach resonances can be employed to associate molecules. Feshbach resonances
are scattering resonances which occur when two colliding particles resonantly couple
to a bound state. They were introduced in the context of nuclear physics [Fesh 64],
where two colliding particles are brought into resonance with a bound state by changing
their kinetic energy. In the field of ultracold gases magnetic Feshbach resonances have
been used with impressive success over the last decade. For such a magnetic Feshbach
resonance a vibrationally highly excited molecular state is shifted into resonance with
the state of two colliding atoms by changing an external magnetic field. Their first
application was to demonstrate controlled tuning of the atomic scattering properties
[Inou 98, Cour 98, Robe 98]. Three years after the suggestion to form molecules by adi-
abatically ramping over a magnetic Feshbach resonance [Mies 00], this scheme could be
realized for many different species [Herb 03, Xu 03, Rega 03, Cubi 03, Durr 04]. As the
association process is adiabatic and reversible, the molecular sample inherits the high
phase space density of the atoms. However, while being translationally cold, Feshbach
molecules are vibrationally highly excited. This excitation energy greatly exceeds the
typical trap depths, and can be released by collisional relaxation to lower vibrational
states, leading to loss of the respective particles.

For molecules associated from fermionic atoms, however, collisional decay is strongly
suppressed by Pauli blocking [Petr 04]. This allowed the formation of the first molecular
Bose-Einstein condensates in the year 2003 [Joch 03, Grei 03a, Zwie 03].

In the case of bosonic molecules Pauli blocking is absent, and collision-induced transi-
tions to lower lying vibrational states are much more favorable. This leads to a dramatic
decrease of molecular lifetime in dense samples. By preparing Feshbach molecules in
separate sites of a three-dimensional optical lattice they can be shielded from detri-
mental collisions, and long molecular lifetimes can be reached [Thal 06].

One of the major goals in the field of ultracold molecules has been the production of
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1.2 This thesis

molecules in the rovibrational ground state. Being potentially stable under collisions,
they could condense to form a BEC of bosonic molecules. A possible procedure for
the formation of ultracold ground state molecules is to load an atomic BEC into an
optical lattice, where molecules can be associated and subsequently transferred into
the rovibrational ground state with a series of optical Raman pulses [Jaks 02]. In
a similar approach, we have demonstrated the reduction of the vibrational quantum
number of Feshbach molecules by one unit in 2007 [Wink 07a]. In this thesis I will show
amongst others things how we transferred Feshbach molecules into the rovibrational
triplet ground state with this scheme.

1.2 This thesis

The first chapter of this thesis gives an overview of the setup in which the experiments
are performed. 87Rb atoms from background vapor are collected in a magneto-optical
trap and transferred into a glass cell over a magnetic transfer line. They are brought to
the Bose-Einstein condensate phase transition through rf-induced evaporative cooling
and loaded into a three-dimensional optical lattice. Feshbach molecules are created via
an adiabatic sweep over a magnetic Feshbach resonance, and remnant unpaired atoms
are removed by a purification pulse. The result of this procedure is a pure sample of
Feshbach molecules in the ground state of the optical lattice, which serves as a starting
point for the further experiments.

Chapter 2 focuses on radio frequency induced transfer of Feshbach molecules to more
deeply bound states. A two-level model for rf-transitions at an avoided crossing of
bound molecular states is introduced and analyzed using a Floquet approach. We then
present two different molecular rf-spectroscopy methods and a newly-developed scheme
to adiabatically transfer population across an avoided crossing. This method is used
to transfer 87Rb2 Feshbach molecules from more than 1000G to zero magnetic field.
Finally, the possible realization of an rf-induced Feshbach resonance is investigated. All
measurements are simulated with a numerical model and the outcomes are compared
to the experimental results.

While radio frequency transfers allow only modest differences in binding energy to
be bridged, molecules can be transferred from weakly to deeply bound states with
optical transfer schemes. The third chapter of this thesis starts with a brief discus-
sion of STIRAP and then presents the laser system that has been set up to meet the
requirements of this transfer method. Feshbach molecules are transferred into the rovi-
brational ground state of the a3Σ+

u triplet potential of 87Rb2 with a one-way transfer
efficiency close to 90%. Compared to the Feshbach molecules, those in the ground state
experience a much weaker lattice potential, leading to coherent on-site molecular oscil-
lations. A numerical model taking the lattice band structure into account reproduces
this behavior, and allows the determination of the lattice depth for the ground state
molecules.
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1 Introduction

This thesis ends with an outlook on future work with ultracold molecules.
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2 Preparation of a pure ensemble
of Feshbach molecules

A pure ensemble of ultracold Feshbach molecules is prepared in an ultra-high vacuum
apparatus. Its construction was started in 2001 using a design similar to the one
developed in the group of Theodor Hänsch in Munich. The main feature of this system
is a magnetic transport line [Grei 01] connecting the MOT vacuum chamber with the
glass cell where the experiments are carried out. The advantage of this design is
that the experimental glass cell has ultra-high vacuum and offers excellent optical
access. The magnetic transport- and vacuum systems of our setup are described in
the diploma thesis of Klaus Winkler [Wink 02] and doctoral thesis of Matthias Theis
[Thei 05] respectively. In the doctoral thesis of Gregor Thalhammer [Thal 06] a detailed
description of the laser system, the magnetic field- and the computer-control-system
of the experiment can be found. For completeness I will give a brief overview of the
apparatus and the preparation procedure for a pure sample of Feshbach molecules, in
a similar way as in [Wink 07b]. Such a molecular ensemble is the starting point for all
the experiments described in the following chapters of my thesis.

2.1 Vacuum apparatus and magnetic transport

The vacuum apparatus consists of the MOT-chamber, which is connected via a differ-
ential pumping tube to the glass cell, where the actual experiments are carried out (see
Fig. 2.1). In the first step, 87Rb atoms are trapped in a magneto-optical trap (MOT)
directly from the background vapor at a pressure of about 5×10−8 mbar. About 3×109

atoms are trapped in 10 s and further cooled to about 50µK in a molasses cooling phase.
The atoms are optically pumped into the lowest spin state |f = 1,mf = −1⟩, with f
the total atomic angular momentum and mf its projection, and subsequently loaded
into a magnetic quadrupole trap.

In the next step the atomic cloud is transferred into the experimental glass cell
over a magnetic transport line consisting of 13 pairs of quadrupole coils (see Fig. 2.2).
The current through the coils is ramped in such a way that the trap minimum shifts
smoothly along the transport line (for details see [Wink 02, Thei 05, Thal 07]). The
atoms cover a distance of 48 cm including an angle of 120° and pass a differential
pumping tube with an inner diameter of 6.2 mm and a length of 115mm. An ion getter
pump after the tube allows us to reach a pressure of less than 10−11 mbar in the glass

5



2 Preparation of a pure ensemble of Feshbach molecules

Glass cell

MOT-
chamber

Rubidium
reservoir

Ion getter pump

Ion getter pump

Gate valve

differential
pumping tube

Figure 2.1:
Vacuum system. A differential pumping tube connects the MOT chamber
to the experimental glass cell . 87Rb atoms are trapped in the MOT and
transferred over a magnetic transport line into the experimental glass cell
(see Fig. 2.2). Figure adapted from [Wink 07b].

cell. After the transport the last quadrupole trap is changed into a Quadrupole-Ioffe-
Configuration (QUIC) trap [Essl 98] by ramping up the current through an additional
coil (Ioffe coil) to the same value as through the quadrupole coils. In contrast to a
quadrupole trap, the QUIC trap has a non-zero minimum of the magnetic field with
approximately harmonic characteristics. At an operating current of 40 A the trap
frequencies are ωr = 2π × 150Hz in the radial- and ωa = 2π × 15Hz in the axial
direction. After loading into the QUIC trap we typically end up with 4× 108 atoms at
a temperature of 250µK.

2.2 Preparation of an atomic BEC

In the QUIC trap we apply forced radio frequency induced evaporation (For a detailed
treatment see [Luit 96].) to further reduce the temperature. After 14 seconds a Bose-
Einstein condensate of typically 106 87Rb atoms in the spin state |f = 1,mf = −1⟩
is formed. During the last second of evaporation the trap current is reduced to 30A
to avoid oscillations of the BEC, which are induced if the trap frequencies are higher
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2.3 Optical lattice

magnetic
 transport line

differential
pumping tube

MOT-chamber

gate
valve

glass cell

Figure 2.2:
Magnetic transport line. Shown are the coils used for the MOT (yellow,
left-hand side), the QUIC trap (yellow, right-hand side) and for the mag-
netic transport between them (red, blue and green). Figure adapted from
[Wink 07b].

harmonics of the line frequency of 50 Hz. Note that for the following procedure we
typically do not use a pure condensate but a BEC plus a thermal component to increase
the efficiency of molecule formation in the optical lattice.

The magnetic field minimum of the QUIC trap is displaced by about 8mm from
the center of the quadrupole coils. These coils are later switched into a Helmholtz
configuration to create a homogeneous magnetic field used to form Feshbach molecules
(see Sec. 2.4). In order to shift the trap minimum into the center of the quadrupole-coils
the current through the quadrupole coils is reduced from 30A to about 16.2 A while
keeping the current through the Ioffe coil constant. The resulting trap frequencies are
ωx,y,z = 2π × (7, 19, 20)Hz. We use additional coils for gravity compensation and the
fine-adjustment of the BEC position in all three directions (see [Wink 07b] for details).

2.3 Optical lattice

For the production of Feshbach molecules, an optical lattice offers several advantages
compared to a large-volume trap. Due to the high atomic density at the lattice sites the
atom-molecule coupling is strongly enhanced, allowing efficient molecule association.

7



2 Preparation of a pure ensemble of Feshbach molecules

a) b) c)

Figure 2.3:
3D optical lattice. a) Dipole potential of a single (upper part) and two
counterpropagating (lower part) focused Gaussian laser beams. b) A
three-dimensional cubic optical lattice can be formed by superposing six
laser beams. c) After loading a BEC into a red-detuned lattice the atoms
are trapped at the sites of maximum intensity. Note that depending on
the exact loading conditions there can be multiple atoms per lattice site.

As Feshbach molecules are only very weakly bound, they are highly instable under
collisions with each other. In a sufficiently deep optical lattice with no more than a
single molecule per site they are shielded from each other, leading to a strong increase
in lifetime [Thal 06]. Furthermore mean-field effects present in dense samples do not
occur in an optical lattice. A detailed discussion of ultracold atoms in optical lattices
can be found in [Grei 03b, Thal 07].

For the realization of a cubic three-dimensional optical lattice we use retroreflected
laser beams at a wavelength λ = 830 nm in all three spatial directions (Fig. 2.3). The
intensity distribution for the resulting standing optical wave in one dimension reads

I(r, z) = 4I0 exp

(
− 2r2

w(z)2

)
cos2(kLz), (2.1)

with I0 the peak intensity, kL = 2π/λ the wavenumber of the laser beam, and

w(z) = w0

√
1 +

(
z

zR

)
(2.2)

the 1
e2 -radius as function of the distance z from the focus. zR = πw2

0/λ is the
Rayleigh length and w0 the 1

e2 -radius at the focus. The optical dipole potential for
large detunings ∆ ≫ Γ is approximately [Grim 00]

V (r) =
3πc2Γ

2ω3
0∆

I(r), (2.3)

where Γ = 2π × 6MHz is the natural linewidth for Rb and ∆ is the detuning from
the weighted center of the D1 and D2 lines at λ1,2 = (795, 780) nm respectively. The
resulting trap frequencies in the harmonic approximation are

8



2.4 Production of Feshbach molecules

ωz =

√
2V0kL

m
(2.4)

in the axial and

ωr =

√
4V0

mw2
0

(2.5)

in the radial direction, where V0 is the trap depth and m the mass of the atom. As
generally ωz ≫ ωr this results in an array of microtraps with trap frequency

ωho =

√
2V0kL

m
(2.6)

in all three directions at the intersection of the laser beams.
For the optical lattice we use three laser beams which are derived from a Ti:Sapphire

laser at λ = 830.44 nm. Each laser beam is coupled through a separate AOM and sent
to the glass cell over an optical fiber. After passing through the glass cell the beams
are retroreflected by cavity mirrors with a reflectivity of R = 0.99. The transmitted
light is used to intensity-stabilize the laser beams via feedback to the AOMs. The laser
beams are polarized perpendicular to each other, and their frequencies differ by tens of
MHz in order to avoid interference effects. The laser beams have a 1

e2 -waist radius of
170µm at the site of the atoms, corresponding to a Rayleigh length of 11 cm. A power
of 100 mW per laser beam results in a lattice depth of 37Er, where Er = π2~2/2ma2Er

is the recoil energy and a = λ/2 is the lattice spacing. When the second Ti:Sapphire
laser is used for spectroscopy or STIRAP, the pump power from the Verdi V18 laser
has to be split between the two Ti:Sapphire lasers, reducing the power available for
the optical lattice (see Sec. 4.2). In this configuration we typically operate with lattice
depths of 15Er for atoms, corresponding to 60Er for Feshbach molecules.

Before reaching the glass cell the lattice beams are superimposed with the absorption
imaging beams using polarizing beam splitter (PBS) cubes in all three directions (see
Fig. 2.4). They are separated after the glass cell in the same way. A small fraction of
the lattice light leaks through the PBS, allowing the detection of the size and position
of the beams on the CCD-cameras. This makes it easy to align the lattice beams onto
the BEC.

After the BEC is moved into the center of the quadrupole-coils as described in the
previous section, it is adiabatically loaded into the optical lattice by ramping up the
lattice power to its maximum value in 100ms.

2.4 Production of Feshbach molecules

Magnetic Feshbach resonances have been extensively used in ultracold atomic physics
for purposes like the association of molecules or the manipulation of atomic properties

9



2 Preparation of a pure ensemble of Feshbach molecules

Photodiode 1

Camera 1

Imaging
beam 2

PBS

Lattice beam 1

Lattice beam 2

Optical fiber

Glass cell

Imaging
beam 1

Camera 2

Photodiode 2

Figure 2.4:
Lattice beam alignment. After the optical fibers the lattice laser beams
are superimposed with the absorption imaging light on polarizing beam
splitters (PBS). Using the same method the beams are separated again
after passing through the glass cell. The lattice beams are retroreflected by
cavity mirrors, which transmit about 1% of the light. After detecting this
light on photodiodes their signal is used to intensity-stabilize the lattice
beams. Beam alignment in the vertical direction is implemented in an
analogous way and is not shown here. Figure adapted from [Wink 07b].

(for reviews see [Chin 08, Kohl 06]). The broadest magnetic Feshbach resonance that
has been observed in 87Rb to date is in the spin state |f = 1,mf = +1⟩ [Mart 02]. It
lies at a magnetic field of 1007.4G and has a width of 210 mG [Mart 02, Volz 03]. In
order to use this Feshbach resonance we transfer the molecules from the magnetically
trappable spin state |f = 1,mf = −1⟩ into the high-field seeking state |f = 1,mf =
+1⟩. For this we ramp down the magnetic trap and then suddenly reverse the direction
of the residual magnetic bias field. The magnetic moment of the atoms cannot follow
the direction of the magnetic field, and they are diabatically transferred into state
|f = 1,mf = +1⟩. The quadrupole coils used for the QUIC trap are then switched
into Helmholtz-configuration to create a homogenous magnetic field. Within 3ms the
current is ramped up to about 80.5A corresponding to a magnetic field of 1012 G,

10



2.4 Production of Feshbach molecules

1006.8 1007 1007.2 1007.4 1007.6 1007.8 1008

B (G)

-20

-15

-10

-5

0

5

10

en
er

gy
 (

h-
ω

h
o
)

v=0
v=1
v=2
v=3
v=4
v=5
v=6

separated atoms

b
ou

n
d

 a
to

m
s

E
b
(B)

E
res

(B)

Figure 2.5:
Feshbach resonance in an optical lattice. The dashed blue lines represent
the seven lowest trap states of two 87Rb atoms with spin |f = 1,mf = +1⟩
in a spherical harmonic trap. The trap frequency is ωho = 2π × 39 kHz,
which at a wavelength of λ = 830 nm corresponds to a lattice depth of
35 Er. The atomic states are crossed by a molecular level (dashed red line)
at 1007.5G. Coupling between the molecular and atomic states leads to
avoided crossings adiabatically connecting e.g. the molecular state with
the lowest trap state. This coupling shifts the Feshbach resonance to
1007.4G. Figure adapted from [Kohl 06].

i.e., on the ”atomic” side above the Feshbach resonance. The atoms are basically
not affected by this ramp, and they remain in the ground state of the lattice. The
magnetic field is then slowly lowered to 1000G with a ramp speed of typically 5G/ms.
At multiply occupied lattice sites this leads to adiabatic association of molecules with
close to unit efficiency [Thal 06]. In the next step we quickly switch off the magnetic
field and apply standard absorption imaging (see Sec. 2.6). As molecules cannot be
detected using this technique they are dissociated by ramping back over the Feshbach
resonance before the magnetic field is switched off. During the final switch-off the
Feshbach resonance is crossed with a speed of more than 1000G/ms, ensuring that
effectively no molecules are formed.

The results of a typical measurement can be seen in Fig. 2.6. After Feshbach asso-
ciation we observe a loss of about 40% of the initially detected atoms. About 15% of
the atoms reappear after Feshbach dissociation, while a fraction of about 25% of the
initial signal is irretrievably lost. This can be understood in the following way: The
adiabatic loading of a BEC1 into the vibrational ground state of a deep optical lattice

1As explained in Sec. 2.2 we generally do not use a pure BEC for the experiments described here.
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2 Preparation of a pure ensemble of Feshbach molecules
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Figure 2.6:
Association and dissociation of Feshbach molecules. Feshbach association:
The red triangles represent the fraction of detected atoms after ramping
the magnetic field from 1013G, above the resonance, to a hold value Bh

(see left inset). About 40% of the atoms are lost for magnetic fields be-
low the Feshbach resonance at 1007.4G (dashed lines). Association and
dissociation: After ramping back to a magnetic field Bh above the reso-
nance (right inset) atoms in doubly occupied lattice sites reappear (blue
squares). At lattice sites with higher initial occupation number inelastic
atom-molecule and molecule-molecule collisions occur after Feshbach asso-
ciation. These particles are lost and correspond to the difference between
the red triangles and blue squares. Figure adapted from [Thal 07].

leads to a Mott-insulator state [Jaks 98, Grei 02]. Due to the external harmonic con-
finement it has a wedding-cake like structure with alternating shells of superfluid and
insulating regions of different occupation number [Jaks 99, Foll 06]. Atoms at singly
occupied sites are detected independent of the magnetic field. While the association of
molecules at sites with two atoms is reversible, inelastic atom-molecule- or molecule-
molecule-collisions lead to loss of the particles at sites with atomic occupation number
three or higher. From measurements similar to those presented in Fig. 2.6, we typi-
cally find 50-60% of the atoms in singly, 10-20% in doubly, and 20-30% in more highly
occupied sites [Thal 06].
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2.5 Purification of the molecular sample
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Figure 2.7:
Purification scheme. We simultaneously apply a microwave- and laser
pulse for about 5 ms at a magnetic field of 1000G. a) The microwave
indicated by the dashed red line drives the transition between the levels
|f = 1,mf = +1⟩ and |f = 2,mf = +2⟩. b) The laser (dash-dotted red
line) is resonant with the closed transition from the level |f = 2,mf = +2⟩
to the electronically excited level in the 5P3/2 manifold that correlates with
|f ′ = 3,m′

f = +3⟩ at 0G.

2.5 Purification of the molecular sample

After Feshbach association we remove the remaining single atoms which account for
about 60% of the initial particles to end up with a pure molecular sample. For this we
apply a combined microwave- and laser pulse at a magnetic field of 1000G for about
5ms. The microwave drives the atomic transition |f = 1,mf = +1⟩ ↔ |f = 2,mf =
+2⟩ at a frequency of 9.1107GHz (see Fig. 2.7a). The molecules are out of resonance
and not affected by the microwave. As an antenna we use a rectangular waveguide
that is open on one side and supplied by an amplifier with an output power of 2W.
In order to remove the atoms we shine in resonant laser light at the same time as the
microwave. It drives the closed transition |f = 2,mf = +2⟩ ↔ |f ′ = 3,mf ′ = +3⟩, and
is 1402MHz blue detuned compared to the transition at zero magnetic field (compare
Fig. 2.7b). The atoms are removed from the lattice by the recoil momentum transferred
from the scattered photons [Xu 03]. After a purification pulse of about 5ms no more
atoms can be detected. We do not observe a decrease in molecule number for additional
pulses and typically end up with a pure molecular sample of about 3 × 104 Feshbach
molecules in the vibrational ground state of the lattice.

13



2 Preparation of a pure ensemble of Feshbach molecules

Figure 2.8:
Time-of-flight absorption image. After Feshbach dissociation and ramp-
down of the optical lattice the atoms expand in a magnetic gradient field
for 13ms. The center square corresponds to the first Brillouin zone, i.e.,
the lowest band of the lattice. In the region below the first Brillouin zone
residual atoms in a different spin state can be seen. They are produced
by non-ideal switching of the magnetic fields.

2.6 Absorption imaging

In our experiments data acquisition mainly based on absorption imaging [Kett 99] at
the end of the experimental cycle. Feshbach molecules are dissociated into atoms by
adiabatically ramping over the Feshbach resonance. As a next step the optical lattice
is ramped down in typically 5ms. This process is adiabatic with respect to the lattice
band gap, i.e., no higher bands are excited. On the other hand it is fast enough that
the atomic quasi-momentum distribution does not change during the ramp-down, and
is directly converted into free particle momentum. After releasing the atoms from the
lattice they expand in free2 fall, and the momentum distribution is mapped into a
spatial distribution. In other words, this release procedure converts Brillouin zones
from quasi-momentum- into real space [Grei 03b]. After typically 13ms of expansion
the atoms are exposed to resonant light driving the closed transition |f = 2⟩ ↔ |f ′ = 3⟩
at a magnetic field B = 2G for 100µs. In order to detect atoms in the state |f = 1⟩
and to retain atoms that are lost from the closed transition we simultaneously shine in
repumping light at the transition |f = 1⟩ ↔ |f ′ = 2⟩. The resulting absorption image
can be observed with CCD cameras in all three directions (see Fig. 2.4). In general,
however, only one high-quality camera (model S285 from Theta System Elektronik) is

2During the expansion of the atoms, a vertical magnetic gradient field is switched on to separate
different atomic spin states.
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2.6 Absorption imaging

used for imaging. For all the experiments presented in this thesis only atoms in the
lowest Brillouin zone are counted as signal. A typical absorption image of an atomic
sample in the lowest Brillouin zone is shown in Fig. 2.8.
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3 Rapid adiabatic passage with
radio frequency fields

In the past few years the production of ultracold Feshbach molecules permitted the
realization of a numerous spectacular experiments. For many of these the fact that
Feshbach molecules are produced in particular, well-defined quantum states was crucial.
However, only a very limited number of states are directly accessible via magnetic
Feshbach resonances, and there is strong interest in transferring Feshbach molecules
to arbitrary quantum states. As recently demonstrated in our group, a transfer of
Feshbach molecules to neighboring states can be realized by appropriate ramps of the
magnetic bias field [Mark 07]. Depending on the ramp speed avoided crossings are
adiabatically followed or diabatically crossed. Due to limited ramp speed, however,
transfers over avoided crossings are possible only for very small energy splittings up
to about 200 kHz×h. In a different approach, Feshbach molecules can be transferred
via optical Raman schemes like STIRAP [Wink 07a]. While such techniques allow
much more deeply bound states to be addressed, they typically require a complex setup
including frequency-stabilized lasers at different wavelengths with fast intensity control
[Danz 08, Ni 08, Lang 08b]. The efficiency of STIRAP transfers could potentially be
considerably increased by starting from a molecular state having more favorable Franck-
Condon factors than the initial Feshbach state [Danz 08].

Since the first half of the 20th century magnetic radio frequency fields have been
widely used for spectroscopic measurements in physics, chemistry and medicine [Rabi 38,
Ingr 56, Bove 88]. In the field of ultracold molecules, rf-spectroscopy has been em-
ployed to determine the molecular binding energies near magnetic Feshbach reso-
nances [Rega 03, Chin 04] and to probe the excitation spectrum of a Fermi gas in
the BEC-BCS crossover regime [Bart 04, Grei 05]. It has also been used for the
resonant production of molecules in the vicinity of a magnetic Feshbach resonance
[Thom 05, Ospe 06, Bert 06]. We have developed a simple, robust and highly effi-
cient method for transfer of molecules between different quantum states, which relies
on the combination of a radio frequency pulse with an adiabatic magnetic field ramp
[Lang 08a].

This chapter starts with a general discussion of how transitions between different
molecular states can be driven by radio waves. We then apply this to the specific
case of an avoided crossing between two bound molecular states. A two-level model
describing such a system is introduced and analyzed using Floquet theory, and the
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3 Rapid adiabatic passage with radio frequency fields

results are compared to the well-known rotating wave approximation. Two different
methods to spectroscopically determine the energy splitting of an avoided crossing are
presented and our adiabatic transfer scheme is discussed in detail. The versatility of this
method is demonstrated by increasing the binding energy of the Feshbach molecules
from 24 MHz to 3.6GHz×h with a series of nine transfers. Finally we investigate if
we can use this transfer scheme to realize an rf-induced Feshbach resonance, and draw
an analogy to the well-known magnetic Feshbach resonance. For all of these steps the
experimental results are simulated with numerical models.

3.1 Molecules in oscillating magnetic fields

3.1.1 Experimental radio frequency setup

For the generation of the magnetic radio frequency fields used to drive molecular transi-
tions we employ the same setup as for forced evaporative cooling (Sec. 2.2). A sinusoidal
signal with a frequency of up to 150MHz is provided by a DDS-based AD9865 frequency
generator board (for details see [Schm 06]). The ADwin Gold computer control system
controls the AD9854, whose amplitude and frequency can thus be changed in timesteps
of 50µs. The rf-signal is amplified by a ZFL-500LN amplifier from Minicircuits in a
first, and by a Frankonia FLL25 amplifier with a maximum output power of 25W in a
second stage. The output is then transmitted via two coil antennas, which are located
directly above and below the glass cell. They both have three windings, a diameter of
25 mm and produce a magnetic rf-field in the same direction as the magnetic bias field.
The magnetic field along the axis of a thin coil is given as

B =
µ0NIr

2

2(r2 + a2)3/2
, (3.1)

where N is the number of windings, I the current through the coil, r its radius, and
a the distance along the axis through the center of the coil. For our maximum current
of 0.8 A we find the two coils to produce a magnetic field of about 300 mG. However,
at high rf-power cross-talk from the rf-signal to the stabilization of the magnetic bias
field used for Feshbach association occurs. This cross-talk leads to oscillations in the
bias field and consequently to loss of molecules. We assume that the cross-talk is due
to pickup of the current transducers used to measure the magnetic bias field, which is
caused by the radio frequency currents. The system shows particularly high sensitivity
from relatively low frequencies up to 5MHz. We have thus chosen the rf-amplitudes
to be considerably lower than 300 mG in this frequency range.
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3.1 Molecules in oscillating magnetic fields

3.1.2 Magnetic dipole transitions

We now want to analyze how magnetic dipole transitions between different molecular
states can be driven. For an oscillating magnetic field with frequency ωrf

Brf(t) = Brf sin(ωrft) (3.2)

we can write the Hamiltonian for magnetic dipole transitions [Cohe 77] as

Ĥmd = Brf(t).(
µB

~
(̂l + gsŝ) +

µNgi

~
î) ≡ Brf(t).µ̂, (3.3)

where l̂, ŝ and î are the electron orbital angular momentum, electron spin and nuclear
spin operators respectively. µB and µN are the Bohr- and nuclear magneton, gs and gi

are the g-factors for electron- and nuclear spin, and µ̂ is the magnetic dipole moment
operator. For the case where Brf is parallel to the direction of the magnetic bias field
(i.e. the z-axis), we find the selection rules

∆l = 0, (3.4)

∆ml = 0, (3.5)

∆ms = 0, (3.6)

∆mF = 0, (3.7)

where ml and ms are the magnetic quantum numbers for the electronic orbital an-
gular momentum and spin, respectively, and mF is the magnetic quantum number of
the total angular momentum.

We define the matrix element for an rf-induced transition from state |i⟩ to |j⟩, which
gives the coupling strength between the states as

µi,j =
⟨i|Ĥmd|j⟩

|Brf|
. (3.8)

For different vibrational levels |i⟩ and |j⟩ of a single molecular potential µi,j vanishes
due to the orthogonality of the respective wavefunctions. In real molecules like 87Rb2,
however, interactions like spin-orbit coupling, hyperfine- and exchange interactions
cause coupling of different molecular potentials. This leads to mixing of molecular
levels and thus to new eigenstates of the system, between which rf-transitions can then
be driven. This mixing effect is strongest at avoided crossings of two molecular levels,
where the transition matrix element µu,l between the upper |u⟩ and lower branch |l⟩ is
resonantly peaked (see Fig. 3.1). Further away from avoided crossings the transition
strength is generally too low to efficiently drive radio frequency transitions. In our
experiments we thus mainly focus on the regions around avoided crossing to induce
rf-transitions.
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3 Rapid adiabatic passage with radio frequency fields

3.2 Two-level model for radio frequency transitions

at avoided crossings

In this section a two-level model describing magnetic radio frequency transitions at
an avoided crossing of two molecular levels is introduced. We first use this model to
derive an analytic expression for the magnetic transition strength. The system is then
investigated with a Floquet approach, and the results are compared to that for electric
dipole transitions and the rotating wave approximation. Finally we present a numerical
model including magnetic field noise, which is used to simulate our experiments.

3.2.1 Analytic model

In our model two bare molecular levels |b1⟩ =
( 1

0
)

and |b2⟩ =
( 0

1
)

with magnetic
moments µ1 and µ2 respectively cross at a magnetic field B = B0 (see Fig. 3.1a).
Without the radio frequency field the Hamiltonian for this system reads

Ĥ0 = (B −B0)

(
µ1 0
0 µ2

)
+

~
2

(
0 Ω
Ω 0

)
, (3.9)

where Ω is a coupling between |b1⟩ and |b2⟩ that can arise for example from exchange-
or dipole-dipole interaction. We diagonalize this Hamiltonian to find the new eigen-
states

|u⟩ = cos(θ)|b1⟩ + sin(θ)|b2⟩ (3.10)

|l⟩ = − sin(θ)|b1⟩ + cos(θ)|b2⟩, (3.11)

with mixing angle θ = arctan( δ+
√

δ2+Ω2

Ω
), where δ = (∆µ∆B)

~ , ∆µ = µ2 − µ1 and
∆B = B −B0. The corresponding eigenenergies are

Eu =
1

2

(
∆B(µ1 + µ2) +

√
∆B2∆µ2 + ~2Ω2

)
(3.12)

El =
1

2

(
∆B(µ1 + µ2) −

√
∆B2∆µ2 + ~2Ω2

)
. (3.13)

The eigenstates |u⟩ and |l⟩ form the upper and lower branch of an avoided crossing
(Fig. 3.1a). In order to include magnetic radio frequency radiation into this model
we add a time-dependent part Ĥmd(t) describing an oscillating magnetic field to the
Hamiltonian. The total Hamiltonian then becomes

Ĥtot
md(t) = Ĥ0 + Ĥmd(t)

= (B −B0)

(
µ1 0
0 µ2

)
+

~
2

(
0 Ω
Ω 0

)
+Brf cos(ωrft)

(
µ1 0
0 µ2

)
. (3.14)
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3.2 Two-level model for radio frequency transitions at avoided crossings
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Figure 3.1:
Coupling strength at avoided crossing. a) The bare molecular states |b1⟩
and |b2⟩ (dashed green lines) are coupled with coupling strength Ω. The
new eigenstates (solid blue lines) form the upper |u⟩ and lower branch |l⟩
of an avoided crossing. b) The matrix element µu,l for magnetic dipole
transitions between |u⟩ and |l⟩ is peaked at the avoided crossing. The
solid blue line is from our two-level model (Eq. 3.15), while the dashed
red line is computed with the close-coupled channel model described in
Sec. 3.3.1.

Inserting Eqs. 3.10, 3.11 and 3.14 into Eq. 3.8 we can calculate the matrix element
for magnetic dipole transitions between |u⟩ and |l⟩ as

µu,l ≡ ⟨u|
(
µ1 0
0 µ2

)
|l⟩ =

∆µ sin(2θ)

2
= ∆µ

Ω(δ +
√
δ2 + Ω2)

Ω2 + (δ +
√
δ2 + Ω2)2

. (3.15)

The matrix element µu,l is maximum for B = B0 with a full width at half maximum
(FWHM) of 2

√
3 Ω and vanishes as 1/∆B away from the avoided crossing. We find

good agreement between our analytic expression with matrix elements calculated using
the close-coupled-channel model that will be presented in Sec. 3.3.1 (see Fig. 3.1b).

In the basis of the eigenstates |u⟩ and |l⟩ of Ĥ0 the total Hamiltonian from Eq. 3.14
becomes

Ĥu,l
md(t) =

(
Eu 0
0 El

)
+Brf cos(ωrft)

(
µ1+∆µ sin2(θ) ∆µ sin(2θ)/2

∆µ sin(2θ)/2 µ1+∆µ cos2(θ)

)
≡

(
Eu 0
0 El

)
+ ~ cos(ωrft)

(
Ωu ΩR
ΩR Ωl

)
, (3.16)

with
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3 Rapid adiabatic passage with radio frequency fields

ΩR = Brf∆µ sin(2θ))/(2~), (3.17)

Ωu = Brf(µ1 + ∆µ sin2(θ))/~, (3.18)

Ωl = Brf(µ1 + ∆µ cos2(θ))/~. (3.19)

A comparison of Eq. 3.17 to the matrix element µu,l for magnetic dipole transitions
between |u⟩ and |l⟩ as defined in Eq. 3.15 shows

ΩR =
µu,lBrf

~
. (3.20)

3.2.2 Rotating wave approximation

The qualitative difference of the Hamiltonian for magnetic dipole transitions at an
avoided crossing (Eq. 3.16) to the one describing for example the interaction of a
two-level system with a monochromatic electromagnetic field in the electric dipole
approximation, is that Ĥu,l(t) contains periodically time-dependent diagonal elements.
Hence, we can obtain the Hamiltonian formally equivalent1 to the one for electric dipole
transitions from Eq. 3.16 by setting Ωl = Ωu = 0,

Ĥed(t) =

(
Eu 0
0 El

)
+ ~ cos(ωrft)

(
0 ΩR

ΩR 0

)
. (3.21)

Even though this commonly used Hamiltonian is not relevant for magnetic radio
frequency transitions, we will discuss it in the following section to emphasize principal
differences between electric- and magnetic dipole transitions. With the assumptions2

of low field amplitude,

ΩR ≪ (Eu − El)/~ (3.22)

and small detuning,

∆ ≡ (Eu − El)/~ − ωrf ≪ (Eu − El)/~ + ωrf (3.23)

the well-known rotating wave approximation (RWA, see e.g. [Cohe 77]) can be ap-
plied to Ĥed(t). This results in the time-independent Hamiltonian for the so-called
dressed states |u⟩ and |l + ~ωrf⟩

1In the case of electric dipole transitions ΩR = Ed/~ with E the electric field amplitude and d =
⟨u|d̂|l⟩ the electric dipole matrix element between |u⟩ and |l⟩, and ωrf has to be replaced by the
electromagnetic field frequency.

2For our experimental parameters these criterions are generally well fulfilled. Their validity will be
studied in detail in the following sections.
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3.2 Two-level model for radio frequency transitions at avoided crossings

ĤRWA =

(
Eu ~ΩR/2

~ΩR/2 El + ~ωrf

)
. (3.24)

For zero detuning ∆ = 0 this Hamiltonian leads to sinusoidal oscillations between |u⟩
and |l⟩, allowing us to identify ΩR as Rabi frequency. In the following section we will
introduce generalized Floquet theory to perform a more rigorous treatment of Ĥu,l(t)
and compare it to the rotating wave approximation.

3.2.3 Floquet approach

Floquet theory can be applied for the investigation of time periodic Hamiltonians
[Autl 55, Shir 65] and is today widely used, for example in the case of high-amplitude
external fields, where perturbative approaches are not applicable [Potv 88]. An overview
is given e.g. in the review article [Chu 04]. Here, we will first summarize the derivation
of the Floquet framework using a similar notation as in Ref. [Gao 08]. This formalism
is used to analyze the Hamiltonians from Eqs. 3.16 and 3.21, describing magnetic- and
electric dipole transitions, respectively. The results are compared to the rotating wave
approximation.

We consider the time-dependent Schrödinger equation

i~
∂Ψ(r, t)

∂t
= Ĥ(t)Ψ(r, t) (3.25)

for the case of a periodic Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t), (3.26)

where V̂ (t) = V̂ (t + T ) is a periodic perturbation3. The unperturbed Hamiltonian
Ĥ0 has a complete orthonormal set of eigenfunctions

Eαψα(r) = Ĥ0ψα(r), (3.27)

with ⟨ψα|ψβ⟩ = δα,β. For the sake of nomenclature we will refer to these as ”molecular
states”. According to the Floquet theorem [Floq 83] we can write the solution of
Eq. 3.25 as

Ψε(r, t) = e−iεt/~Φε(r, t), (3.28)

where the Floquet state Φε(r, t) has the same periodicity as V̂ (t),

Φε(r, t) = Φε(r, t+ T ). (3.29)

3Note that in contrast to perturbation theory, V̂ (t) is not restricted to small amplitudes.
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3 Rapid adiabatic passage with radio frequency fields

Inserting Eq. 3.28 into Eq. 3.25 we obtain the eigenequation

εΦε(r, t) =

(
Ĥ(t) − i~

∂

∂t

)
Φε(r, t), (3.30)

where ε will be called the quasienergy. The term quasienergy emphasizes the analogy
of the states Ψε(r, t) to the Bloch eigenstates with quasimomentum k for spatially
periodic Hamiltonians. We note that the transformation

ε′ = ε+m~ω, (3.31)

Φε′(r, t) = eimωtΦε(r, t), (3.32)

with m an arbitrary integer and ω = 2π
T

converts an eigenstate Φε(r, t) in Eq. 3.30
into another eigenstate. The wavefunction Ψε(r, t) from Eq. 3.28, however, remains
unchanged [Samb 73, Hsu 06]. The quasienergies for physically different Floquet states
can thus be restricted to an energy range −~ω

2
< ε < ~ω

2
.

To solve for the eigenvalues of Eq. 3.30 we choose the molecular states ψα(r) as basis
for the spatial part of Φε(r, t). Since Φε(r, t) is periodic with period T , we can make
the Fourier expansion

Φε(r, t) =
∑

α

∞∑
n=−∞

Cε
α,ne

inωtψα(r), (3.33)

where Cε
α,n are coefficients to be determined. Using Dirac notation we define the

Floquet state |α, n⟩ such that

⟨r, t|α, n⟩ = einωtψα(r), (3.34)

and get the inner product

⟨β,m|α, n⟩ =
1

T

∫ T

0

dt

∫
dre−imωteinωtψ∗

β(r)ψα(r) = δβ,αδm,n. (3.35)

Substituting Eq. 3.33 into Eq. 3.30 and using Eqs. 3.34 and 3.35 we obtain the system
of coupled equations

∑
α

∞∑
n=−∞

(
⟨α|V̂ (m−n)(r)|β⟩ + (Eα − ε+ n~ω)δβ,αδm,n

)
Cε

α,n = 0, (3.36)

with

V̂ (m−n)(r) ≡ 1

T

∫ T

0

V̂ (r, t)ei(m−n)ωtdt. (3.37)

We can rewrite Eq. 3.36 in the form of a matrix eigenvalue equation
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3.2 Two-level model for radio frequency transitions at avoided crossings

εCε
α,n =

∑
β

∞∑
m=−∞

⟨α, n|Ĥ|β,m⟩Cε
β,m, (3.38)

where we call Ĥ the Floquet Hamiltonian with matrix elements

⟨α, n|Ĥ|β,m⟩ = V̂
(n−m)
α,β + (Eα − n~ω)δβ,αδm,n. (3.39)

The Floquet Hamiltonian is an infinite Hermitian matrix where the columns are
identified by pairs of indices n and α and the rows by m and β. Hence, we have
transformed the time-dependent Schrödinger equation from Eq. 3.25 into an equivalent
time-independent, infinite-dimensional eigenvalue problem.

Let us now consider the probability to make a transition from an initial molecular
state |α⟩ at time t0 to a final state |β⟩ at time t. The matrix form of the time-evolution
operator Û(t, t0) can be expressed [Shir 65] as

Ûβα(t, t0) ≡ ⟨β|Û(t, t0)|α⟩ =
∞∑

n=−∞

⟨β, n|e−iĤ(t−t0)|α, 0⟩einωt. (3.40)

This means that the amplitude for a system to evolve from an initial state |α⟩ at time
t0 to a state |β⟩ at time t according to the time-dependent Hamiltonian Ĥ(t) is equal
to the amplitude to evolve from a Floquet state |α, 0⟩ at t0 to the Floquet state |β, n⟩
at t according to the time-independent Floquet Hamiltonian Ĥ, summed over n with
weighting factors einωt. Methods used to solve problems involving time-independent
Hamiltonians can thus be applied to periodically time-dependent Hamiltonians.

a) Electric dipole Floquet vs. RWA

As an example we will apply the Floquet framework to the electric dipole Hamiltonian
(Eq. 3.21). This is a common approach for high field amplitudes such as in pulsed
laser experiments, where the rotating wave approximation (see Eq. 3.24) is not valid
[Ho 83, Dres 99]. Mathematically the electric dipole Hamiltonian can be obtained from
the one describing magnetic dipole transitions at an avoided crossing by setting the
time-dependent diagonal elements to zero (see Sec. 3.2.2).

From Eq. 3.39 we can calculate the matrix elements of the time-independent Flo-
quet Hamiltonian Ĥed, which is equivalent to the time-dependent Hamiltonian Ĥed

(Eq. 3.21). Ordering the Floquet states |n, α⟩ such that α runs over the molecular
states before each change in n, the matrix representation of Ĥed is
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Figure 3.2:
Rotating wave approximation and Floquet states for electric dipole inter-
action at different Rabi frequencies. The thick solid lines show the upper
and lower branch |u⟩ and |l⟩ of an avoided crossing of two molecular states
having a coupling strength Ω (compare Fig. 3.1). The dashed green line
represents the state |l,+1⟩ for a field frequency ωrf = 2Ω. The eigenstates
of the rotating wave Hamiltonian ĤRWA are shown as dashed red lines,
those of the electric dipole Floquet Hamiltonian Ĥed as solid blue lines.
The Rabi frequency ΩR is considered to be independent of the magnetic
bias field B. a) Eigenenergies for low Rabi frequency ΩR = Ω/5. b) At
higher Rabi frequency ΩR = 3Ω/2 higher order coupling causes deviations
of the Floquet states from the RWA. As an example the three-photon cou-
pling between the states |l,+2⟩ and |u,−1⟩ is indicated by the red circles.
Note that there is no coupling for even photon number (see text).

Ĥed =



· · · · · · · · · ·
· El−2~ωrf ΩR/2 0 0 0 0 0 0 ·
· ~ΩR/2 Eu−~ωrf 0 0 ~ΩR/2 0 0 0 ·
· 0 0 El−~ωrf ~ΩR/2 0 0 0 0 ·
· 0 0 ~ΩR/2 Eu 0 0 ~ΩR/2 0 ·
· 0 ~ΩR/2 0 0 El ~ΩR/2 0 0 ·
· 0 0 0 0 ~ΩR/2 Eu+~ωrf 0 0 ·
· 0 0 0 ~ΩR/2 0 0 El+~ωrf ~ΩR/2 ·
· 0 0 0 0 0 0 ~ΩR/2 Eu+2~ωrf ·
· · · · · · · · · ·

. (3.41)

We see that Ĥed is periodic with only the diagonal elements changing by integer
multiples of ~ωrf from block to block. In principle, to calculate the eigenenergies of the
Floquet Hamiltonian we have to solve the infinite-dimensional secular equation

det(Ĥed − εI) = 0. (3.42)
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3.2 Two-level model for radio frequency transitions at avoided crossings

In practice, however, it is sufficient to truncate Ĥed at a certain Fourier compo-
nent depending on the interaction strength. A straightforward way to determine the
boundaries of this truncation is to check for consistency when including higher Fourier
components.

Figure 3.2 shows the upper |u⟩ and lower branch |l⟩ of an avoided crossing as solid
green lines, and the state |l,+1⟩ as dashed green line. Within the rotating wave
approximation |u⟩ and |l,+1⟩ are coupled with coupling strength ΩR, leading to new
eigenstates represented by the dashed red lines. These eigenstates show an avoided
crossing at Eu − El = ~ωrf, i.e. the coupling is mediated by a single photon. The
eigenenergies of the Floquet Hamiltonian Ĥed, which are shown as solid blue lines, are
periodic with ∆E = ~ωrf. At low Rabi frequency ΩR the eigenenergies of Ĥed and
ĤRWA do not deviate noticeably from each other (see Fig. 3.2a, where ΩR = Ω/54).

In contrast to the rotating wave approximation, the Floquet approach also takes
into account higher order coupling. With increasing Rabi frequency the discrepancy
between the Floquet states and the RWA become significant (Fig. 3.2b, with ΩR =
3Ω/2). For the Floquet case we find transitions involving the exchange of an odd
number of photons to be allowed, while those for even photon numbers are forbidden.
This can be seen directly from Eq. 3.41: The off-diagonal elements ΩR/2 couple only
Floquet states with different molecular state, |u, n⟩ ↔ |l, n ± 1⟩. The fact that two
Floquet states can become energetically degenerate only if their molecular state differs
implies that resonant coupling can only occur for odd photon numbers. As an example
the three-photon coupling between the Floquet states |l+2⟩ and |u,−1⟩ is highlighted
by the red circles in Fig. 3.2b, while it is too weak to be resolved in Fig. 3.2a.

b) Magnetic- vs. electric dipole Floquet

After becoming acquainted to the Floquet framework in the context of electric dipole
transitions we will now use it to analyze the Hamiltonian for magnetic dipole transitions
at an avoided crossing (Eq. 3.16). In this case we obtain the Floquet Hamiltonian

Ĥmd =



· · · · · · · ·
· El−2~ωrf ~ΩR/2 ~Ωu/2 0 0 0 0 0 ·
· ~ΩR/2 Eu−~ωrf 0 ~Ωl/2 ~ΩR/2 0 0 0 ·
· ~Ωu/2 0 El−~ωrf ~ΩR/2 ~Ωu/2 0 0 0 ·
· 0 ~Ωl/2 ~ΩR/2 Eu 0 ~Ωl/2 ~ΩR/2 0 ·
· 0 ~ΩR/2 ~Ωu/2 0 El ~ΩR/2 ~Ωu/2 0 ·
· 0 0 0 ~Ωl/2 ~ΩR/2 Eu+~ωrf 0 ~Ωl/2 ·
· 0 0 0 ~ΩR/2 ~Ωu/2 0 El+~ωrf ~ΩR/2 ·
· 0 0 0 0 0 ~Ωl/2 ~ΩR/2 Eu+2~ωrf ·
· · · · · · · ·

. (3.43)

This matrix has a block structure which is similar to that of Ĥed (Eq. 3.41), but
contains additional off-diagonal elements Ωu and Ωl which couple Floquet states for
identical molecular states (|u, n⟩ ↔ |u, n± 1⟩ and |l, n⟩ ↔ |l, n± 1⟩ respectively).

4This value of ΩR is still considerably larger than typically applied in our experiments and was
chosen for better visibility of the interaction-induced avoided crossings in Fig. 3.2a.
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Figure 3.3:
Floquet states for electric- and magnetic dipole coupling at different cou-
pling strength. a) and b) Comparison of quasienergies. Similar to Fig. 3.2
the thin solid lines show the eigenenergies of Ĥed, while the thick dotted
lines represent those of Ĥmd. The red circles in b) indicate two-photon
coupling, which is allowed for magnetic-, but not for electric dipole tran-
sitions. c) and d) Coupling strengths for subplots a) and b). The solid,
dashed and dotted lines show the coupling strengths ΩR, Ωu and Ωl respec-
tively. They are computed according Eqs. 3.17-3.19 assuming a constant
rf-amplitude Brf.

In Fig. 3.3 we compare the quasienergies of Ĥmd and Ĥed. In contrast to Fig. 3.2
where the Rabi frequency ΩR was kept constant, we now assume the experimentally
more relevant case of constant magnetic radio frequency field amplitude Brf. According
Eqs. 3.17-3.19 this leads to a variation of the couplings ΩR, Ωu and Ωl, depending on the
magnetic bias field B (see Fig. 3.3c and d). The rf-amplitude Brf was thereby chosen
such that the maxima of ΩR equal its values from Fig. 3.2a and b respecively. For low
Brf as typically applied in our experiments5 we find the quasienergies of Ĥmd and Ĥed

to closely match each other (Fig. 3.3a) and thus also the rotating wave approximation

5For the parameters chosen in Fig. 3.3 the Rabi frequency at the point of one-photon transitions,
i.e. at ∆B∆µ/~ ≃ 1 is ΩR ≃ 2π × 90 kHz, about twice the typical experimental value.
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3.2 Two-level model for radio frequency transitions at avoided crossings

energies (compare Fig. 3.2a)6. In this regime, one-photon processes dominate, while
higher-order coupling is negligible.

For large rf-amplitudes the eigenenergies of Ĥmd and Ĥed show significant deviations
(see Fig. 3.3b). In particular processes under the exchange of even photon numbers
become allowed for Ĥmd. As an example, the coupling between the Floquet states
|u,−1⟩ and |l,+1⟩ is indicated by the red circles in Fig. 3.3b. From Eq. 3.41 we see
that this second-order coupling can occur via the off-diagonal elements ΩR and Ωu or
ΩR and Ωl respectively. Higher order processes are allowed as well. Unlike in Fig. 3.2,
however, three-photon-coupling is suppressed due to the resonant behavior of ΩR.

In conclusion, from this investigation we find that for that for our experimental
parameters the rotating wave approximation is an adequate description. At larger field
amplitudes, however, processes involving the exchange of multiple photons become
relevant. The main difference between rf-induced magnetic transitions and electric
dipole transitions is that in the latter case coupling occurs for both even and odd
photon numbers.

3.2.4 Rabi oscillations

Assuming the rotating wave approximation to be valid, sinusoidal Rabi oscillations of
frequency ΩR between |u⟩ and |l⟩ can be driven by subjecting molecules to resonant
rf-radiation. However, gradients over the molecular sample for the magnetic bias- as
well as for the rf-field cause dephasing between molecules at different sites, leading to
damping of the oscillations. Additionally, fluctuations due to noise in the magnetic bias
field lead to shot-to-shot noise for different experimental cycles. These imperfections
in the magnetic bias field reduce the timespan over which Rabi oscillations can be
observed. Dephasing as well as shot-to-shot noise can be strongly suppressed by setting
the magnetic field to the center of an avoided crossing, where the transition frequency
is in first order independent of the magnetic bias field. In Fig. 3.4 Rabi oscillations
observed close to the center of the avoided crossing A from Figs. 3.7 and 3.14 are shown,
where we find a coherence time of about 1ms.

3.2.5 Numerical model

In Sec. 3.2.1 a Hamiltonian describing the interaction of molecules at an avoided cross-
ing with radio frequency radiation (Eq. 3.16) was derived. From the discussion of
Sec. 3.2.3 we have learned that for the low rf-amplitudes typically used in our experi-
ments, the RWA is an adequate approximation for this Hamiltonian. However, Eq. 3.16
does not include noise in the magnetic bias field, which is caused by imperfections of
the coil current stabilization. In this section we will introduce a numerical model for
rf-transitions which in a first step will be used to test the validity of the RWA for the

6The eigenstates of the RWA are not shown in Fig. 3.3 for better visibility.

29



3 Rapid adiabatic passage with radio frequency fields

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Pulse duration (ms)

N
/N

0

Pulse duration (ms)

b)a)

Figure 3.4:
Rabi oscillations. Shown is the fraction N/N0 of molecules detected in
|u⟩ after subjecting them to a square pulse of magnetic rf-radiation as a
function of pulse duration. a) For short pulses Rabi oscillations between
|u⟩ and |l⟩ can clearly be observed. b) For longer pulse duration the
oscillations are damped due to dephasing caused by inhomogeneities of
the magnetic fields. The blue line is an exponentially damped sinusoidal
fit to the experimental data (red circles), and gives a Rabi frequency
ΩR = 2π × 44.6 kHz and a damping time of 1.1ms. The data was taken
close to the center of the avoided crossing A (see Figs. 3.7 and 3.14) at
a magnetic bias field of 1001.4 G, for rf-pulses with ωrf = 2π×13.35MHz
and Brf = 25 mG.

Rabi oscillation measurements shown in Fig. 3.4. We will then add magnetic field noise
to this model and investigate the consequences.

For the numerical model, we return to the time-dependent Hamiltonian in the basis of
bare states |b1⟩ and |b2⟩ (Eq. 3.14). The time evolution is then numerically solved with
the Crank-Nicolson method [Cran 47]. In order to check the quality of the rotating
wave approximation we apply this model to the data from Fig. 3.4, showing Rabi
oscillations between the upper and lower branch of the avoided crossing A. For these
parameters, i.e. (Eu − El)~ = ωrf = 2π×13.35MHz and Brf = 25 mG corresponding
to ΩR = 2π × 44.6 kHz, the conditions for the RWA (Eqs. 3.22) and 3.23) are well
satisfied. Indeed, the model shows sinusoidal Rabi oscillations between the molecular
states |u⟩ and |l⟩ (solid lines in Fig. 3.5a).

We now compare this to the case where resonant rf of the same amplitude is applied
at a very narrow avoided crossing, where the energy splitting is reduced by a factor of
100 to Ω = 2π × 133 kHz. In this case we find the Rabi frequency ΩR = 2π × 44.6 kHz
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3.2 Two-level model for radio frequency transitions at avoided crossings
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Figure 3.5:
Numerical model simulation of Rabi oscillations. a) Validity check of
rotating wave approximation. The solid lines represent a numerical cal-
culation for the Rabi oscillation measurement of Fig. 3.4. For these pa-
rameters the conditions for the RWA (Eqs. 3.22 and 3.23) are well fulfilled
(see text), and sinusoidal oscillations between the molecular states |u⟩
(solid blue line) and |l⟩ (solid red line) can be observed. The dashed lines
show a simulation for the same rf-amplitude Brf but a transition frequency
reduced by a factor of 100, leading to a violation of Eq. 3.22. b) Rabi oscil-
lations including noise of the magnetic bias field (for a detailed discussion
see following subsection). Shown is a simulation for the same parameters
as the solid lines in a), but with magnetic noise included. Compared to
the ”perfect” sinusoidal Rabi oscillations observed in a), the noise leads
to a temporary reduction of the oscillation amplitude.

to be on the same order of magnitude as the energy difference between |u⟩ and |l⟩,
(Eu−El)~ = ωrf = 2π×133 kHz, and thus a violation of the condition from Eq. 3.22. A
corresponding numerical model simulation shows that an oscillation of higher frequency
is superimposed on the Rabi oscillation (dashed lines in Fig. 3.5a).

Magnetic field noise

Due to the imperfections in the stabilization of the magnetic bias field the molecules are
subjected to magnetic field noise. Before including this noise into the model, however,
we briefly analyze the experimental magnetic bias field stabilization setup. In order to
control the magnetic field we have implemented an active digital stabilization circuit.
The current through the Feshbach coils is generated by an SM 30-100D power supply
from Delta Elektronika and measured with an Ultrastab 866 current transducer from
Danfysik with a relative stability better than 10−5. This signal is fed back to the
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Figure 3.6:
Simulated magnetic noise. a) Noise spectrum. The magnetic noiseBn used
in our numerical model (red line) is constructed by filtering out frequency
components higher than 50 kHz from 1/f-noise (green line). b) The red
line shows the time signal of the magnetic noise Bn(t) corresponding to
the red line in a) (low-pass filtered 1/f-noise). The magnetic rf-field as
used in the simulation of Rabi oscillations from Fig. 3.5 is shown in blue.
Due to the high radio frequency ωrf = 2π × 13.35MHz the oscillations of
the rf-field are not resolved in this plot.

power supply over a digital PID controller implemented via our ADwin Gold computer
control system, which has a cycle rate of 20 kHz. From the measured signal of the
current transducer we find magnetic field noise with a root mean square (rms) of about
35mG (see [Thal 07]). However, this value could deviate from the real magnetic field
noise due to instabilities in the current measurement or noise caused by the analog-
to-digital converter. Filtering this noise with a low pass with a cut-off frequency of
1.5 kHz, i.e. the bandwidth of the total system, reduces the noise to about half of its
original value. Due to the sampling rate of the control system, the range of the noise
spectrum recorded via the digital PID controller is limited to a maximum value of
10 kHz.

We include magnetic field noise into our model by introducing a time-dependent
noise term Bn(t). The total Hamiltonian now reads as

Ĥtot(t) = (B −B0 +Brf cos(ωrft) +Bn(t))

(
µ1 0
0 µ2

)
+

~
2

(
0 Ω
Ω 0

)
. (3.44)

In order to generate realistic noise we start with 1/f-noise (”pink noise”), i.e. noise
where the power spectral density is proportional to the inverse of the frequency (see
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3.2 Two-level model for radio frequency transitions at avoided crossings

Fig. 3.6a). Frequency components higher than 50 kHz are then filtered out to account
for the low-pass behavior of the control loop including the Feshbach coils. Finally
Bn(t) is scaled to fit the experimentally measured noise level. In Fig. 3.6b an example
for Bn(t) is plotted versus time. For comparison, the magnetic rf-field used for the
simulation of the Rabi oscillations from Fig. 3.5 is depicted as well.

We now repeat the simulation for the Rabi oscillations from Fig. 3.5a with magnetic
noise included. As can be seen from Fig. 3.5b, the noise temporarily reduces the
amplitude of the oscillations. This effect, however, is much weaker than other effects
like magnetic field gradients over the molecular sample, which limit the coherence time
in the measurement.
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3 Rapid adiabatic passage with radio frequency fields

3.3 Molecular level structure of 87Rb2

An important prerequisite for the transfer of molecules to lower lying states is precise
knowledge of the level structure involved. We use a theoretical coupled-channel model
to be described in the following as a tool to predict the energy spectrum of bound 87Rb2

molecules. Taking these calculations as a guideline we have carry out spectroscopic
measurements with two different methods and generally find good agreement with the
calculations.

3.3.1 Coupled channel model

In order to calculate the molecular level structure of 87Rb2 we use a coupled-channel
model [Duli 95, Ties 98] based on adjusted ab-initio Born-Oppenheimer potentials,
which was provided by Paul Julienne at NIST. This model allows the computation
of the wavefunctions, eigenvalues and spin structure of the bound molecular states.
From this data the magnetic dipole transition strength between the different levels as
defined in Eq. 3.8 can be determined. In our group the model code was set up by
Birgit Brandstätter and Peter van der Straten. A detailed description can be found
in [Bran 07]. As an example, the molecular energy spectrum of states with angular
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Figure 3.7:
Molecular energy spectrum. a) Shown is the Zeeman-like energy spectrum
of bound s-wave states (l = 0) in 87Rb2 for mF = 2 as calculated from
the coupled channel model provided by NIST (see text). The grey area
represents the continuum of free atom pairs |f1 = 1,mf1 = +1⟩ + |f2 =
1,mf2 = +1⟩. b) Magnified view of the boxed region in a), showing the
Feshbach resonance at 1007.4G and an avoided crossing of two bound
molecular states marked by the red circle (A).
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3.3 Molecular level structure of 87Rb2

momentum l = 0 (”s-wave states”) for the region of interest in our experiments is
shown in Fig. 3.7. In our experimental setup with the radio-frequency field aligned
parallel to the magnetic bias field the selection rule ∆mF = 0 holds (see Sec. 3.1.2).
Hence, only states with mF = 2, same as for the Feshbach molecules, are shown.

3.3.2 Radio frequency spectroscopy

In order to permit rf-induced transfers over avoided crossings, the energy splitting
between the two branches has to be determined in a first step. For this purpose we use
two different spectroscopic methods which will be described in the following.

a) Resonant rf-spectroscopy

For this very intuitive method we expose the molecules to square rf-pulses at constant
magnetic bias field B, and scan for the frequency of maximum transfer efficiency (see
Fig. 3.8a). Repeating such measurements for different bias fields we find a hyperbolic
dependence of the resonance frequency on the magnetic bias field B, as expected from
our two-level model (compare Eqs. 3.12 and 3.13). In Fig. 3.8b data from a set of such
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Figure 3.8:
Resonant rf-spectroscopy. a) Radio frequency scan. Shown is the fraction
N/N0 of molecules remaining in the upper branch of an avoided crossing
after exposing them to rf-pulses of varying frequency. The data is taken
at a magnetic field B = 1000.1G, close to the avoided crossing A from
Fig. 3.7b. The radio frequency pulses have a duration of 0.5ms and a field
amplitude Brf = 16 mG. b) The resonance frequency measured from scans
as shown in a) has a hyperbolic dependence of the magnetic bias field B.
The depicted data was taken at the avoided crossing A. The dashed line
is a hyperbolic fit yielding a coupling Ω = 2π× (13.331± 0.005)MHz and
a center magnetic field B0 = (1001.4 ± 0.002)G.
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3 Rapid adiabatic passage with radio frequency fields

measurements at different magnetic fields is shown for the avoided crossing A from
Fig. 3.7b. We have carried out similar measurements at the avoided crossings labeled
C, E, and J in Fig 3.14. The data is given in Tab. 3.1.

b) Ramsey spectroscopy

We have also developed an alternative, Ramsey-type method to increase the precision
of the previously described spectroscopic measurements. For this method we expose
molecules in |u⟩ to a slightly detuned π/2-pulse, which creates a 50/50-superposition
of molecules in |u⟩ and |l⟩ (see Fig. 3.9a). After a hold time τh a second π/2-pulse is
applied, which transfers the molecules to |u⟩ or |l⟩, depending on the relative phase
between the molecular superposition state and the radio frequency field. Observing
the number N of molecules detected in |u⟩ as a function of τh we find an oscillation
at a frequency ωosc (Fig. 3.9b). The energy difference between |u⟩ and |l⟩ is then
Eu − El = ~(ωrf ± ωosc) for red- and blue detuned rf-pulses respectively. In our mea-
surements we reach coherence times up to 1ms. In Fig. 3.10 data from a series of
measurements at different magnetic fields corresponding to the dashed box in Fig. 3.8b
is shown. The measured resonance frequencies clearly deviate from the ideal hyper-
bolic curve (dashed line in Fig. 3.10). This deviation is caused by a magnetic field
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Figure 3.9:
Ramsey measurement. a) Schematic view. A π/2-pulse creates a 50/50-
superposition of molecules in |u⟩ and |l⟩. After a certain hold time τh we
apply a second π/2-pulse, and detect the number N of Feshbach molecules
in |u⟩. b) The fraction of detected molecules is shown as a function of hold
time τh. The data was taken at avoided crossing A and a magnetic field
B = 1001.4G with radio frequency pulses of ωrf = 2π × 13.32MHz. We
find an oscillation frequency ωosc = 2π×(12.43±0.14) kHz, corresponding
to Eu − El = (13.33243 ± 0.00014) × hMHz.
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Figure 3.10:
Ramsey spectroscopy. Shown are the measured resonance frequencies for
different magnetic fields in the region of the dashed box in Fig. 3.8a. The
deviation of the data from the ideal hyperbolic curve (dashed blue line)
is reproduced by a model calculation (solid red line) which takes experi-
mental imperfections in to account (see text). The error bars represent a
95% uncertainty for the fit of ωosc.

gradient over the molecular sample of about 2 Gmm−1 in combination with magnetic
field fluctuations of about 20 mG during the scan. A model calculation taking these
experimental imperfections into account (solid line in Fig. 3.10) reproduces the de-
viations. The 150Hz difference between the minimum of the model curve and the
hyperbola is due to an averaging effect over the magnetic field inhomogeneities. From
the model we get a best estimate for the minimum splitting of the hyperbolic curve of
Ω = 2π × (13.33210 ± 0.00015)MHz.

partial waves Ω (2π×MHz) B0 (G)
A s-s 13.33210 ± 0.00015 1001.4 ± 0.2
C s-s 44.756 ± 0.006 845.8 ± 0.2
E s-d 2.36 ± 0.01 466.1 ± 0.2
J s-s 110.48 ± 0.01 218.8 ± 0.2

Table 3.1:
Data for avoided crossings. Given are the minimum splitting Ω and cen-
ter magnetic field B0 for the avoided crossings A, C, E and J of Fig. 3.14.
The second column indicates the rotational quantum numbers of the in-
volved molecular states. Splitting A is measured with both methods, while
splittings C, E and J are determined via resonant spectroscopy only.
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3 Rapid adiabatic passage with radio frequency fields

3.4 Transfer to more deeply bound states

Having spectroscopically determined the energy splitting of an avoided crossing, we can
now tackle the problem of transferring molecules to the other branch. In this section an
adiabatic transfer method that we have developed for this purpose will be introduced.
This method was used to transfer the Feshbach molecules from more than 1000G to
0G, where they have a binding energy of about 3.6GHz×h.

3.4.1 Adiabatic Transfer across Avoided Crossings (ATAC)

Similar to the Rabi oscillations demonstrated in Sec. 3.2.4, molecules could in principle
be transferred from |u⟩ to |l⟩ with a π-pulse of resonant rf-radiation. Such a trans-
fer, however, is very sensitive to both pulse duration and amplitude. Magnetic field
gradients lead to different pulse areas at different lattice sites, prohibiting unit trans-
fer efficiency over the whole molecular sample. Additionally, even small fluctuations
or drifts of the experimental parameters can cause significant deviations in transfer
efficiency on both short and long timescales. We have thus developed an alterna-
tive method for efficient and robust radio frequency induced transfer between different

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Dm WB / ( )h

WR

i
ii

iii

|u>

|l´>

|l>

wrf

|u´>

E
 /

(
)

h
W

W

Figure 3.11:
ATAC transfer scheme. The upper and lower branch of an avoided cross-
ing, |u⟩ and |l⟩ (solid blue lines), are coupled by rf of frequency ωrf. Within
the rotating wave approximation this gives rise to the dressed states |u′⟩
and |l′⟩ (solid red lines), with a splitting corresponding to the Rabi fre-
quency ΩR. Adiabatically following the path (i)-(ii)-(iii), molecules are
transferred from |u⟩ to |l⟩ (see text). Note that for better visibility ΩR

was chosen larger than typically used in our experiments.
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Figure 3.12:
ATAC transfer efficiency. Shown is the fraction of detected molecules
after a single (red diamonds) and double (blue circles) ATAC transfer at
avoided crossing A. The solid lines are fits from a Landau-Zener-model (see
text). For the depicted data the magnetic field is ramped from 1001.4G
to 1000.1G in 1 ms while molecules are exposed to an rf-pulse of frequency
ωrf = 2π × 13.6MHz.

molecular states. As an example, this method of Adiabatic populations Transfer across
Avoided Crossings (ATAC) will now be discussed for the avoided crossing A.

Neglecting magnetic field noise we consider the RWA-Hamiltonian in the basis of the
molecular states |u⟩ and |l⟩ from Eq. 3.24. The diagonalization of this Hamiltonian
yields the new eigenstates |u′⟩ and |l′⟩, the so-called dressed states (see Fig. 3.11).
For a transfer of molecules from |u⟩ to |l⟩ we start at a magnetic field at point (i) in
Fig. 3.11 with the rf-field off. Switching on the blue-detuned radio frequency leads to
a projection onto the dressed state |l′⟩. With an adiabatic ramp-down of the magnetic
field the molecules follow this state to the other side of the rf-induced avoided crossing
(ii). After switching off the radio frequency, the molecules end up in level |l⟩ (iii).

Experimental data for such an ATAC transfer at the avoided crossing A is shown in
Fig. 3.12, where the fraction of detected Feshbach molecules is shown as function of
rf-field amplitude Brf. For sufficiently high Brf no more molecules can be detected after
a single transfer (red data). In order to detect the molecules again, a second ATAC
transfer brings them back to the upper branch |u⟩. The solid lines are calculations from
a Landau-Zener-model [Vita 96], where the transfer probability for a single transition
is given by

Pt = 1 − exp(−πΩ2
R~/2|Ḃ|∆µu,l). (3.45)

Here |Ḃ| is the ramp speed of the magnetic bias field and ∆µu,l = |µu − µl| is the
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3 Rapid adiabatic passage with radio frequency fields

relative magnetic moment of |u⟩ and |l⟩7. From similar measurements with multiple
transfers we deduce a single transfer efficiency of up to 99.5%.

For stronger rf-fields we observe a reduction in transfer efficiency, which is caused
by loss due to the projections of the initial bare state |u⟩ onto the dressed state |l′⟩
at the beginning of the radio frequency pulse, and the projection from |l′⟩ to the bare
state |l⟩ at the end of the rf-pulse. We have experimentally verified that this loss can
be overcome by ramping the rf-amplitude up and down instead of switching it on and
off.
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Figure 3.13:
Model simulation of ATAC transfer. a) The blue (red) line represent the
population in state |u⟩ (|l⟩) during an ATAC transfer at avoided crossing
A for typical experimental parameters, i.e. a magnetic field ramp from
1001.4G to 1000.1G in 1ms and an rf-pulse with ωrf = 2π × 13.6MHz
and Brf = 0.03G. b) Same as a), but with the rf-amplitude increased to
Brf = 0.1G.

3.4.2 ATAC model simulation.

In order to test the approximations made in the previous section and to investigate
the influence of magnetic field noise to such an ATAC population transfer we use the
numerical model with the Hamiltonian from Eq. 3.44. In Fig. 3.13 simulations of ATAC
transfers for the parameters of the data from Fig. 3.12 are shown. For a typical rf-
amplitude of Brf = 0.03G we find an average efficiency higher than 99.5% (Fig. 3.13a),
and only marginal fluctuations caused by magnetic field noise. This in good agreement

7Note that this differs from ∆µ as defined in Sec. 3.2.1, which was defined with respect to the bare
states |b1⟩ and |b2⟩.
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3.4 Transfer to more deeply bound states

with the experimentally determined value and the predictions of the Landau-Zener
model from Sec. 3.4.1.

Fig. 3.13b shows a simulation for an increased rf-amplitude Brf = 0.1G. In this case
the projection of the bare state |u⟩ onto the dressed state |l′⟩ at the beginning of the
transfer causes strong oscillations of the molecular populations and in consequence a
reduction in transfer efficiency.

3.4.3 Transfer to zero magnetic field

In order to demonstrate the versatility of the ATAC scheme transfer, we transfer the
Feshbach molecules to a more deeply bound state at zero magnetic field. We follow the
state |l = 0, F = f1 = f2 = mF = 2, ν = −5⟩ which induces the Feshbach resonance
and has a binding energy of about 3.6GHz×h at 0G (Fig. 3.14).

After a transfer over the first avoided crossing A as described in Sec. 3.4.1, the
magnetic field is lowered to about 875 G. Just below this value we find an avoided
crossing B with a d-wave state. Instead of traversing B, however, we use the ATAC
scheme to transfer the molecules directly to the lower branch of the avoided crossing
C (see right inset in Fig. 3.14). This is made possible by the large energy splitting
of the avoided crossing C, which leads to a broad region of high magnetic coupling
strength. In Fig. 3.15 the magnetic dipole matrix elements µu,l as calculated from the
coupled-channel model are shown for the avoided crossings A and C. In agreement with
Eq. 3.15, which was derived from our two-level model, the width of µu,l is proportional
to the energy splitting of the respective avoided crossing.

Following the level |l = 0, F = f1 = f2 = mF = 2, ν = −5⟩ to lower energies we
encounter five avoided crossings with d-wave states (D,E,F,H,I). Their widths are all in
the range of 1MHz, and we use the ATAC scheme to cross them (as an example avoided
crossing E is shown in the left inset in Fig. 3.14). In principle avoided crossings between
s- and d-waves can be traversed in an analogous way as such purely consisting of s-
waves. The narrow widths of the s-d-avoided crossings, however, make it technically
more challenging to overcome them with the ATAC method. According Eq. 3.15 the
matrix element µu,l and thus also ΩR are resonantly peaked at the position of an
avoided crossing, with a width proportional to the coupling strength Ω. In consequence
ΩR changes strongly during a magnetic field ramp in the vicinity of a narrow avoided
crossing. This makes it demanding to find a compromise between losses due to the
projection between bare and dressed state at the side of the ramp which is close to
the avoided crossing and losses due to nonadiabaticity at the other side. The narrow
region of strong coupling also increases the susceptibility to long-term drifts in the bias
field and to magnetic field noise which can lead to undesired non-adiabatic transitions.

At 380 G we further observe an avoided crossing G with a g-wave, which due to its
weak coupling can be crossed by diabatically ramping the magnetic field. After using
the ATAC scheme to traverse the wide avoided s-wave crossing J and another crossing
with a d-wave, K, we finally end up at 0G in state |l = 0, F = f1 = f2 = mF = 2, ν =
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Figure 3.14:
ATAC transfer to 0G. Shown are the molecular levels with mF = 2 in the
region relevant for our experiments. All states with l = 0 (solid blue lines,
”s-waves”) and l = 2 (solid cyan lines, ”d-waves”) as well as a single state
with l = 4 (dashed green line, ”g-wave”) are depicted. In our experiments
we follow the level |l = 0, F = f1 = f2 = mF = 2, v = −5⟩ to transfer the
molecules to 0 G. For this we traverse the avoided crossings marked A-K
with nine ATAC transfers (see text for details). Note that in contrast to
Fig. 3.7 where the absolute energies of the different molecular states are
plotted, this diagram shows the binding energies relative to the atomic
(|f1 = 1,mf1 = +1⟩ + |f2 = 1,mf2 = +1⟩) dissociation threshold.

−5⟩, at a binding energy of about 3.6 GHz×h. Alternatively we have skipped the last
transfer to produce d-wave molecules by adiabatically following the avoided crossing
K into the state |l = 2, F = 0, f1 = f2 = mF = 2, ν = −5⟩.

The transfer to 0G over 10 avoided crossings takes a total time of about 90ms and
has an overall efficiency of about 50%. The losses can mainly be explained by optical
excitations by the lattice light (280 ms lifetime), and by not fully optimized transfers
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Matrix elements for avoided crossings A and C. a) Magnification of the
energy spectrum of Fig. 3.14, showing the avoided s-s-wave crossings A
and C as well as the position of the avoided crossing B with a d-wave. The
color coding identifies the bare molecular states which form the avoided
crossing. b) The widths of the matrix elements µu,l for A and C calculated
from the coupled-channel-model are proportional to the respective energy
splittings.

at several avoided crossings.

3.4.4 Verification of molecular states

As the more deeply bound molecules can be observed only indirectly by reversing the
previous transfer and dissociating them at the Feshbach resonance, we need a way
to ensure that they really are in the desired quantum state. For this we use two
methods. First, we check for consistency between the positions and energy splittings
of the avoided crossings predicted by the coupled-channel model (Sec. 3.3.1) with the
measured data. We generally find good agreement, with deviations of no more than a
few Gauss for the center magnetic field, and about 5% for the energy splitting of the
various avoided crossings.

In a second method we use optical spectroscopy to measure the binding energy
of the molecules. The molecules are exposed to laser light tuned on the transition
to the electronically excited level |0−g , ν = 31, J = 0⟩, located 6.87 cm−1 below the
(S1/2 + P3/2) dissociation asymptote [Fior 01]. On resonance, this excitation causes
loss of molecules and thus a reduction in the signal observed after reconversion. From
the measured shift of the resonance frequency and the known shift of the optically
excited state, the binding energy can be deduced and compared to the predicted value.
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Figure 3.16:
Verification measurement. The red errorbars show the molecular bind-
ing energies measured by laser excitation to the molecular level |0−g , ν =
31, J = 0⟩ (for details see text). The solid red line connecting the error
bars, which are barely resolved in this plot, is a guide to the eye.

Within the accuracy of our measurements of about 15MHz×h we find good agreement
between theory and experimental data (see Fig. 3.16).
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3.5 Rf-induced Feshbach resonances

3.5 Rf-induced Feshbach resonances

In the last few years magnetic Feshbach resonances have proven to be a powerful tool
in the field of ultracold gases, as they allow both control of atomic interactions and the
formation of molecules (for reviews see e.g. [Kohl 06, Chin 08]). In different approaches,
the manipulation of atomic scattering properties by optically induced Feshbach reso-
nances [Fate 00, Thei 04, Thal 05] and by tuning magnetic Feshbach resonances with
laser light [Baue 09] has been demonstrated. The following section will address the
question of whether we can use rf to induce Feshbach resonances. For example, is it
possible to exploit such a radio frequency Feshbach resonance to associate molecules
from atom pairs? We will now discuss how an rf-induced Feshbach resonance would
work within the adiabatic picture of the rotating wave approximation and compare it
to a magnetic Feshbach resonance. A possible experimental implementation and our
current limitations are discussed, and the experimental results are simulated with a
numerical four-level model.

3.5.1 Magnetic- vs. rf-induced Feshbach resonances

In contrast to the bound-bound transitions treated in the previous sections, we now
examine dynamics occurring directly at the molecular dissociation threshold, where
the different atomic states have to be considered. As our experiments are carried out
in an optical lattice with a depth of about 30 Er for atoms, we can assume harmonic
confinement. In this regime, the different lattice bands have a constant energy spacing
~ωt, where ωt is the trap frequency. In Fig. 3.17 the molecular state |m⟩ inducing
the magnetic Feshbach resonance as well as the three lowest atomic pair states in the
optical lattice, |a0⟩, |a1⟩ and |a2⟩ are shown as solid lines for the region around the
magnetic Feshbach resonance at 1007.4G. Note that this notation strictly holds only
for magnetic fields below the Feshbach resonance. For |m⟩, e.g., the molecular state
is adiabatically connected to the lowest atomic trap state at magnetic fields above the
resonance. The molecular and atomic states can be coupled with rf of Rabi frequency
ΩR. This leads to the formation of dressed states indicated by the dashed lines in
Fig. 3.17, and an rf-induced Feshbach resonance marked by the red circle.

A key feature of a Feshbach resonance is sensitivity to the direction in which it is
crossed. Detecting different outcomes for upward- and downward ramps of the magnetic
field would thus experimentally distinguish a Feshbach resonance from non-adiabatic
molecule formation.

In order to associate molecules via a magnetic Feshbach resonance we start with
atom pairs in the lattice ground state above the resonance (point (k) in Fig. 3.17). By
adiabatically ramping down the magnetic field to (kk) those pairs are converted into
molecules. If we start with atom pairs in the lattice ground state at a magnetic field
below the Feshbach resonance (l) and adiabatically ramp to higher values, the atoms
are transferred into the first excited band of the lattice (ll).
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Figure 3.17:
Rf-induced Feshbach resonance. The solid lines represent the molecular
|m⟩ and atomic states |a0⟩, |a1⟩, |a2⟩ for the region around the Feshbach
resonance at 1007.4 G. The radio frequency field couples these levels to
form dressed states (dashed lines) and an rf-induced Feshbach resonance
(red circle). For the association of molecules we ramp the magnetic bias
field to follow the path (i)-(ii)-(iii), while the reverse ramp (j)-(jj)-(jjj)
transfers the atoms to the first excited band of the lattice (see text for
details). These processes are analogous to molecule association (k)-(kk)
and excitation into a higher band (l)-(ll) via a magnetic Feshbach reso-
nance. Note that for this diagram ΩR and ωt are chosen larger than in
our experiments for better visibility.

We can now compare this to an rf-induced Feshbach resonance. Here the molecule
association starts with atom pairs at a magnetic field above the rf-induced Feshbach
resonance (i). After switching on the rf the magnetic bias field is ramped down, adia-
batically following the rf-induced avoided crossing to the molecular side of the dressed
state (ii). The radio frequency is then switched off, and the molecules end up at the
point (iii) in state |m⟩. The opposite process starts with atom pairs below the rf-
induced Feshbach resonance (j). After adiabatically following the rf-induced dressed
state to (jj) and switching off the radio frequency field, the atoms are in the first excited
band of the lattice, |a1⟩ (jjj).
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3.5 Rf-induced Feshbach resonances

3.5.2 Magnetic dipole matrix elements for atom-molecule
transitions

In general magnetic dipole matrix elements µa,m between the states of free (or trapped)
atomic pairs |a⟩ and bound molecules |m⟩ of 87Rb are too small to be experimentally
exploited to drive rf-transitions (see [Bran 07]). Close to magnetic Feshbach resonances,
however, atomic and molecular states mix, and µa,m can become on the order of µB.
In Fig. 3.18 the matrix elements between the molecular state |m⟩ and the three lowest
atomic trap states |a0⟩, |a1⟩ and |a2⟩ as calculated from the close-coupled channel model
(see Sec. 3.3.1) are plotted for the region around the magnetic Feshbach resonance at
1007.4 G. The matrix elements are peaked at the position of the Feshbach resonance,
and quickly vanish away from it with FWHMs on the order of 100mG. In contrast to the
case of an avoided crossing of two molecular levels, the coupling strength is asymmetric
with respect to the Feshbach resonance and does not reach a maximum value of ∆µ/2
(compare Eq. 3.15). These effects are due to the other atomic lattice states which
also mix with the molecular state and lead to a reduction of µa,m. This reduction and
the small width of the coupling strength imply that the challenges arising for ATAC
at narrow avoided crossings as discussed in Sec. 3.4.3 become even more delicate for
the implementation of rf-induced Feshbach resonances. In particular, according to the
Landau-Zener-model from Sec. 3.4.1, the transfer probability for ATAC is in first order
proportional Ω2

R ∝ µ2
a,m.
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Figure 3.18:
Matrix elements for free-bound transitions. a) As in Fig. 3.17 an energy
diagram of the states |m⟩, |a0⟩, |a1⟩ and |a2⟩ is shown for a region around
the magnetic Feshbach resonance at 1007.4G. b) The matrix elements
µa,m for magnetic dipole transitions between the state |m⟩ and the states
|a0⟩, |a1⟩, |a2⟩ as calculated from the close-coupled channel model (see
Sec. 3.3.1) are given for the region shown in a). Note the logarithmic
scale for the axis of ordinates. Plot adapted from [Bran 07].
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3.5.3 A possible experimental realization

Compared to adiabatic transfer at an avoided crossing of two molecular states, the
implementation of an rf-induced Feshbach resonance is much more challenging. This
is mainly due to the reduced maximum coupling strength, the narrow region of strong
coupling and the numerous close-lying atomic lattice states which can lead to parasitic
coupling. In this section we will discuss the possible experimental realization of such
an association scheme and its technical limitations.

Preparation of atomic pairs

The starting point for our rf-association experiments is a pure sample of atomic pairs in
the lowest band of the optical lattice at a magnetic field below the magnetic Feshbach
resonance (point (i) in Fig. 3.17). To prepare such a sample, we begin with the same
experimental procedure as for the pure ensemble of Feshbach molecules described in
Chap. 2. At the end of this preparation cycle the molecules are in the lowest band
of the optical lattice at a magnetic field of about 995G, slightly below the Feshbach
resonance. The molecules are then dissociated into pairs of atoms by adiabatically
ramping the magnetic field to a value above the Feshbach resonance. In a next step we
quickly switch off the magnetic field within 250µs, so that the atom pairs diabatically
cross the Feshbach resonance without being associated to molecules again. Finally the
magnetic field is ramped up to a value just below the magnetic Feshbach resonance.
From subsequent association measurements via the magnetic Feshbach resonance we
deduce that about 85% of the atoms are in doubly occupied sites at the end of this
procedure.

Atom-molecule spectroscopy

In order to determine the resonance frequency for magnetic dipole transitions between
atom pairs and molecules, we adapt a procedure analogous to that for resonant molec-
ular spectroscopy described in Sec. 3.3.2. The magnetic bias field is kept constant at a
value just below the magnetic Feshbach resonance, while the atom pairs are exposed to
a square rf-pulse of varying frequency. After the pulse, the number of remaining atoms
is detected without ramping over the Feshbach resonance again, so that molecules pro-
duced by the radio frequency radiation lead to a reduction of the observed signal. If the
rf is resonant with the free-bound transition, Rabi oscillations between pairs of atoms
and molecules are driven. Inhomogeneities in the magnetic bias- and rf-field cause
dephasing of the oscillations over the atomic/molecular cloud. For long pulse times
τp ≫ 2π/ΩR this finally leads to a 50/50 distribution of atomic pairs and molecules
averaged over the sample, and the fraction of observed atoms drops to 1/2 (Fig. 3.19a).
For shorter pulse times τp & 2π/ΩR we observe strong fluctuations in the number of
detected atoms ranging from N0/2 to N0 (Fig. 3.19b). We attribute this to noise in the
magnetic bias field, which can shift the atom-molecule transition out of resonance with
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Figure 3.19:
Free-bound spectroscopy. a) Atomic pairs are held at a constant magnetic
bias field slightly below the magnetic Feshbach resonance at 1007.4 G.
Shown is the fraction of detected atoms after subjecting the pairs to square
rf-pulses of varying frequency. Each small dot represents a single measure-
ment, while the red circles show the average over the different experimen-
tal runs at a specific magnetic bias field. The broad resonance around
0.8 MHz indicates the association of molecules. We attribute the more
narrow resonance features at 0.4MHz and 0.2MHz to higher harmonics
of the rf-radiation. The data was taken at a bias field B0 = 1007.1G with
rf-pulses of Brf = 50mG and τp = 2ms. The solid line connecting the
data points is a guide to the eye. b) Same as a), but for shorter pulse time
τp = 0.2ms.

the radio frequency field. From the width of the resonance and the relative magnetic
moment between the atomic and molecular state we deduce a peak-to-peak magnetic
field noise amplitude of about 60mG. This value is in agreement with the noise level
previously determined through other techniques (Sec. 3.2.5).

Association of molecules

As discussed in Sec. 3.5.1, the association of molecules starts from atom pairs held at
a magnetic bias field below the magnetic Feshbach resonance. The magnetic field is
then ramped to a lower value while the atoms are exposed to a radio frequency field.
Due to the narrow region of high magnetic coupling strength µa,b this whole process
should be carried out as close to the magnetic Feshbach resonance as possible. At the
same time, however, we have to guarantee that the magnetic Feshbach resonance is
not accidentally crossed due to fluctuations in the magnetic bias field, which would
lead to the production of molecules simply by ”ramping” over the magnetic Feshbach
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Figure 3.20:
Molecule association. a) Shown is the fraction of atom pairs converted
into molecules with our ATAC-like association scheme as a function of
rf-frequency. The blue dots represent single measurements while the red
circles are the respective values averaged over all experimental cycles. For
this scan the magnetic bias field is ramped from 1007.2G to 1007.0G in
0.6 ms while magnetic radio frequency with an amplitude of Brf = 100mG
is applied. The broad signal between 0.6MHz and 1.1MHz stems from
association at the rf carrier frequency, while we attribute the narrow signal
around 0.4MHz to the higher harmonic. b) Same as a) but for constant
frequency ωrf = 2π × 0.9MHz and varying amplitude Brf.

resonance. Additionally, the low-pass behavior of the magnetic field regulation circuit
requires a certain time until the desired ramp speed is reached. Due to these technical
limitations we start the rf-pulse at leasst 0.2G from the magnetic Feshbach resonance.
After the association has occurred, we have to ensure that only molecules, but none
of the remaining atoms are detected. We thus apply a second purification pulse of
combined microwave- and laser radiation (see Sec. 2.5), which removes the unbound
atoms. Finally the molecules are dissociated by ramping over the magnetic Feshbach
resonance and detected with our standard absorption technique.

In Fig. 3.20a the number of molecules associated with this scheme is shown as a
function of rf-frequency. We observe a broad association signal around 0.8MHz with a
maximum efficiency of about 40% and a more narrow feature at 0.4MHz. We attribute
the latter to the second harmonic of the radio frequency radiation which is an artifact
of the final amplification stage (Frankonia FLL25 amplifier). The number of molecules
produced at constant frequency is shown as a function of rf-amplitude in Fig. 3.20b.
The association efficiency reaches a maximum of about 40% at Brf ≈ 120mG and
decreases again for higher amplitudes. We attribute this decrease mainly to losses
caused by cross-talk between the radio frequency field and the stabilization circuit of
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3.5 Rf-induced Feshbach resonances

the magnetic bias field (for a discussion see Sec. 3.1.1). This cross-talk occurs at high
rf-amplitudes and leads to an oscillation of the magnetic bias field and subsequent loss
of atoms and molecules.

In the data from Fig. 3.20 strong shot-to-shot fluctuations in transfer efficiency are
also evident. Numerical simulations from our time-dependent model suggest that these
fluctuations as well as the limited average transfer efficiency are due to noise in the
magnetic bias field (see Sec. 3.5.4).

Reverse ramp direction

The fact that the association efficiency of the experiments presented in the previous
section is lower than 0.5 shows that we are not in the adiabatic regime. However, we can
distinguish an rf-induced Feshbach resonance from ”incoherent” formation of molecules
at constant bias by detecting different outcomes for different ramp directions of the
magnetic bias field. For adiabatic ramps, we expect to form molecules in the case of
decreasing magnetic bias field, while an increasing ramp should lead to the excitation of
atoms into higher bands (see Sec. 3.5.1). We thus repeat the association measurements
from the previous section, but with the magnetic bias field ramp reversed. In Fig. 3.21a
the number of produced molecules at constant rf-amplitude is shown as a function of ωrf.
We generally find strong fluctuations of the observed signal, where the average fraction
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Figure 3.21:
Reverse ramp direction. Shown are measurements for conditions similar to
those in Fig. 3.20, but with the magnetic bias field ramped from lower to
higher values. a) Atom pairs are exposed to an rf-pulse of fixed amplitude
Brf = 120 mG, while the magnetic bias field is ramped from 1007G to
1007.2G in 0.6ms. b) The magnetic bias field is ramped from 1006.9G
to 1007.2G in 1 ms while rf is applied at constant frequency ωrf = 2π ×
0.7MHz.
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3 Rapid adiabatic passage with radio frequency fields

of produced molecules has two maxima of about 0.1 around 0.4MHz and 0.7MHz. As
in the previous measurements from Figs. 3.19 and 3.20 we attribute the latter to the
rf carrier frequency and the former to the second harmonic. In Fig. 3.21b the number
of molecules produced at constant frequency is shown as a function of rf-amplitude.
Again the signal is very noisy, with an average ”efficiency” around 0.1 for Brf between
50 mG and 150mG. While this signal is obviously not zero in contrast to what is
expected for an adiabatic ramp, it is clearly lower than for association measurements
at decreasing bias field ramps (compare Fig. 3.20). From our numerical model we find
that the deviations from the ideal case as well as the fluctuations are primarily caused
by magnetic bias field noise (see Sec. 3.5.4).

3.5.4 Four-level model for rf-induced Feshbach resonance

We use an extended version of our previously discussed numerical model to simulate an
rf-induced Feshbach resonance. This takes place at the atomic dissociation threshold,
where there are many different lattice states separated from each other by multiples
of the trap frequency ωt (about 2π×30 kHz for our typical parameters). These states
have to be considered as well, and a two-level model is no longer sufficient. We thus
extend our previous model to four levels including the molecular state which causes
the Feshbach resonance and the three lowest atomic pair states in the optical lattice8.
In the basis of these bare states the Hamiltonian for the system then reads

Ĥ = (B −B0 +Brf cos(ωrft) +Bn(t))


µm 0 0 0
0 µa 0 0
0 0 µa 0
0 0 0 µa

 + (3.46)

+
~
2


0 Ωa,m Ωa,m Ωa,m

Ωa,m 0 0 0
Ωa,m 0 2ωt 0
Ωa,m 0 0 4ωt

 ,

where µm and µa are the magnetic moment of the molecular and atomic states
respectively and Ωa,m is the coupling between atomic and molecular state which induces
the magnetic Feshbach resonance.

We first simulate rf-induced association of molecules (path (i)-(ii)-(iii) in Fig. 3.17),
in particular the measurement shown in Fig. 3.20. For this we start with atom pairs
in |a0⟩ and ramp the magnetic bias field from 1007.2 G to 1007.0G in 0.6 ms, while the
atom pairs are exposed to rf of Brf = 100mG and ωrf = 2π×0.9MHz. Our lattice trap
frequency is ωt = 2π × 30 kHz, and for the magnetic Feshbach resonance at 1007.4G

8These states are not equivalent to |m⟩, |a0⟩, |a1⟩ and |a2⟩, which we have defined as the respective
eigenstates of the magnetic Feshbach resonance including the atom-molecule coupling, Ωa,m.
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Figure 3.22:
Model simulation of an rf-induced molecule association. a) Shown is the
time evolution of the population in the states |m⟩, |a0⟩, |a1⟩ and |a2⟩ for
the same parameters as in the measurement from Fig. 3.20, but without
magnetic bias field noise. b) Same as a), but with included magnetic
noise. The dotted lines show four individual runs of the simulation, while
the solid lines represent their average. In these simulations the magnetic
bias field is ramped from 1007.2G to 1007.0G in 0.6ms, while the atom
pairs are exposed to magnetic radio frequency with Brf = 100 mG and
ωrf = 2π × 0.9MHz.

we have Ωa,m = 2π × 0.3MHz [Thal 06, Syas 07] and µm − µa = h × 3.6MHz/G. In
Fig. 3.22a the corresponding time evolution of the populations in the different states
is shown for negligible magnetic bias field noise. The association process is mostly
adiabatic with an efficiency of about 90%. Figure 3.22b shows a simulation for the
same parameters but with magnetic field noise at a level typically occurring in our
experiments (i.e. same amplitude as shown in Fig. 3.6). Four different runs are plotted
as dashed lines, while their average is represented by the solid lines. We find strong
variations over the different runs, and a reduction of the average transfer efficiency to
about 40%. In some of the runs diabatic transfer of a sizable fraction of the atoms into
excited lattice bands can be observed.

In the next step we investigate the ”inverse” ramp over the rf-induced Feshbach
resonance, corresponding to the path (j)-(jj)-(jjj) in Fig. 3.17 and the data shown
in Fig. 3.21 respectively. For this we use the same parameters as in the previous
simulation, but ramp the magnetic field in the opposite direction, from 1007.0G to
1007.2G. Again, we first neglect the noise of the magnetic bias field, and find mostly
adiabatic behavior (see Fig. 3.23a). About 85% of the atoms are transferred into the
first excited lattice band |a1⟩, while the states |a2⟩ and |m0⟩ remain almost unpopulated.
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Figure 3.23:
Simulation of the reverse path over the rf-induced Feshbach resonance,
corresponding to (j-jjj) in Fig. 3.17. Apart from the reversed direction of
the magnetic bias field ramp the parameters are the same as for Fig. 3.22
a) Time evolution without magnetic field noise. The atoms are mostly
transferred into the first excited lattice band |a1⟩, in accordance with the
expectations for an adiabatic ramp. b) Same as a), but with included
magnetic field noise. As in Fig. 3.22b dashed lines give the populations
for four individual runs of the simulation, while the solid lines show their
respective average. Again the noise leads to strong fluctuations between
the different runs, where in this case the average final population in the
molecular state |m⟩ is increased.

If we include magnetic noise in the simulation we again find strong fluctuations over
the different runs (see Fig. 3.23b). On average the fraction of atoms transferred into
the first excited band drops to about 40%, while the number of molecules produced in-
creases considerably to almost 20%, about half the value for the association procedure.

These simulations show that noise in the magnetic bias field is a limiting factor in our
experiments. From further investigations we find that noise from practically the entire
frequency spectrum used in the simulations has a detrimental influence. A reduction
of this noise could be reached e.g. by using a power supply with ultra-high stability for
the generation of the magnetic bias field, or by a considerable improvement of the field
stabilization control circuit.

3.5.5 Width of rf-induced Feshbach resonance

In order to characterize the rf-induced Feshbach resonance we compare its width ∆B′

with that of the magnetic Feshbach resonance which was used to induce it, ∆B. Accord-
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3.5 Rf-induced Feshbach resonances

ing to [Syas 07] the matrix element between open and closed channels for a magnetic
Feshbach resonance with two atoms in the ground state of an optical lattice as entrance
channel can be written as

⟨Ψa|H|Ψm⟩ =

[
4π~2abg∆µ∆B

m(
√

2πaho)3
(1 + 0.49

abg

aho

)

]1/2

≡ ~Ωa,m/2, (3.47)

where abg is the background scattering length, and aho =
√

~/(mωt) the harmonic
oscillator length. Implicitly defining ∆B′ we can write an analogous expression for the
rf-induced Feshbach resonance,

⟨Ψa|Hrf |Ψm⟩ =

[
4π~2abg∆µ∆B′

m(
√

2πaho)3
(1 + 0.49

abg

aho

)

]1/2

= ~ΩR/2, (3.48)

where the second equality implies that the rotating wave approximation is valid.
Comparing Eqs. 3.47 and 3.48 and using Eq. 3.20 we obtain

∆B′ = ∆B

(
ΩR

Ωa,m

)2

= ∆B

(
µa,mBrf

~Ωa,m

)2

. (3.49)

Hence, the width of the rf-induced Feshbach resonance is proportional to the square
of the Rabi frequency. For typical experimental parameters used in the simulations
shown in Figs. 3.22 and 3.23 we have a Rabi frequency of ΩR = 2π×11 kHz. Compared
to the magnetic Feshbach resonance with ∆B = 210 mG [Mart 02, Volz 03] this leads
to a reduction in width by a factor (Ωa,m/ΩR)2 ≃ 750 to ∆B′ = 0.28mG. For a radio
frequency field of same amplitude but applied directly at the center of the magnetic
Feshbach resonance, these values would increase only moderately to ΩR = 2π× 16 kHz
and ∆B′ = 0.60mG. This can be mainly attributed to the reduced maximum coupling
strength µa,m, which is caused by the admixture of higher lattice bands (see Sec. 3.5.2).
For a hypothetical value µa,m = |µa−µm|/2 obtained at the center of an avoided crossing
of only two states (see Eq. 3.15), we could expect a Rabi frequency ΩR = 2π× 180 kHz
and a width ∆B′ = 75mG.
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4 Coherent optical transfer of
Feshbach Molecules into the
rovibrational triplet ground state

The production of ultracold molecules via magnetic Feshbach resonances is highly ef-
fective, reversible and adiabatic, and mostly conserves the phase space density of the
atomic sample. While translationally cold, however, these molecules are produced in
highly excited vibrational states. When composed of bosonic atoms, such vibrationally
excited molecules are susceptible to collisional relaxation to more deeply bound states
[Staa 06, Zahz 06]. The energy released in this process easily exceeds typical trap
depths, leading to loss of the colliding particles. This decay mechanism can be circum-
vented by transferring Feshbach molecules into the rovibrational ground state, where
they should be stable under collisions. A way to realize such a transfer is to to load an
atomic BEC into a three-dimensional optical lattice, form molecules and transfer them
into the rovibrational ground state with a series of Raman pulses. By subsequently
ramping down the optical lattice, a molecular BEC could be produced [Jaks 02]. Het-
eronuclear molecules in deeply bound vibrational states possess a much stronger dipole
moment than Feshbach molecules, allowing them to be used for quantum computation
[DeMi 02], the realization of novel quantum phases [Sant 00, Buch 07] or the search
for an electric dipole moment of the electron [Hind 97, Huds 05].

In 2007 our group performed a proof-of-principle experiment where the vibrational
quantum number of Feshbach molecules held in a three-dimensional optical lattice is
reduced by one unit with a STIRAP transfer. This transfer, which is described in detail
in the doctoral thesis of Klaus Winkler [Wink 07b], increases the binding energy of the
Feshbach molecules from about 24MHz×h to 637 MHz×h [Wink 07a]. In the following
year we reported the transfer of Feshbach molecules into the rovibrational ground state
of the a3Σ+

u triplet potential using the same scheme [Lang 08b]. This chapter is mainly
dedicated to a detailed discussion of these experiments.

Bound states of diatomic alkaline molecules can be described by a triplet- and a sin-
glet potential, depending on whether the configuration of the valence electron spins is
symmetric or antisymmetric. The absolute ground state of the system is in the singlet
potential, which is typically one order of magnitude deeper than the triplet potential.
Our choice of using the rovibrational triplet ground state as final state for the STIRAP
transfer has several reasons. In contrast to the singlet, triplet states have a magnetic
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

moment and thus a rich level structure, with the possibility of molecule-molecule Fes-
hbach resonances. The collisional properties of molecules in the triplet ground state
have not yet been investigated and are to date subject of speculation. Additionally
a transfer to the triplet ground state of 87Rb2 has the advantage of being technically
less involved than one to the ground state of singlet potential. Due to unfavorable
Franck-Condon overlaps the transfer of Feshbach molecules to the rovibrational X1Σ+

g

ground state requires two STIRAP transfers [Danz 09], while the triplet ground state
can be reached in a single step.

In the first section of this chapter the concept of STIRAP is introduced. This optical
Raman transfer scheme is based on adiabatic ramping of a dark state, leading to a
coherent population transfer. In the following the resulting requirements on the utilized
laser system are analyzed. To bridge the binding energy of the triplet ground state
of about 7 THz×h, two lasers operating at different wavelength have to be stabilized
relative to each other. In Sec. 4.2 the laser system we set up for this purpose is described
in detail.

A mandatory requirement for successful STIRAP is precise knowledge of the in-
volved states. ”Conventional” spectroscopy in thermal Rb2 has, generally, investigated
the singlet potential, while at the time we started our experiments the a3Σ+

u triplet
potential was mostly unexplored. In Sec. 4.3 the spectroscopic measurements car-
ried our to identify appropriate intermediate and final states for the STIRAP transfer
are briefly described. A more detailed analysis will follow in the doctoral thesis of
Christoph Strauss.

The actual transfer into the triplet ground state is presented in Section 4.4. We
reach a single transfer efficiency of close to 90% and simulate the experiment with a
master-equation based numerical model.

The ground state molecules experience a much weaker lattice potential than those in
the Feshbach state. This leads to coherent molecular oscillations, which are discussed in
Sec. 4.5. We present a numerical model taking into account the Bloch band structure,
which reproduces these lattice-induced molecular dynamics.
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4.1 STimulated Raman Adiabatic Passage

(STIRAP)

STimulated Raman Adiabatic Passage (STIRAP) was developed in the group of Klaas
Bergmann [Berg 98] and is known as a fast and efficient tool for population transfer.
We will now introduce the basic concept of STIRAP following the lines of [Vita 01].

|e>

|g>

|f>

d

D1

Laser2

W
2
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W
1

Figure 4.1:
λ-type three-level system. The electronic ground states |f⟩ (|g⟩) are cou-
pled to the excited state |e⟩ by laser 1 (2). The one- and two photon
detuning are denoted ∆1 and δ respectively (see text).

In a λ-type three-level system the lasers 1 and 2 couple the initial state |f⟩ and
final state |g⟩ to the electronically excited state |e⟩ (see Fig. 4.1). The one-photon
detuning for laser 1 is ∆1 = (Ee − Ef )/~ − ω1 and the two-photon detuning δ =
(Ef −Eg)/~−ω2+ω1, with ω1,2 the frequencies of laser 1,2 respectively. In the rotating-
wave approximation (RWA) the Hamiltonian driving the probability amplitudes

c =

cfcg
ce

 (4.1)

reads

Ĥ = ~

 0 0 Ω1/2
0 δ Ω2/2

Ω1/2 Ω2/2 ∆1

 . (4.2)

Here Ω1,2 are the Rabi frequencies for lasers 1,2 with

Ω1 =
⟨f |d̂|e⟩E0

~
, (4.3)
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where d̂ is the electric dipole operator and E0 is the amplitude of the electric field.
In the Hamiltonian from Eq. 4.2 we have neglected the spontaneous decay rate Γ of
the excited state |e⟩, which is justified for

Ωeff ≫ Γ, (4.4)

with Ωeff =
√

Ω2
1 + Ω2

2 the effective Rabi frequency. For zero two-photon detuning
δ = 0 the eigenstates of this Hamiltonian are

|BS+⟩ = sin θ sinϕ|f⟩ + cosϕ|e⟩ + cos θ sinϕ|g⟩, (4.5)

|DS⟩ = cos θ|f⟩ − sin θ|g⟩, (4.6)

|BS−⟩ = sin θ cosϕ|f⟩ − sinϕ|e⟩ + cos θ cosϕ|g⟩, (4.7)

with mixing angles

θ = arctan(Ω1/Ω2), (4.8)

ϕ = 1
2
arctan(

√
Ω2

1 + Ω2
2/∆1). (4.9)

The respective eigenenergies are

ϵDS(t) = 0, (4.10)

ϵ+,−
BS (t) =

~
2

(
∆1 ±

√
∆2

1 + Ω2
1 + Ω2

2

)
. (4.11)

We note that the so-called bright states |BS+,−⟩ have contributions from the elec-
tronically excited state |e⟩ and are thus subject to radiative decay. The dark state |DS⟩
is a coherent superposition of the electronic ground states |f⟩ and |g⟩ only and thus
intrinsically stable [Arim 76]. The population transfer via STIRAP occurs through the
state |DS⟩: By ramping the Rabi frequencies from the case Ω1/Ω2 = 0 (θ = 0) to
Ω2/Ω1 → ∞ (θ = π/2), the dark state changes from a state with pure |f⟩ character to
one consisting of |g⟩ only. This transfer scheme is often referred to as ”counterintuitive”
because at its beginning only state |f⟩ and laser 2, which do not couple to each other
are present, while the situation is reversed at the end of the sequence. Given that the
ramp is conducted in an adiabatic fashion, the system stays in the dark state during
the transfer, and losses due to excitation to |e⟩ are negligibly small. More specifically,
the condition for adiabaticity is that the coupling between dark and bright states is
much smaller than the energy difference between those states,

|⟨ḊS|BS+,−⟩| ≪ |ϵds − ϵ+,−
bs |. (4.12)
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For zero one-photon detuning ∆1 = 0 this condition simplifies to

|θ̇| ∝ 1/T ≪ Ωeff, (4.13)

where T is the transfer time. Numerical simulations show a value ΩeffT exceeding
10 to be sufficient to provide adiabatic transfer [Berg 98].

For our experimental parameters we typically find Ωeff ≈ 10MHz, on the same order
as Γ = 8 MHz and thus violating the condition from Eq. 4.4. In the limit Ω2

effT ≫ Γ,
an approximate solution for the STIRAP transfer efficiency from |f⟩ to |g⟩ is given by
[Vita 96, Wink 07b]

Pt = exp

(
π2Γ√
2Ω2

effT

)
, (4.14)

where Gaussian pulse shapes Ω1,2(t) separated by twice their width have been as-
sumed. Our experiments, where typical transfer times T ≈ 2µs are used, are well
within this limit.

As can be shown by a more general treatment [Vita 01], STIRAP is robust against
fluctuations in one-photon detuning ∆1, but depends critically on two-photon detun-
ing δ. In order to reach high STIRAP efficiency it is thus crucial to keep δ ≃ 0 during
the transfer process.
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4.2 STIRAP laser system

The application of STIRAP to transfer molecules into tightly bound states sets strin-
gent requirements on the laser system utilized. The two Raman lasers have to be
phase-stable during the STIRAP pulses to ensure the coherence of the process. Phase
fluctuations would lead to an admixture of the bright states |BS+,−⟩ to |DS⟩ and thus
induce loss due to radiative decay. The lasers have to bridge the energy difference be-
tween |f⟩ and |g⟩, which is about 7 THz×h when transferring Feshbach molecules into
the ro-vibrational ground state of the a3Σ+

u triplet potential. For a laser wavelength
around 1000 nm this corresponds to a wavelength difference of about 23 nm. Addi-
tionally, the laser powers have to be sufficiently high to provide the Rabi frequencies
Ω1,2 required for fast STIRAP transfers. A high long-term frequency stability of the
Raman lasers is needed to keep them on resonance over many experimental cycles. As
STIRAP is considerably more sensitive to two-photon detuning δ than to one-photon
detuning ∆1 (see Sec. 4.1), the relative stability of the lasers is of primary impor-
tance, while absolute stability is less crucial. The STIRAP laser system is also used for
molecular spectroscopy. We have thus built a setup which allows us to change between
two configurations meeting the different requirements for these purposes. After a brief
presentation of the general properties of the two Raman lasers and the Pound-Drever-
Hall locking scheme, a detailed description of these two configurations is given in this
section.

Laser properties

As Raman lasers, we use a commercial grating-stabilized diode laser with a mode-hop
free tuning range of about 20GHz (model TOPTICA DL100) and a Ti:Sapphire laser
(Coherent 899-01). The Ti:Sapphire laser is pumped by a Verdi V18 laser from Coher-
ent at 532 nm with a maximum output power of 18W. The output of the Verdi V18
is split on a high-power polarizing thin-film beamsplitter to simultaneously pump a
second Ti:Sapphire laser which provides the light for the optical lattice (see Sec. 2.3).
Due to the limited pump power, a certain trade-off between Raman laser power and
lattice depth has to be made. The Ti:Sapphire laser is equipped with a long wavelength
mirror set (output wavelength 900-1070 nm) and delivers up to 80mW of optical power
at the molecular sample at our typical operation wavelength of 1017 nm. It can be fre-
quency stabilized by a mirror mounted on a piezoelectric transducer with a bandwidth
of about 3 kHz. The diode laser has a range of 985-1066 nm and yields a few mW at
the molecular sample. Its frequency can be tuned by shifting the grating angle via a
piezoelectric transducer (bandwidth about 1 kHz) or the diode current.

The Ti:Sapphire laser is coupled through an AOM with a resonance frequency of
110MHz to allow fast control of the laser power. For the DL100 we have set up a
second AOM with the same frequency but in a double pass configuration. In addition
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to power control this yields a frequency tunability of about 50 MHz. The output powers
of the AOM drivers for both single- and double pass are controlled by two arbitrary
waveform generators (Agilent 33220A) with a bandwidth of 20MHz. This allows us to
independently switch and ramp the power of both laser 1 and 2 on a µs-timescale.

After the AOMs, the Raman lasers are coupled into optical fibers and guided to
the experimental glass cell. They are almost superposed onto one of the lattice laser
beams via two mirrors. The absorption imaging system is used to ensure that both
lasers strike the molecular sample (compare Sec. 2.3). At the molecules, both Raman
lasers have a 1

e2 -waist radius of 130µm. They are linearly polarized parallel to the
magnetic bias field, and can thus only drive π transitions. We use a photodiode with
a bandwidth of 1GHz to monitor the Raman laser power after transmission through
the glass cell.

Pound-Drever-Hall lock

To stabilize our Raman lasers we use a technique developed by Pound, Drever and
Hall (PDH) [Drev 83]. In this locking scheme, a laser is phase-modulated with an
electro-optical modulator (EOM), giving rise to sidebands. The laser beam is then
coupled into an optical cavity over a λ/4-waveplate and a polarizing beam splitter
(see Fig. 4.2). Because of the λ/4-waveplate, the retroreflected beam diverted by
the PBS and detected on a high-bandwidth photodiode. Close to the transmission
frequencies of the cavity, the carrier- and sideband components of the reflected laser
beam experience different reflection coefficients and phase shifts. This combination
of phase- and amplitude modulation is converted into an error signal by mixing the

EOM

PDH-
servo

l

4

Laser

PBS Cavity

PD

LO

Laser

PID

Figure 4.2:
Pound-Drever-Hall locking scheme. The phase-modulated laser beam is
retroreflected by the cavity and detected on a photodiode (PD). A steep
error signal is generated by mixing the PD-output with a local oscillator
and fed back to either the laser or the cavity through a PID-controller (for
details see text).
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output of the photodiode with a local oscillator (LO) at the modulation frequency and
filtering out the AC-component with a low-pass. The error signal has a steep zero
crossing when the laser is resonant with the cavity, and can thus be used to stabilize
either the cavity or the laser through a PID-controller.

4.2.1 Locking configurations

As an absolute frequency reference for the other lasers, we use a home-built grating
stabilized diode laser (”master laser”) which is locked to an atomic 87Rb-line at 780 nm
via modulation transfer spectroscopy. A second ”offset laser” of the same kind is offset-
locked to the master laser via a beat lock with a range of about 1.2GHz (see Figs. 4.3
and 4.4). The details of these locking schemes can be found in [Thal 06].

The Raman lasers are locked to these lasers via two transfer cavities. The ”main
cavity” is made of a low-expansion glass (Zerodur) spacer and has a free spectral range
of 1.5 GHz and a finesse of about 300 [Kins 05]. One of the cavity mirrors is mounted
on a piezoelectric actuator, allowing modulation of the cavity transmission frequency
with a bandwidth of about 2 kHz. The second ”spectroscopy cavity” has a spacer made
of silica glass but otherwise has the same properties as the main cavity.

During the work described here, these two lasers were utilized for both molecular
spectroscopy and STIRAP transfer. As the two applications set different require-
ments on the stability, tunability and power of the lasers system, we use two different
stabilization- and scanning setups which will be described in the following.

a) Spectroscopy setup.

For one-photon spectroscopy either of the two lasers can be used depending on the spe-
cific requirements concerning laser power, linewidth and tunability (Sec. 4.2). In our
two-photon spectroscopy scheme, laser 1 is kept on resonance with the molecular tran-
sition from |f⟩ to |e⟩ while laser 2 is scanned (see Sec. 4.3.2). As the observed linewidth
for this scheme is proportional Ω2

2 (see Sec.4.3.2), the more powerful Ti:Sapphire serves
as laser 2 to maximize the probability to detect molecular resonances. While for laser
1 only a limited tuning range is required to ensure it is on resonance, laser 2 has to
be scanned independently of laser 1. Laser 1 is thus locked to the spectroscopy cavity,
which itself is locked to the master laser and cannot be scanned (see Fig. 4.3). A
limited scanning ability for laser 1 is added with an acousto-optical modulator (AOM)
in double-pass configuration. Laser 2 is locked to the main cavity, which can be tuned
by scanning the offset laser.
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Figure 4.3:
Laser lock configuration for molecular two-photon spectroscopy. The mas-
ter laser is stabilized to an atomic 87Rb-line by modulation transfer spec-
troscopy (MTS). The spectroscopy cavity is Pound-Drever-Hall (PDH)
locked directly to the master laser and thus cannot be scanned. The
DL100 diode laser, which acts as laser 1 in this configuration is locked to
the spectroscopy cavity with a PDH-scheme as well. The main cavity is
PDH-locked to the offset laser, which itself is locked to the master laser
via a beat lock. The Ti:Sapphire laser (laser 2) is PDH-locked to the main
cavity and can thus be scanned by shifting the offset laser frequency over
±1.2GHz, i.e. more than the FSR of the cavity of 1.5GHz.

b) STIRAP setup.

After the spectroscopic determination of the involved molecular levels, the transition
frequencies for the STIRAP lasers are fixed. Hence, individual scanning ability for
the two lasers is thus not necessary in this configuration. The main requirements
for efficient STIRAP are high relative frequency stability between laser 1 and 2, and
sufficiently large Rabi frequencies on both transitions. As the Franck-Condon factors
for the transition |f⟩ ↔ |e⟩ are much smaller than those for |g⟩ ↔ |e⟩, we use the
Ti:Sapphire laser as laser 1 and the DL100 as laser 2. In order to increase the relative
frequency stability of the two lasers they are both PDH-locked to the main cavity
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Figure 4.4:
Laser setup for STIRAP transfer. The locking configuration for master-,
offset- and Ti:Sapphire laser as well as for the main cavity are the same
as in the spectroscopy setup (see Fig. 4.3). In contrast to the previous
scheme, however, also the DL100 diode laser is also locked onto the main
cavity to increase the relative stability of lasers 1 and 2. The Ti:Sapphire
laser which now acts as laser 1 can be brought on resonance by shifting
the offset laser, while laser 2 can be fine-tuned via an AOM in double-pass
configuration (not shown here).

in this setup (see Fig. 4.4). Compared to the case where the two lasers are locked
to different cavities, this has the advantage that the sensitivity to instabilities of the
cavity are reduced by a factor ∆λ/λ ≈ 40. As in the spectroscopy setup, the main
cavity is locked to the offset laser and can be shifted via the offset lock. Again, a
limited independent scanning ability for the DL100 (laser 2) is implemented with a
double-pass AOM.
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4.3 87Rb2 triplet spectroscopy

4.3 87Rb2 triplet spectroscopy

At the time these experiments were started, both the electronically excited and ground
triplet potentials were experimentally mostly unexplored, making extensive spectro-
scopic studies necessary. This section starts with a presentation of one-photon spec-
troscopy measurements performed to identify an appropriate excited state |e⟩. We
then stimulate the Raman scheme used for Raman spectroscopy of the triplet ground
potential with a simple three-level model. Only a brief outline of the experimental
results is given. A detailed discussion will follow in the doctoral thesis of Christoph
Strauss.

4.3.1 One-photon spectroscopy

The choice of the intermediate state |e⟩ is mainly governed by two conditions: Suf-
ficiently strong coupling to both initial |f⟩ and final state |g⟩ is required to allow
high Rabi frequencies Ω1 and Ω2. Additionally the separation from other molecular
resonances has to be large enough to avoid losses due to off-resonant excitation.

A resonant absorption process can occur if the energy difference between the Fesh-
bach state |f⟩ and an electronically excited molecular state |e⟩ matches the energy ~ω
of a photon (see Fig. 4.5). For exact resonance and low intensity Ω1 ≪ Γ the transition
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Figure 4.5:
One-photon spectroscopy. After excitation into state |e⟩ the molecule can
decay into a bound state of the electronic ground molecular potential (solid
wavy arrow) or into a pair of unbound atoms (dashed wavy arrow) with
total decay rate Γ. In both cases, the particles are not detected.
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

rate is given as

γ =
Ω2

1

Γ
, (4.15)

where Γ is the natural linewidth of the transition. The excited molecule is instable
and can either decay into one of the bound states of the electronic ground molecular
potential, or dissociate into two atoms with high kinetic energy. As the decay back
into the state of the Feshbach molecules generally is much less favorable than the other
processes, an excited molecule is very likely to be lost from detection. For one-photon
excitation, the transition rate γ can thus be considered equal to the experimentally
observed molecular loss rate.

Vibrational progression. Prior to the work described here very limited experi-
mental data about electronically excited 87Rb2 triplet potentials was available [Fior 01].
Model calculations from ab-initio potentials predicted suitable coupling strength from
the states of the Feshbach molecules |f⟩ and triplet ground state |g⟩ to a number of
vibrational levels of the electronically excited 3Σ+

g potential, suggesting the use of one
of those levels as intermediate state |e⟩ [Koch 07]. These calculations showed about 200
vibrational levels for this potential, with the vibrational ground state at an excitation
energy of about 283THz×h, corresponding to a laser wavelength of about 1060 nm.

In order to map out this vibrational progression, we used the Ti:Sapphire spec-
troscopy laser (model Coherent 899-01) as laser 1. The laser frequency was measured
with a WS6-IR wavemeter from High Finesse with a precision of about 200MHz. We
have recorded the 16 lowest vibrational levels (v = 0 − 15) of the 3Σ+

g potential. For
each vibrational level we observe two series of lines with 0−g and 1g character respec-
tively. We find the vibrational ground state at an excitation energy of 281.07 THz×h
with respect to |f⟩, corresponding to a wavelength of 1066.61 nm.

Rotational and hyperfine structure. We use the DL100 diode laser as laser 1 to
resolve the rotational- and hyperfine structure of the 3Σ+

g potential. The wavelength
of the laser is again measured with the WS6-IR wavemeter. For the 0−g manifold we
find three strong absorption lines separated by about 3 GHz×h, while we we observe
15 lines with a total spacing of about 12GHz×h in the 1g manifold.

4.3.2 Raman spectroscopy

In contrast to the electronically excited molecular states, those in the electronic ground
state are not directly accessible via one-photon laser spectroscopy. We thus use a
Raman-scheme to determine the position of the bound states in the a3Σ+

u potential.
This scheme relies on Autler-Townes splitting, and is discussed briefly here.
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4.3 87Rb2 triplet spectroscopy

Theoretical discussion

For the case of a λ-type three-level system with only laser 2 switched on (see Fig. 4.6a)
we can set Ω1 = ∆1 = 0 and δ ≡ ∆2 in the Hamiltonian of Eq. 4.2, where ∆2 is
the one-photon detuning of laser 2 . This results in a mixing angle θ = 0 and the
eigenstates from Eqs. 4.5-4.7 become

|BS+⟩ = cosϕ|e⟩ + sinϕ|g⟩, (4.16)

|DS⟩ = |f⟩, (4.17)

|BS−⟩ = sinϕ|e⟩ + cosϕ|g⟩, (4.18)

with mixing angle ϕ = 1
2
arctan(Ω2/δ) and eigenenergies

ϵDS(t) = 0, (4.19)

ϵ+,−
BS (t) =

~
2

(
∆2 ±

√
∆2

2 + Ω2
2

)
. (4.20)

The decay rates of the bright states |BS+⟩ and |BS−⟩ are

Γ+ = Γ cos2 ϕ, (4.21)

Γ− = Γ sin2 ϕ. (4.22)
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Figure 4.6:
Autler-Townes spectroscopy. a) The bare states |e⟩ and |g⟩ (solid blue
lines) are coupled by laser 2, resulting in a splitting of the dressed states
|BS+⟩ and |BS−⟩ (dashed blue lines). b) The energy splitting between
|BS+⟩ and |BS−⟩ induced by laser 2 can be probed by scanning laser 1
at low intensity (Ω1 ≪ Ω2). c) In our detection scheme laser 1 is kept on
resonance, while laser 2 is scanned. If the two-photon resonance condition
δ = 0 is satisfied, a dark resonance appears.
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

As indicated in Fig. 4.6b, this so-called Autler-Townes splitting between the bright
states |BS+⟩ and |BS−⟩ can be probed by scanning laser 1 at low Rabi frequency
Ω1 ≪ Ω2. In our detection scheme for bound molecular states we make use of this
splitting, but apply a different scanning procedure: Laser 1 is kept on resonance ∆1 = 0
at low intensity, constantly inducing losses due to excitation to |e⟩. At the same time,
laser 2 is scanned at high intensity (Ω2 ≫ Ω1,Γ). As laser 2 becomes resonant with the
molecular transition |g⟩ ↔ |e⟩, the bare state |e⟩ evolves into the dressed state |BS+⟩
which is shifted out of resonance with laser 1. If the condition δ = 0 is satisfied, a dark
state is formed, and losses are strongly suppressed. Experimental data for such a dark
resonance is shown in Fig. 4.7.
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Figure 4.7:
Dark resonance. Shown is the number of molecules remaining in |f⟩ after
subjecting them to a 3µs square pulse from both Raman lasers. The
frequency of laser 1 is kept constant, while laser 2 is scanned. The Rabi
frequencies are Ω1 = 2π× 0.7MHz and Ω2 = 2π× 10MHz. The solid line
is a fit from a three-level model.

Linewidth. We now want to investigate what linewidth we can expect for such a
dark resonance in our scanning scheme. For this, we compare the decay rate of |BS+⟩
to its shift from resonance with laser 1 (see Figs. 4.6 and 4.8a). More specifically, we
calculate for which detuning of laser 2, ∆HWHM

2 = δHWHM , this shift equals half the
linewidth of |BS+⟩. Using Eqs. 4.20 and 4.21, and neglecting saturation effects we get√

δ2 + Ω2
2 − |δ|

2
= Γ

cos2 ϕ

2
= Γ

√
δ2 + Ω2

2 + δ

4
√
δ2 + Ω2

2

. (4.23)

For our typical experimental conditions we have Ω2 ≫ Γ, and the left side can
become smaller than Γ only for δ ≫ Ω2. With the approximation
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Model simulation of Raman spectroscopy linewidth. a) Autler-Townes
splitting. The solid red line shows a simulation from a three-level
model, where laser 1 is scanned while laser 2 is kept at fixed detuning
∆2 = 2π × 25MHz (compare Fig. 4.6b). The dashed blue (green) lines
indicate the naive expectation of two Lorentzian lineshapes of width Γ+

(Γ−) at position ϵ+BS/~ (ϵ−BS/~) for the dressed states |BS+⟩ (|BS−⟩).
The parameters used are Ω1 = 2π × 0.7MHz, Ω2 = 2π × 20MHz, and
Γ = 2π × 8MHz. b) Linewidth of dark resonance in our Raman spec-
troscopy scheme. The solid lines are simulations for scans of laser 2 with
laser 1 fixed at ∆1 = 0 for different Rabi frequencies Ω2 = 2π×(10, 20, 30,
40, 50)MHz (see Fig. 4.6c). The dashed lines are Lorentzians with widths
given by Eq. 4.25, i.e., δHWHM = 2π×(6, 25, 56, 100, 156)MHz.

√
δ2 + Ω2

2 ≈ |δ| + Ω2
2

2|δ|
(4.24)

and further neglecting terms of order (Ω2/δ)
2 we solve for δ to get

δHWHM =
Ω2

2

2Γ
. (4.25)

For large Rabi frequency Ω2 ≫ Γ we can thus expect the observed width of a dark
resonance to be proportional to Ω2

2. This is in good agreement with simulations from a
three-level model, which indeed show such a quadratic behavior not only for large Ω2,
but also for Ω2 ≃ Γ (see Fig. 4.8b).
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

Experimental results

Previous to our work only the binding energies of the seven highest vibrational levels
(v = 34 − 40) of the a3Σ+

u electronic ground triplet potential had been experimentally
observed [Best 04]. Detailed spectroscopic measurements were thus required to deter-
mine the binding energy of the vibrational ground state of the a3Σ+

u potential which we
had envisaged as final state |g⟩ for our STIRAP transfer. From the previous section,
the linewidths of dark states observed with our detection scheme is proportional to Ω2

2.
This suggests that in our ”spectroscopy setup” the more powerful Ti:Sapphire should
be used as laser 2 and the DL100 as laser 1 (see Sec. 4.2.1).

Vibrational progression. Theoretical calculations from a close-coupled channel
model based on ab-initio potentials predicted 41 bound states for the a3Σ+

u potential
with the ground state at a binding energy of 7.114THz×h [Tiem 08]. Using these calcu-
lations as a guideline, we have mapped out all of the 41 levels in the vibrational progres-
sion, and find the rovibrational ground state at a binding energy of 7.03806(3)THz×h.
We have experimentally verified that no more molecular resonances appear where more
deeply bound vibrational levels were to be expected.

Rotational- and hyperfine structure. For each vibrational level, we find rota-
tional- and hyperfine structure which has a total width of about 20GHz×h for the
deeply bound levels. In order to verify that the lowest observed resonance is indeed
the hyperfine ground state, we compare the measured structure to the close-coupled
channel model. As excited state |e⟩ for these measurements we use a solitary strong
resonance in the 0−g manifold of the vibrational level v = 13 of the 3Σ+

g potential. This
state has quantum number I = 3, considerably restricting the number of observed lines
due to the selection rule ∆I = 0 and the fact that I is a good quantum number for
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Hyperfine- and rotational structure of the a3Σ+

u vibrational ground state
v = 0. The orange bars show the measured resonances, where the width
indicates a typical error margin. The thin blue lines represent the positions
of the states with quantum numbers F , l and its projection ml as calcu-
lated from the close-coupled channel model. The two-photon detuning δ
is taken relative to the absolute lowest state |g⟩ of the a3Σ+

u potential.
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4.3 87Rb2 triplet spectroscopy

the deeply bound states in the a3Σ+
u potential. We find good agreement between the

measured data and the model calculations (see Fig. 4.9).
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

4.4 Transfer to the rovibrational triplet ground

state

After determiing the intermediate |e⟩ and final state |g⟩ the STIRAP transfer into the
rovibrational ground state can be carried out. As discussed in Sec. 4.1, such a transfer
requires high relative frequency stability and similar Rabi frequencies for both Raman
lasers. In our ”STIRAP setup” both Raman lasers are Pound-Drever-Hall locked to
the main cavity in order to minimize relative fluctuations in the laser frequency (see
Sec. 4.2.1). The more powerful Ti:Sapphire laser acts as laser 1 and the DL110 diode
laser as laser 2 to compensate for the unequal transition strength which is much lower
for |f⟩ ↔ |e⟩ than for |g⟩ ↔ |e⟩.

For the STIRAP transfer, we apply a counter-intuitive pulse sequence as shown in
Fig. 4.10. First only laser 2, which couples the levels |g⟩ and |e⟩ is switched on. In
order to transfer the molecules from |f⟩ to |g⟩, laser 2 is ramped down while laser
1 is ramped up in about 2µs. After a certain hold time τh, a second time-reversed
STIRAP pulse sequence is applied. Note that τh is defined as the time between the
actual transfers, i.e., from the time when laser 2 is switched off at the end of pulse 1
until it is switched on again at the beginning of pulse 2 (Fig. 4.10). We typically use
a hold time of 2µs for maximum transfer efficiency (compare Sec. 4.5). After ramping
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Figure 4.10:
STIRAP pulse sequence. For the transfer of molecules from |f⟩ to |g⟩
laser 2 (dashed black line) is ramped down while laser 1 (solid brown line)
is ramped up. After a certain hold time τh a second, time-reversed pulse
transfers the molecules back from |g⟩ to |f⟩.

74



4.4 Transfer to the rovibrational triplet ground state

-1 0 1 2

0

0.2

0.4

0.6

0.8

1

d p (/2 MHz)

N
/N

0

-2

Pulse 1

Pulse 1 & 2

Figure 4.11:
STIRAP transfer efficiency. Shown is the fraction of detected Feshbach
molecules for varying two-photon detuning δ. After a single STIRAP pulse
no |f⟩ molecules can be detected (blue diamonds). A maximum of 75%
of the initial molecules reappear after a second, time-inverted STIRAP
pulse (red circles). The solid lines are calculations from a master equation
based three-level model (see Sec. 4.4.2).

down laser 2 in the first pulse sequence, laser 1 is left on at maximum intensity for
about 1µs to ensure that no molecules remain in |f⟩.

In Fig. 4.11 the number of molecules observed in |f⟩ after STIRAP pulse 1 (blue
diamonds) and pulses 1 and 2 (red circles) is shown as a function of two-photon de-
tuning δ. After the first pulse no more Feshbach molecules can be detected. When
applying both STIRAP pulses about 75% of the initial molecules reappear in |f⟩ in
case of resonance (δ = 0). Assuming equal transfer efficiency for both pulses, this cor-
responds to a one-way transfer efficiency of 87% and a total number of 2.6×104 ground
state molecules. The resonance has a FWHM of about 1MHz which is determined
by Fourier- and power broadening. This width is in good agreement with our model
calculations (Sec. 4.4.2).

4.4.1 Square pulse projection transfers

We have also performed a different kind of measurement, replacing the more elaborate
STIRAP pulse sequence with simple square Raman pulses [Lang 09]. This procedure
allows us to gain further insight into the system, and to demonstrate a very simple
transfer method from |f⟩ to |g⟩.

The Feshbach molecules are exposed to a square Raman pulse with both lasers on
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Figure 4.12:
Square pulse projection measurements. a) Shown is the fraction of re-
maining Feshbach molecules after subjecting them to square Raman laser
pulses as a function of pulse duration for different Rabi frequency ratios
Ω2/Ω1. After a fast initial projection from |f⟩ to |DS⟩, the dark state
decays on a much longer timescale. The solid lines are simulations from
a master equation based three-level model (Sec. 4.4.2). b) For the projec-
tion measurements shown in a), laser 2 (solid black line) is switched on
earlier and switched off later than laser 1 (solid brown line). This is re-
quired to avoid excitation from |f⟩ to |e⟩ due to jitter in the laser timing.
The pulse duration τp is defined as the time span when both lasers are on.
If the square pulse scheme is used to transfer molecules into |g⟩, laser 1
(dashed brown line) is turned off after laser 1 (dashed black line) to rule
out excitation from |g⟩.

resonance (∆1 = δ = 0) for a variable pulse duration τp. Laser 2 is switched on earlier
and turned off later than laser 1 by about 1µs to avoid excitation from |f⟩ to |e⟩ due
to jitter in the laser timing (solid lines in Fig. 4.12(b)). After switching off the lasers
the number of molecules remaining in |f⟩ is detected. We observe an initial loss of
molecules occurring in less than 1µs which depends on the ratio Ω2/Ω1, followed by a
much slower exponential decay (Fig. 4.12a).

This behavior can be understood in the following way: With Eqs. 4.5-4.7 we write
|f⟩ as superposition of dark and bright states,

|f⟩ = [Ω2|DS⟩ + Ω1(sinϕ|BS+⟩ + cosϕ|BS−⟩)]/
√

Ω2
1 + Ω2

2. (4.26)

When the lasers are switched on, the bright states are quickly lost due to excitation
to |e⟩, while the dark state remains. Using Eq. 4.6 we find that after the projection
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onto |DS⟩, a fraction Ω4
2/(Ω

2
1 + Ω2

2)
2 of the initial molecules is in |f⟩. This fact can be

used to calibrate the ratio of Rabi frequencies Ω2/Ω1. Indeed we find good agreement
with the values previously determined with other techniques. We note that after the
projection of |f⟩ onto |DS⟩ a fraction Ω2

1Ω
2
2/(Ω

2
1+Ω2

2)
2 of the initial Feshbach molecules

is in |g⟩, with a maximum of 25% for Ω1 = Ω2. This provides a very simple and fast
method to transfer a sizeable fraction of Feshbach molecules into the ground state. For
such a transfer, however, the laser timing has to be slightly changed compared to the
one for the projection measurements. To ensure that |g⟩ molecules are not excited to
|e⟩ at the end of the Raman pulse, laser 2 is switched off earlier than laser 1 (dashed
lines in Fig. 4.12b)).

After the initial projection, the dark state decays on a much slower timescale. This
decay could, for example, be due to off-resonant coupling to states other than |f⟩, |g⟩
and |e⟩. Exposing |f⟩ (|g⟩) molecules to laser 2 (1), however, we find losses due to
laser excitation to be completely negligible on the timescale of our experiments. We
have also tested for possible AC-Stark shifts of the dark resonance by measuring its
position for different Rabi frequencies Ω1,2. Within the accuracy of the measurements
of 200 kHz, however, no shifts could be detected. We thus attribute the decay of |DS⟩
to phase fluctuations of the Raman lasers which causes the phase of the lasers to differ
from that of the molecular superposition state. This can be viewed as an admixture
of the bright states |BS+,−⟩ into |DS⟩, followed by their excitation to |e⟩. The decay
time of |DS⟩ depends on the Rabi frequency ratio Ω2/Ω1 and is lowest for equal Rabi
frequencies, where we find it to be about 50µs.

4.4.2 Master equation based three-level model

In order to numerically simulate the internal molecular dynamics of the STIRAP
transfers and the square pulse projection measurements, we use our three-level-model
(Eq. 4.2) in a master equation [Wall 94]. Compared to a Hamiltonian-based model
this approach has the advantage that decoherence due to laser phase fluctuations is
taken into account. As the system is comparatively insensitive to one-photon detuning,
we set ∆1 = 0, but include the natural linewidth1 Γ of the excited state |e⟩; and the
relative linewidth η of the two Raman lasers. Relabeling the levels |f⟩, |g⟩ and |e⟩ as
1, 2, and 3 we can write the master equation as

1Γ is neglected in the Hamiltonian from Eq. 4.2 which was used to calculate |DS⟩ and |BS+,−⟩, but
is included in the three-level model applied in Figs. 4.7 and 4.8.
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dρ

dt
= −iδ

[
σ22, ρ

]
− i

2

2∑
k=1

Ωk

[
σ3k
− + σ3k

+ , ρ
]

− 1

2
Γ

(
σ33

· σ33
· ρ+ ρ ·σ33

· σ33
)

+
1

2
η

(
2σ22

· ρ ·σ22 − σ22
· ρ− ρ · σ22

)
,

(4.27)

where ρ is the density matrix. The matrices σjk
− and σjk

+ are ladder operators and
each is the transpose of the other. For example

σ32
− =

 0 0 0
0 0 0
0 1 0

 =
(
σ32

+

)T
. (4.28)

Implementing the time-dependent Rabi frequencies Ω1,2 for the two STIRAP pulses
as shown in Fig. 4.10 we model the STIRAP transfers for varying two-photon detuning
δ. The relative laser linewidth η is used as a fit parameter to give best agreement with
the data from in Fig. 4.11, where the results of the simulations are shown as solid lines.
Neglecting lattice dynamics we find η = 2π× 20 kHz, indicating that about half of the
losses are due to nonadiabaticity and half are due to the non-ideal laser system.

For the square pulse projection measurements from Sec. 4.4.1 we set ∆1 = δ = 0
and apply pulses as shown in Fig. 4.12b for the Rabi frequencies Ω1,2. Again we use
the relative laser linewidth as parameter to fit the data of Fig. 4.12a and find a best
value of η = 2π × 16 kHz. The results of the simulations are shown as solid lines in
Fig. 4.12a.
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4.5 Molecular dynamics in the optical lattice

4.5 Molecular dynamics in the optical lattice

In the preceding discussion we have neglected the influence of the optical lattice on the
molecules. Due to their strong binding, however, ground state molecules do not have
the same dynamic polarizability as Feshbach molecules. No details about the strength
and even sign of the lattice potential for the ground state molecules were known. In our
experiments we observe molecular oscillations in the lattice occurring after the transfer
into the rovibrational ground state. This behavior is reproduced with a multi-band
model, which allows one to deduce the polarizability of the ground state molecules.

4.5.1 Coherent molecular oscillations

In order to study the dynamics of the |g⟩ molecules in the lattice, we repeat the STIRAP
transfer experiment from Sec. 4.4 for variable hold time τh. Within about 40µs the
fraction of detected Feshbach molecules falls from 75% to around 30% (Fig. 4.13). Some
of the ”lost” molecules reappear in a damped oscillation with period and damping time
both about 80µs, which levels off at about 40% of the initial molecules.
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Figure 4.13:
Molecular oscillations. The fraction of recovered Feshbach molecules after
two STIRAP pulses is plotted as a function of hold time τh. The oscillation
in the molecule number is caused by breathing oscillations of molecules
in |g⟩, which experience a much weaker lattice potential than those in |f⟩
(see text). Except for the varying hold time τh all parameters are the
same as in Fig. 4.11. The solid line is a calculation from our multi-band
model (Sec. 4.5.2).

79



4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

This behavior can be explained as follows: During the first STIRAP transfer from |f⟩
to |g⟩ the spatial shape of the center-of-mass (c.o.m.) molecular wavepacket remains
unchanged. The molecules in the ground state experience a lattice potential which
is about a factor of 10 weaker than that for the Feshbach molecules. This leads to
breathing oscillations of the molecular wavepacket at the lattice site trap frequency
ωt, which are damped by tunneling to neighboring sites. If the molecular wavepacket
at the time of the return transfer differs from the original one (i.e. the lattice ground
state for |f⟩), the second STIRAP pulse leads to the excitation of higher bands for
the Feshbach molecules. As we detect only particles in the lowest band (Sec. 4.5.2),
this effect leads to an apparent oscillation in transfer efficiency in the data shown in
Fig. 4.13. For a more detailed discussion of this behavior see Sec. 4.5.2.
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Figure 4.14:
Ground state molecular lifetime. Shown is the same set of data as in
Fig. 4.13 (plotted as open circles), but extended to longer hold times (full
circles). After the coherent initial dynamics we find a decay occurring
within about 25ms, which we attribute to tunneling of molecules in excited
bands out of the lattice. The remaining molecules in the lowest band of
the lattice have a lifetime exceeding our experimental observation time.
The solid line is a guide to the eye and connects neighboring data points.

Fig. 4.14 shows the extension of these measurements to longer hold times. We find
an additional decay occurring within about 25ms, after which around 20% of the inial
molecules are left. We attribute this loss mainly to essentially unbound molecules in
higher bands, which simply fall out of the lattice. For the remaining molecules in the
lowest band we find a lifetime exceeding our experimental observation time, which is
limited to about 200ms due to heating of the Feshbach coils.
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4.5 Molecular dynamics in the optical lattice

4.5.2 Multi-band model

For the simulation of the dynamics caused by the modified lattice depth for the different
molecular states, we extend the three-level model of the master equation approach
discussed in Sec. 4.4.2. The levels |f⟩, |g⟩ and |e⟩ now have a substructure, the lattice
Bloch bands, which depends on the respective depth of the lattice for the different levels
(Fig. 4.15). We assume the Feshbach molecules to be initially localized at a lattice site.
As Bloch wavefunctions are delocalized over the whole lattice, a localized wavepacket
has to be constructed. Integrating the Bloch waves of a specific band over all quasi-
momenta gives the Wannier function for the respective band. Among the different
localized wavefunctions constructed from Bloch waves, Wannier functions stand out as
those with lowest total energy [Kohn 73]. They form a complete set of orthonormal
functions, and closely resemble harmonic oscillator wavefunctions for deep lattices. We
use Wannier functions as a basis to describe the molecules in the optical lattice and
will denote the Wannier function for level |α⟩ and band n as |Ψαn⟩ in the following.
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Figure 4.15:
Level-scheme for multi-band model. Due to the optical lattice, the molec-
ular levels |f⟩, |g⟩ and |e⟩ obtain a Bloch band substructure. The different
bands n = 0, 2, 4, 6 of level |f⟩ (|g⟩) are coupled to |e⟩ by laser 1 (2) ac-
cording to the respective wave function overlaps.

As the initial wavepacket is symmetric, only symmetric bands (i.e., with even indices)
can be excited. It turns out that for our typical parameters, the inclusion of bands
with indices n > 6 has only negligible effect on the model. We thus restrict our
calculations to the four lowest symmetric bands, corresponding to n = 0, 2, 4, 6. Each
of the three dimensions of the system is now described by a twelve-level model, which we
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4 Coherent optical transfer of Feshbach Molecules into the rovibrational triplet ground state

solve with a Schrödinger equation based approach. In contrast to the master-equation
model from Sec. 4.4.2 it does not include losses due to laser phase fluctuations, but
has the advantage of being numerically less involved. In order to describe tunneling
of molecules to a neighboring lattice site we introduce a tunnel rate Jαn for band n in
level |α⟩. For the time dependent Schrödinger equation

i~
∂

∂t
|Φ⟩ = Ĥ|Φ⟩ (4.29)

we write a general state |Φ⟩ in terms of a 12-element probability amplitude vector

c =


cf0

cg0

ce0
cf2
...

 , (4.30)

where cαn is the amplitude for the basis state |Ψαn⟩. The Hamiltonian then has the
form of a 12 × 12−matrix

Ĥ = ~


Ef0− i

2Jf0 0 1
2Ω1 ·Mf0,e0 0 ...

0 Eg0+δ− i
2Jg0

1
2Ω2 ·Mg0,e0 0 ...

1
2Ω1 ·Me0,f0

1
2Ω2 ·Me0,g0 Ee0+∆1− i

2Γ− i
2Je0

1
2Ω1 ·Me0,f2 ...

0 0 1
2Ω1 ·Mf2,e0 Ef2− i

2Jf2 ...
... ... ... ...

, (4.31)

where Eαn is the mean energy of Bloch band n in state |α⟩ and Mαn,βk = ⟨Ψαn|Ψβk⟩
the overlap integral of the respective Wannier functions.

We use the Crank-Nicolson method [Cran 47] to calculate the coherent time evolution
of the 1D amplitudes for the non-tunneled molecules, c. In order to extend the model
to three dimensions, the elements of c are allocated to three 4-element vectors cf , cg

and ce for the respective states |f⟩, |g⟩ and |e⟩, e.g.,

cf =


cf0

cf2

cf4

cf6

 . (4.32)

The 4 × 4 × 4−array of the respective 3D amplitude distribution cx,y,z
f is then con-

structed as product of the 1D amplitudes which we assume to be equal for the three
directions as cx,y,z

f = cx
f ⊗cy

f ⊗cz
f , where (cx

f = cy
f = cz

f ≡ cf ). For example, the part of
cx,y,z
f describing the amplitudes for the lowest band in the z-direction is a 4×4−matrix

given as

82



4.5 Molecular dynamics in the optical lattice

cx,y,0
f =


cf0cf0cf0 cf0cf2cf0 cf0cf4cf0 cf0cf6cf0

cf2cf0cf0 cf2cf2cf0 cf2cf4cf0 cf2cf6cf0

cf4cf0cf0 cf4cf2cf0 cf4cf4cf0 cf4cf6cf0

cf6cf0cf0 cf6cf2cf0 cf6cf4cf0 cf6cf6cf0

 . (4.33)

Tunneling molecules are considered to remain in the same band, and are described by
an amplitude vector c̃. The 3D amplitude arrays c̃x,y,z

f,g,e for the tunneling molecules are
constructed in an analogous was as cx,y,z

f,g,e . In contrast to the non-tunneling molecules,
however, the tunneling ones do not undergo a coherent evolution. They are considered
to be transferred back from |g⟩ to the different bands of |f⟩ according to the respective
wave function overlaps by the reverse STIRAP pulse2. This loss of coherence leads
to damping of the molecular oscillation. The tunnel rates Jαn are slightly adjusted
compared to the theoretically expected values to reach better agreement with the data
from Fig. 4.13.

Molecule-atom band conversion

In our experiments only atoms that end up in the first Brillouin zone after dissociation
of the Feshbach molecules are counted as signal (see Sec. 2.6). We will now discuss how
the different Bloch bands for molecules are mapped into those for atoms. As the lattice
for |f⟩ is very deep (typically 60Er), we can us a harmonic approximation with trap
frequency ωt for the sinusoidal potential at a specific lattice site. The 1D eigenfunctions
of the harmonic oscillator are

|Φn⟩ =
1√

2nn!
√
πx0

exp(− x2

2x2
0

) Hn

(
x

x0

)
, (4.34)

where x0 =
√

~/ωtm is the oscillator length and Hn is the nth Hermite polynomial.
For two atoms at a specific lattice site we use the coordinates x1,2. We can transform
these into relative and center-of-mass coordinate as

xr =
(x1 − x2)√

2
(4.35)

xc =
(x1 + x2)√

2
. (4.36)

While the c.o.m. potential is harmonic with lattice site trap frequency ωt, the relative
potential is a combination of the harmonic and atomic interaction potential (Fig. 4.16).
When a molecule is dissociated by ramping over a magnetic Feshbach resonance, the
quantum level in the relative coordinate changes from a bound molecular state to

2A fraction of 10% of the molecules is assumed to be lost during the transfer due to the limited
STIRAP efficiency.
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Figure 4.16:
Potentials for the center-of-mass and relative coordinates of two atoms
trapped at a site of the optical lattice. a) The bound states (dashed
lines) of the harmonic c.o.m. potential Vc correspond to the Bloch bands
for molecules. b) At short interatomic distances the relative potential
Vr is dominated by the interaction potential of two atoms, which allows
the formation of bound molecular states (solid lines). Atoms that do
not form such molecular states are trapped by the lattice potential at
larger separation (dashed lines). With help of a Feshbach resonance the
lowest trap state can be converted into a weakly-bound molecular state.
Note that in this schematic view, both energy and distance for the two
contributions to the relative potential are not to scale.

an atomic pair state, while the c.o.m. wavefunction remains unaffected. By applying
the transformation from relative-/c.o.m.- to atomic coordinates we can calculate how
molecular Bloch bands are converted into atomic ones. To illustrate, we write the
wavefunction for an atomic pair produced by dissociation of a molecule in the lowest
Bloch band as

|Φ⟩ =
1

x0

√
2

exp(− x2
c

2x2
0

) exp(− x2
r

2x2
0

) =
1

x0

√
2

exp(− x2
1

2x2
0

) exp(− x2
2

2x2
0

), (4.37)

i.e., both atoms end up in the lowest Bloch band as well. This analysis can be
extended to higher bands. The conversion amplitudes for the four lowest symmetric
molecular bands are given in Tab. 4.1.

In the absorption imaging process, the optical density is integrated in the direction
of observation. We therefore assume atoms which are in higher bands in this direction
to be counted as signal, while atoms in higher bands in the perpendicular directions
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are not detected.
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Table 4.1:
Band conversion amplitudes in the harmonic oscillator approximation.
Each row gives the amplitudes for a constituent atom of a molecule in
a specific band to populate the different atomic bands after dissociation.
Certain correlations for the conversion of the two atoms of a molecule are
implied by energy conservation. If, for example, atom 1 from a molecule in
band 2 ends up in the lowest band, the second atom has to be converted
to band 2. Note that the squares of the amplitudes correspond to the
binomial coefficients.

Molecular oscillations

We will now apply this model to the molecular oscillations observed in Sec. 4.5.1,
and give a more detailed discussion of the results. For the simulation of the STIRAP
transfers we use the same pulse shapes as for the master equation model (see Fig. 4.10).
As already mentioned in Sec. 4.5.1, the shape of the molecular wavepacket does not
change during the first STIRAP transfer. Directly after the transfer it essentially still
corresponds to the lattice ground state for the Feshbach molecules, |Ψf0⟩ (Fig. 4.17). In
the much weaker lattice potential felt by the ground state molecules, such a wavepacket
can only be formed by including excited bands. For the data from Fig. 4.13 we find
1D excitation probabilities of (84%, 13%, 3%, 0.2%)3 for bands b = (0, 2, 4, 6). This
means that about 60% of the molecules are in the lattice ground state in all three
dimensions after the first STIRAP pulse. In the following evolution, the molecular
wavepacket undergoes breathing oscillations at the lattice site trap frequency ωt (see
Fig. 4.17), which are damped by tunneling to neighboring sites. Depending on the
shape of molecular wavepacket at the time of the return STIRAP pulse, the excitation

3The given probabilities are normalized to sum up to 1, i.e., losses due to STIRAP or excitation of
higher bands are not included.
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Figure 4.17:
Molecular breathing oscillations. Directly after the first STIRAP transfer
the molecular wavepacket essentially has the shape of the ground state
|Ψf0⟩ (thick solid line, α) of the sinusoidal lattice potential for the Fesh-
bach molecules, Vf . As this does not correspond to the ground state |Ψg0⟩
(thick dash-dotted line, β) of the much weaker lattice potential for the
ground state molecules, Vg, the wavepacket starts to oscillate. After 1/8
of the oscillation period τosc = 2π/ωt it roughly corresponds to |Ψg0⟩, and
reaches its maximum extension after τosc/4 (thick dashed line, γ).

of higher bands is mapped back onto the |f⟩ molecules. As we detect only atoms in
the first Brillouin zone, this leads to an apparent oscillation in transfer efficiency for
the data shown in Fig. 4.13. Fitting our model to this data we deduce that the lattice
potential for |g⟩ is shallower than for |f⟩ by a factor of 10± 2. After one quarter of the
oscillation period τosc = 2π/ωt the wavepacket reaches its maximum extension (dashed
line γ in Fig. 4.17). At this point, the return STIRAP transfer leads to a maximum
excitation of higher bands in |f⟩, and a minimum of detected molecules. Neglecting
tunneling, the excitation probabilities for the different bands in |f⟩ would be (47%,
42%, 11%, 0.1%). In this case, the wavepacket would reach its initial shape again
after half an oscillation period τosc/2, and be completely transferred into the lowest
band for |f⟩ by the second STIRAP pulse. Due to tunneling to neighboring lattice
sites, however, the coherence between the different bands is lost and the oscillation is
damped. For a completely incoherent sample (τh → ∞) the 1D excitation probabilities
after the second STIRAP transfer are (71%, 17%, 9%, 3%), i.e., about 35% of the
molecules end up in the lowest band of |f⟩ in all three dimensions.
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Square pulse projection

The question now arises why we do not observe such molecular oscillations in the
dark state projection measurements from Sec. 4.4.1, especially for the case Ω1 ≃ Ω2

where |DS⟩ has a contribution of about 50% from |g⟩. To gain deeper insight into
the system, we simulate these square pulse experiments with our multi-band model.
For this we set the detuning ∆1 = δ = 0 and use square Raman pulses as shown in
Fig. 4.12b. Diagonalizing the Hamiltonian from Eq. 4.31, we find twelve ”eigenstates”
with complex eigenvalues. In case of strong coupling (Ω1,2 ≫ ωt) four of them have
negligible contribution from the excited state |e⟩ and are thus long-lived. For our
dark state projection measurements we typically have Ω1,2 & 2π × 1MHz and ωt ∼
2π×10 kHz, and are well within this regime. The four quasi-dark eigenstates essentially
correspond to the four bands of our model and will be denoted as |DSn⟩, with n =
0, 2, 4, 6. Neglecting a small contribution from |e⟩ they can be considered to consist of

-0.5 0 0.5
0

1

2

3

4

5

Spatial coordinate x (x )0

P
ro

b
a

b
ilt

y
 d

e
n

s
it
y
 (

a
.u

.)

|Jf0>

<f|DS0>

| g0>J

<g|DS0>

0

1

2

3

-0.5 0 0.5

Spatial coordinate x (x )0

| f2>J

<f|DS2>

| g2>J

<g|DS2>

a) b)

Figure 4.18:
Dark state wavepackets. a) The two components of the dark state with
lowest energy |DS0⟩ having |f⟩ and |g⟩ character, ⟨f |DS0⟩ (thick solid
line) and ⟨g|DS0⟩ (thick dashed line), essentially have the same shape.
Their main contributions are from the respective lattice ground states
|Ψf0⟩ (thin solid line) and |Ψg0⟩ (thin dotted line). All depicted states are
normalized. b) Same as a), but for the dark state corresponding to the
second band, |DS2⟩, and the according lattice states |Ψf2⟩ and |Ψg2⟩. For
the higher dark states |DS4,6⟩ the situation is analogous. The parameters
used are Ω1 = Ω2 = 2π × 7MHz, Vf = 60Er and Vg = 6Er, typical for
our experiments.
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|f⟩ and |g⟩ components only, and we write them as

|DSn⟩ = |g⟩⟨g|DSn⟩ + |f⟩⟨f |DSn⟩. (4.38)

It turns out that the |f⟩- and |g⟩ component wavepackets for the different |DSn⟩,
⟨g|DSn⟩ and ⟨f |DSn⟩, have the same spatial shape (Fig. 4.18). This fact ensures that
the condition imposed by Eq. 4.6, that the ratio of |f⟩- and |g⟩ amplitudes equals
Ω2/Ω1, is satisfied everywhere.

After subjecting the Feshbach molecules to a square Raman laser pulse, a dark state
is formed in less than 1µs. As in the STIRAP transfer, the shape of the molecular
wavepacket does not change during this process, and still corresponds to |Ψf0⟩, the
lattice ground state for |f⟩. The dark state can now be written as a superposition of
the four dark eigenstates from Eq. 4.38

|DS⟩ =
∑

n=0,2,4,6

cn|DSn⟩. (4.39)

The subsequent coherent evolution of these dark states will in principle lead again
to breathing oscillations. The amplitude of these oscillations depends on the extent to
which higher dark states (i.e., |DSn⟩ with n > 0) are excited. The excitation increases
with increasing deviation of |DS⟩ from the initial state |f⟩, i.e., with rising Ω1/Ω2. For
the projection measurement with Ω1 = Ω2 that is shown as a red line in Fig. 4.12a, we
find 1D excitation probabilities for |DSn⟩ of (98.6%, 1.2%, 0.2%, <0.1%) for n = (0,
2, 4, 6).

This can also be understood in another picture. As for each of the individual eigen-
states |DSn⟩, the |f⟩- and |g⟩ components of |DS⟩ have identical shapes. The super-
position state |DSn⟩ can thus be considered to experience an effective lattice potential
which is the weighted average of the potentials for the two contributing states |f⟩ and
|g⟩. For the case Ω1 = Ω2 this effective potential is about half as deep as that for
the Feshbach molecules. Compared to the case of pure ground state molecules, where
the lattice potential is reduced by a factor of 10, the oscillations of the wavepacket
are strongly suppressed4 and cannot be observed with our current experimental preci-
sion. For Ω1 ≫ Ω2, the dark state |DS⟩ has a dominant contribution from state |g⟩,
and the effective lattice potential essentially corresponds to the one for ground state
molecules. In Fig. 4.19a a measurement for |DS⟩ with Ω1/Ω2 ≈ 5 is shown. In this case
oscillations similar to the ones observed in the previously discussed STIRAP transfer
appear despite the strong coupling. For these experiments we have ramped into the
dark state and back in a fashion similar to STIRAP to avoid strong losses caused by
direct projection into |DS⟩ ≈ |g⟩⟨g|DS⟩ (see Fig. 4.19b). From our model, we deduce
excitation probabilities of (87%, 10%, 2%, 0.2%) for the different |DSn⟩. These values
are close to those we had for the different lattice bands during of a STIRAP transfer

4Note that in the harmonic approximation we have x0 ∝ V
−1/4
0 , where x0 is the oscillator length

and V0 the depth of the potential.
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Figure 4.19:
Oscillation of dark state. a) The red circles show the same data as in
Fig. 4.13, i.e., the fraction of detected Feshbach molecules after two STI-
RAP pulses as a function of hold time. The blue diamonds are from a
similar measurement, but instead of completely transferring the molecules
into the ground state, they are kept in a dark superposition state where
about 95% of the population is in |g⟩. b) Pulse shapes for the dark state
measurement shown as blue diamonds in a). The pulses are similar to the
ones used for the STIRAP transfer, but instead of ramping down, laser
1 is kept at its maximum value of Ω1 = 7MHz. Laser 2 is ramped to
Ω2 = 1.5MHz and kept at this value during the holding period of length
τh.

(84%, 13%, 3%, 0.2%). This is expected, as in the limit Ω1 ≫ Ω2 the dark states |DSn⟩
approach the lattice states |Ψgn⟩.
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5 Summary and outlook

Two methods to transfer molecules between different states have been presented. A
radio frequency based scheme allows adiabatic transfer of molecules across avoided
crossings. This technique is in principle applicable to arbitrary avoided crossings, but
can only bridge a limited energy gap. Starting from Feshbach molecules, almost any
molecular state up to a binding energy of a couple of GHz×h can be accessed. The
intrinsic constraint, that the association of Feshbach molecules is possible only for a
limited number of specific quantum states, can thus be overcome. In particular, the
rf-transfer scheme can be utilized to prepare molecules in states that are ideal start-
ing points for subsequent optical transfers, e.g. by optimizing Franck-Condon factors
[Danz 08].

Using radio frequency spectroscopy, we have mapped out the energy spacing of
avoided crossings between molecular states and thus the strength of the involved cou-
plings with very high precision. The accuracy of this data surpasses that of current
theoretical models employed for the calculation of molecular energy spectra by several
orders of magnitude, and might lead to a considerable improvement of these models.

Molecules can be transferred from weakly to deeply bound states with optical transfer
schemes like STIRAP. This brings the production of a molecular ground state Bose-
Einstein condensate, which is a strongly pursued goal of this field, within reach. A
possible route to achieve this, is to transfer molecules associated from an atomic Mott-
insulator state in a three-dimensional optical lattice into their rovibrational ground
state. These molecules are expected to be stable under collisions, and a Bose-Einstein
condensate might be formed after subsequently melting the Mott-insulator [Jaks 02].

In our experiments, we have transferred Feshbach molecules in a 3D optical lattice
into the rovibrational ground state of the a3Σ+

u triplet potential. The collisional prop-
erties of these triplet molecules are presently unknown. In particular their stability
with respect to relaxation into more deeply bound singlet states is subject to specula-
tion. By ramping down the optical lattice in the two horizontal directions, an assembly
of pancake-shaped traps could be created, which offers an environment for collisional
studies [Krem 08].

In contrast to singlet molecules, those in triplet states have a non-zero magnetic
moment, and thus a much richer level structure. Model calculations predict avoided
crossings between different rotational- and hyperfine states to exist all the way to the
vibrational ground state of the a3Σ+

u triplet potential [Bran 07]. Hence, the combina-
tion of the optical STIRAP transfer with our radio frequency based scheme allows the
preparation of triplet molecules in almost arbitrary quantum levels. Of special inter-
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5 Summary and outlook

est are, for example, states that are promising starting points for molecule-molecule
Feshbach resonances.

A superlattice, which is currently set up in our laboratory, represents an ideal system
for the investigation of such molecular Feshbach resonances. After preparing molecules
in well-defined states, the superlattice can be used to enforce controlled collisions be-
tween pairs of molecules. This can be seen as a step towards novel multi-particle
physics [Krae 06, Knoo 09] and coherent cold chemistry [Hein 00, Krem 08].

Spectroscopic measurements of molecular quantum states offer new perspectives for
studies of the possible variation of physical constants. For example, the sensitivity of
molecular vibrational energies to the electron-proton mass ratio permits the investiga-
tion of the time-dependence of this parameter. Zelevinsky and coworkers propose to
use ultracold molecules in a three-dimensional optical lattice and probe the vibrational
energy spacing with a Raman spectroscopy scheme [Zele 08]. In a different approach,
a transfer of molecules into vibrational levels that are almost degenerate with those of
another molecular potential (e.g. theX1Σ+

g singlet- and a3Σ+
u triplet ground potentials)

has been suggested [Flam 07, DeMi 08]. The energy difference could then be measured
via microwave spectroscopy, thereby considerably enhancing the relative sensitivity of
such measurements.
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We examine dark quantum superposition states of weakly bound Rb2 Feshbach molecules and
tightly bound triplet Rb2 molecules in the rovibrational ground state, created by subjecting a pure
sample of Feshbach molecules in an optical lattice to a bichromatic Raman laser field. We analyze
both experimentally and theoretically the creation and dynamics of these dark states. Coherent
wavepacket oscillations of deeply bound molecules in lattice sites, as previously observed by
Lang et al. (Phys. Rev. Lett., 2008, 101, 133005), are suppressed due to laser-induced phase
locking of molecular levels. This can be understood as the appearance of a novel multilevel dark
state. In addition, the experimental methods developed help to determine important properties of
our coupled atom / laser system.

1 Introduction
Very recently, several groups have produced dense, ultracold ensembles of molecules that are deeply
bound [1,2,3,4,5] and in a ro-vibrational ground state [1,2,4,5]. This was achieved by binary association
of alkali atoms in ultracold ensembles via two different pathways: (1) photoassociation [6,7] and (2)
magneto-association at Feshbach resonances [7,8] combined with stimulated Raman adiabatic passage
(STIRAP) [9], a special coherent optical transfer method. In contrast to photoassociation, magneto-
association only produces weakly-bound Feshbach molecules [7,8]. STIRAP can then be used to
transfer these weakly-bound molecules to the rovibrational ground state. This method is coherent,
efficient, fast, reversible, and highly selective. STIRAP is based on a counter-intuitive light pulse
sequence giving rise to a dynamically changing dark superposition state (Fig. 1a)

|DS⟩ = (Ω2| f ⟩−Ω1|g⟩)/
√

Ω2
1 +Ω2

2. (1)

In this paper, we deliberately replace the efficient but complex STIRAP transfer of Ref. [1] with
a simple square laser pulse scheme. This reveals interesting fundamental processes and dynamics in

1



Faraday Discussions 142:
DOI:10.1039/b818964a

Cold and Ultracold Molecules RSC Publishing
2009

10000

12000

14000

10 15 20 25 30 35
Internuclear distance (Bohr radii)

-300

-200

-100

0E
n

e
rg

y
 (

c
m

)
-1

W
1

3
Sg (5s +5p)

a (5s+5s)
3
Su

d

|f> ( =36)v

|g> ( =0)v

|e>

( =13)v´

W
2

+

+

Figure 1: Λ-type three-level scheme for dark states. The lasers 1 and 2 couple the molecular levels
| f ⟩, |g⟩ to the excited level |e⟩ with Rabi frequencies Ω1,2, respectively.

the coupled atom / laser system, that would otherwise be hidden. In addition, this procedure allows
us to determine important properties and parameters of our system and to check for consistency
with our theoretical model. We study the creation and lifetime of dark superposition states that
contain a sizeable fraction of deeply bound molecules. These molecules are held in a 3D optical
lattice. Because the lattice potential is much shallower for the deeply bound molecules than for
the Feshbach molecules, and because the transfer is fast, the deeply bound molecules coherently
populate several Bloch bands. In contrast to Ref. [1], where similar circumstances lead to coherent
oscillations in the lattice, oscillations are suppressed in the experiment described here due to phase
locking of all quantum levels involved. A novel dark state appears which is a superposition of up to
8 quantum levels. We investigate the limiting conditions under which oscillations set in.

2 Experimental setup and initial preparation of molecules
We carry out our dark state experiments with a 50 µm-size pure ensemble of 3×104 weakly bound
Rb2 Feshbach molecules. The molecules are trapped in the lowest Bloch band of a cubic 3D optical
lattice with no more than a single molecule per lattice site [10] and an effective lattice filling factor
of about 0.3. The lattice depth for the Feshbach molecules is 60 Er, where Er = π2h̄2/2ma2 is the
recoil energy, with m the mass of the molecules and a = 415.22 nm the lattice period. Such deep
lattices suppress tunneling between different sites. A pure ensemble of Feshbach molecules has
been produced as follows. We prepare a cold cloud of 6× 105 87Rb atoms that are either Bose
condensed or nearly1 Bose condensed in a Ioffe-type magnetic trap with trap frequencies ωx,y,z =
2π × (7,19,20) Hz. Within 100 ms we adiabatically load the atoms into the 3D optical lattice.
After turning off the magnetic trap, we flip the spins of our atoms from their initial state |F =
1,mF = −1⟩ to |F = 1,mF = +1⟩ by suddenly reversing the bias magnetic field of a few G. This
spin state features a 210 mG-wide Feshbach resonance at 1007.40 G [11]. By adiabatically ramping
over this resonance, we efficiently convert atoms at multiply occupied lattice sites into Rb2 Feshbach
molecules. After conversion, inelastic collisions occur at lattice sites that contain more particles than

1It turns out that this increases the number of Feshbach molecules.
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a single Feshbach molecule, leading to vibrational relaxation of these molecules, release of binding
energy into kinetic energy and removal of all particles from these sites. A subsequent combined
microwave and optical purification pulse removes all remaining chemically unbound atoms, creating
a pure sample of 3× 104 Feshbach molecules. Afterwards, the magnetic field is set to 1005.8 G,
where the Feshbach molecules are in a quantum state | f ⟩ which correlates with |F = 2,mF = 2, f1 =
2, f2 = 2,v = 36, l = 0⟩ at 0 G. Here, F and f1,2 are the total angular momentum quantum numbers
for the molecule and its atomic constituents, respectively, and mF is the total magnetic quantum
number; v is the vibrational quantum number for the triplet ground state potential (a3Σ+

u ) and l is the
quantum number for rotation.

The bichromatic Raman laser field for the creation of the molecular dark states is based on two
lasers (1 and 2) which connect the Feshbach molecule level | f ⟩, via an excited level |e⟩, to the
absolute lowest level in the triplet potential |g⟩ (Fig. 1a). Laser 1 is a Ti:Sapphire laser and laser 2 is
a grating-stabilized diode laser. Both lasers are Pound-Drever-Hall locked to a single cavity which
itself is locked to an atomic 87Rb-line. From the lock error signals, we estimate frequency stabilities
on a ms-timescale of 40 kHz and 80 kHz for lasers 1 and 2, respectively. Both laser beams have a
waist of 130 µm at the location of the molecular sample, propagate collinearly, and are polarized
parallel to the direction of the magnetic bias field. Thus, the lasers can only induce π transitions.

The ground state |g⟩ has a binding energy of 7.03806(3) THz×h and can be described by the
quantum numbers |F = 2,mF = 2,S = 1, I = 3,v = 0, l = 0⟩ where S and I are the total electronic
and nuclear spins of the molecule, respectively. At 1005.8 G |g⟩ is separated by hundreds of MHz
from any other bound level, so that there is no ambiguity as to which level is addressed. The level
|e⟩ is located in the vibrational v = 13 manifold of the electronically excited 3Σ+

g (5s + 5p) potential
and has 1g character. It has an excitation energy of 294.62610(6) THz×h with respect to | f ⟩, and
a width Γ = 2π× 8 MHz. The Rabi frequencies Ω1,2 of the two lasers depend on their respective
intensities I1,2, i. e., Ω1 = 2π×0.4 MHz

√
I1/(Wcm−2) and Ω2 = 2π×30 MHz

√
I2/(Wcm−2), and

are typically chosen to be in the MHz regime.

3 Dark state evolution within a square pulse
Our square pulse projection experiments are carried out as follows. We expose the Feshbach molecules
| f ⟩ in the lattice to square pulses of Raman lasers 1 and 2 of variable pulse duration. Laser 2 is
switched on about 1 µs before laser 1 to avoid excitation from | f ⟩ to |e⟩ due to jitter in the laser
pulse timing. The Raman lasers are resonant (δ = 0) and the Rabi frequency Ω2 ≈ 2π × 7 MHz
while Ω1 is varied (Fig. 2). After the pulse, we measure the fraction of molecules remaining in
state | f ⟩ by dissociating them into pairs of atoms at the Feshbach resonance, releasing them from
the lattice and applying standard absorption imaging. It is important to note that we actually only
count atoms in the lowest Bloch band of the lattice. The release from the optical lattice is done as
described in [12], where after 13 ms of ballistic expansion we map out the Bloch bands in momentum
space (see Appendix for details).

Figure 2 shows the remaining fraction of molecules in state | f ⟩ versus pulse duration. Within
1 µs we observe a rapid loss of molecules that depends on the ratio Ω2/Ω1. The remaining molecules
are stable on a much longer timescale. This can be understood in terms of formation of a dark state
|DS⟩. We can write

| f ⟩ = (Ω2|DS⟩+Ω1|BS⟩)/
√

Ω2
1 +Ω2

2 (2)

where

|BS⟩ = (Ω1| f ⟩+Ω2|g⟩)/
√

Ω2
1 +Ω2

2 (3)
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Figure 2: Dark state formation and lifetime. Shown is the fraction of Feshbach molecules remaining
after subjecting them to a square pulse of Raman laser light of varying length for various Rabi
frequency ratios Ω2/Ω1 (Ω2 ≈ 2π × 7 MHz). After switching on the lasers, a certain fraction of
molecules is lost within 1 µs and a dark state has formed which has a much longer lifetime. The
solid lines represent model calculations (Sec. 4) which can be used to determine the Rabi frequencies
and short-term laser linewidths.

is a bright state which quickly decays via resonant excitation to level |e⟩. The dark state remains
after the lasers are switched on and can be detected as a fraction Ω4

2/(Ω2
1 + Ω2

2)
2 of molecules

projected back to | f ⟩ after switching off the lasers2.
Also, after the pulse a fraction Ω2

1Ω2
2/(Ω2

1 +Ω2
2)

2 of the initial molecules are in state |g⟩ with a
maximum of 25% for Ω1 = Ω2. Thus, a sizeable fraction of the molecules can be coherently trans-
ferred to the ground state. Remarkably, this transfer takes place in less than 1 µs! Such short transfer
times cause Fourier broadening, resulting in considerably reduced laser stability requirements. In
addition, due to the formation of a dark state, there is still a well-defined phase relation between the
| f ⟩ and |g⟩ molecules.

As can be seen from Fig. 2, the dark state slowly decays. Its lifetime is shortest for Ω1 = Ω2,
where we measure it to be ≈50 µs. The decay of the dark state is likely due to phase fluctuations
of the Raman lasers. Phase fluctuations lead to an admixture of a bright state component to the
otherwise dark state, which causes losses. In Sec. 4 we will show that these fluctuations can be
expressed in terms of the short-term relative linewidth of the lasers, γ , which we find to be about
2π ×20 kHz. In principle, the decay of the dark state could be due to other effects, such as coupling
to levels other than | f ⟩, |e⟩, and |g⟩. However, we have verified that this is not the case, because
losses due to optical excitation are completely negligible on the 100 µs-timescale when we expose a
pure ensemble of | f ⟩ (|g⟩) molecules to only laser 2 (1).

We also searched for laser power dependent shifts of the two-photon resonance. Using the Raman
square pulse measurements, we scanned the relative detuning of the lasers for a fixed pulse duration
and various laser powers. Within the accuracy of our measurements of 2π ×200 kHz, we could not
detect any shifts of the resonance.

The behavior in Fig. 2 is described well by a closed three-level model (a Λ system) and its

2This fact can be used to conveniently calibrate the Rabi frequency ratio Ω1/Ω2. We found good agreement with other
calibration methods for the Rabi frequencies.
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Figure 3: Level scheme for the master equation.

dynamics can be simulated with a master equation which we describe in the following.

4 Three-level model and master equation
Neglecting lattice effects, we can describe the internal dynamics of the molecules as they are sub-
jected to the Raman laser fields with a three-level model. We use a master equation [13,14] which
takes into account decoherence due to phase fluctuations of the Raman lasers. We consider the case
where laser 1 is kept on resonance and laser 2 has a detuning δ (Fig. 3). Identifying the levels | f ⟩,
|g⟩, |e⟩ with numbers 1, 2, 3, respectively, we can write the master equation as,

dρ
dt

= −iδ
[
σ22,ρ

]
− i

2

2

∑
k=1

Ωk

[
σ3k
− +σ3k

+ ,ρ
]

− 1
2

Γ
(
σ33 ·σ33 ·ρ +ρ ·σ33 ·σ33)

+
1
2

γ
(
2σ22 ·ρ ·σ22 −σ22 ·ρ −ρ ·σ22) ,

(4)

where ρ is the density matrix, Ω1,2 are the Rabi frequencies, Γ is the spontaneous decay rate of
the excited level |e⟩, and γ is the relative linewidth of the two Raman lasers. The matrices σ rs

− and
σ rs

+ are ladder operators and each is the transpose of the other. For example

σ32
− =

 0 0 0
0 0 0
0 1 0

=
(
σ32

+
)T

. (5)

Setting the linewidth of the excited level Γ = 8 MHz, the detuning δ = 0 and Rabi frequencies
Ω2 = 2π ×7 MHz and Ω1 to give the ratios in Fig. 2, we fit all the data with a single fit parameter
γ . As a best fit, we obtain a relative linewidth of the two Raman lasers γ = 2π ×20 kHz, which is a
reasonable value for our laser system.

5 Coherent oscillations and their suppression
In reference [1] coherent oscillations of molecular wavepackets of |g⟩ molecules in the optical lattice
were observed. We now investigate how these observations fit together with the experimental results
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Figure 4: We plot the transfer efficiency for the round-trip STIRAP process as a function of the
hold time τh between the two STIRAP pulses. With our procedure we only count molecules whose
constituent atoms end up in the lowest Bloch band after transfer. The oscillations in the transfer
efficiency are due to breathing oscillations of localized spatial wavepackets of molecules in the
lattice sites. The solid line is from a multi-band model calculation (Sec. 6). This plot is taken from
Ref. [1].

of the square pulse projection experiments presented here. For clarity, the oscillation data from
Ref. [1] are presented again in Fig. 4 and briefly discussed.

Using a STIRAP pulse, Feshbach molecules are efficiently transferred to level |g⟩. The Raman
lasers are extinguished and the molecules are held for a time τh, after which they are transferred back
to | f ⟩ with a reverse STIRAP pulse. The number of recovered Feshbach molecules is counted. How-
ever, we only detect atoms that end up in the lowest Bloch band after dissociation of the Feshbach
molecules (see Appendix). The oscillation can be understood as follows. We consider the localized
spatial center-of-mass (c.o.m.) wavepacket of a Feshbach molecule at a particular lattice site in the
lowest Bloch band. The first STIRAP transfer projects this wavepacket onto the much shallower3

lattice potential felt by the |g⟩ molecules (Fig. 5) without changing its shape. As a consequence, |g⟩
molecules are coherently spread over various Bloch bands, and the wavepacket undergoes “breath-
ing” oscillations with the lattice site trap frequency ωt . These coherent oscillations (period ≈80 µs )
are damped by tunneling of |g⟩ molecules in higher Bloch bands to neighboring lattice sites. The re-
verse STIRAP transfer maps this periodic oscillation back to the Feshbach molecule signal in Fig. 4.
Higher Bloch bands are populated here as well, but are at most partially counted in our scheme (see
Appendix), which leads to an apparent decrease in transfer efficiency.

The question arises why similar oscillations are not observed in our square pulse projection
measurements shown in Fig. 2, especially for the case Ω1 = Ω2 where 50% of the population is
in state |g⟩. One might assume that the spatial wavepackets of the |g⟩ molecules undergo similar
breathing oscillations. These oscillations would then periodically break up the dark superposition
state and lead to corresponding losses. They would also periodically produce population in higher
Bloch bands of the Feshbach molecule lattice. As we will see, the oscillations are suppressed because
the Raman lasers phase lock the involved quantum levels which stops, in a sense, the free evolution

3Due to a smaller dynamic polarizability, the lattice depth for the tightly bound |g⟩ molecules is shallower than for the
Feshbach molecules by a factor of ≈10.
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Figure 5: Wavepacket dynamics. Directly after the STIRAP transfer of a molecule from | f ⟩ to |g⟩ the
shape of its wavepacket (thick solid line α) essentially corresponds to the vibrational ground state
of the sinusoidal lattice potential for Feshbach molecules Vf (thin solid line). In the much weaker
potential felt by the ground state molecules Vg (thin dashed line) the wavepacket starts to oscillate.
After 1/8 of the oscillation period τosc = 2π/ωt its shape roughly corresponds to the vibrational
ground state for |g⟩ (thick dash-dotted line β ) and reaches its maximum extension after τosc/4 (thick
dashed line γ).

of the wavepackets. We can understand this behavior in detail with the help of a multi-band model,
which we describe in the following.

6 Multi-band model
In an optical lattice the molecular levels | f ⟩, |g⟩ and |e⟩ from the previous model have a substruc-
ture given by the lattice Bloch bands. Because the lattice depths for the levels | f ⟩, |g⟩ and |e⟩
are in general different, the respective band structures will also vary. This combination of external
(c.o.m. motion in the lattice) and internal degrees of freedom gives rise to a number of new quantum
levels which are coupled by the laser fields (Fig. 6). We assume each Feshbach molecule to be ini-
tially localized in a singly-occupied lattice site. The corresponding localized molecular wavepacket
can be described by Wannier functions [15] which form a complete set of orthonormal functions. In
the following we will denote the Wannier function for level |α⟩ and band n as |Ψαn⟩. We note that
for deep lattices, these Wannier functions closely resemble harmonic oscillator wavefunctions.

The Raman lasers couple different |Ψαn⟩ according to the respective wavefunction overlaps
(Fig. 6). Since the initial wavepackets of the Feshbach molecules are symmetric, only even bands
will be populated. We restrict our calculations to the four lowest Bloch bands with even symmetry,4

corresponding to the band indices n = 0,2,4,6. The dynamics in each of the three lattice directions
is then described by a 12-level model, which can in principle be solved in terms of a master equation
(Sec. 4). However, we have used a Schrödinger equation-based model since the numerical code is
less involved. In this approach, laser phase fluctuations are neglected, and we introduce a lattice site
tunnel rate for each band. These tunnel rates are chosen to match the expected tunnel rates for the

4The effect of including higher bands into the model was found to be negligible.
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Figure 6: Multi-band model. The three molecular levels | f ⟩, |e⟩ and |g⟩ have a Bloch band substruc-
ture due to the optical lattice. We restrict the model to the 4 lowest Bloch bands with even symmetry
(band index n = 0,2,4,6).

different bands and are slightly adjusted for a better fit of the data in Fig. 4. We note that the results
of the model calculations are essentially independent of the excited state lattice depth, which is not
well known.

The Hamiltonian H of our time dependent Schrödinger equation

ih̄
∂
∂ t

|Φ⟩ = H|Φ⟩ (6)

has the form of a 12×12 matrix,

Ĥ = h̄


E f 0 − i

2 J f 0 0 1
2 Ω1(t) ·M f 0,e0 0 . . .

0 Eg0 +δ − i
2 Jg0

1
2 Ω2(t) ·Mg0,e0 0 . . .

1
2 Ω1(t) ·Me0, f 0

1
2 Ω2(t) ·Me0,g0 Ee0 − i

2 Γ− i
2 Je0

1
2 Ω1(t) ·Me0, f 2 . . .

0 0 1
2 Ω1(t) ·M f 2,e0 E f 2 − i

2 J f 2 . . .
...

...
...

...

 . (7)

Here Eαn and Jαn are the energy and tunnel matrix element respectively for the Wannier function
|Ψαn⟩ in band n of level |α⟩. Mαn,βk = ⟨Ψαn|Ψβk⟩ is the overlap integral of the respective Wannier
functions.

Diagonalizing this Hamiltonian, we find twelve “eigenstates” of the coupled system which in
general have complex eigenvalues. In the following, we study the case of strong coupling (Ω1,2 ≫
ωt),5 which is the regime for phase locking. In this regime, four of these eigenstates have negligible
contribution from the excited level |e⟩ and thus a long lifetime. These 4 quasi-dark states essentially
correspond to the 4 lattice bands in our model and will be denoted as |DSn⟩ with n = 0, 2, 4, 6.
We now study the spatial waveforms of these dark states (Fig. 7) and compare the components with
| f ⟩ and |g⟩ character. Neglecting a small |e⟩ component the dark superposition state, |DSn⟩ can be
written as

|DSn⟩ = |g⟩⟨g|DSn⟩+ | f ⟩⟨ f |DSn⟩. (8)

As an example (Ω1 = Ω2) Fig. 7 shows that the wavepackets ⟨g|DSn⟩ and ⟨ f |DSn⟩ have the same
shape. This is not surprising since this ensures that the ratio of the | f ⟩ and |g⟩ amplitudes equals
Ω2/Ω1 everywhere, as in Eq. 1.

5For our experiments where Ω1,2 & 2π ×1 MHz and ωt ∼ 2π ×10 kHz this condition is satisfied.
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Figure 7: Spatial wavepackets of the dark state |DS0⟩ and the Wannier functions |Ψ f 0⟩, |Ψg0⟩. The
dark state |DS0⟩ has two components, one having | f ⟩ character (⟨ f |DSn⟩) and the other one having
|g⟩ character (⟨g|DSn⟩). The wavepackets of ⟨ f |DSn⟩ and ⟨g|DSn⟩ essentially have the same shape.
They are mainly composed of the lattice ground states |Ψ f 0⟩ (thin solid line) and |Ψg0⟩ (thin dotted
line). All depicted states are normalized. The parameters used are Ω1 = Ω2 = 2π × 7 MHz, Vf =
60 Er and Vg = 6 Er, as in our experiments.

Let us now discuss the formation and evolution of the dark state that we have observed in the
square pulse experiments of Sec. 3. A dark state |DS⟩ is formed in less than 1 µs by subjecting
Feshbach molecules to a square Raman laser pulse. As in the STIRAP transfer (discussed in Sec. 5)
the initial projection onto |DS⟩ will not change the shape of the Feshbach molecule wavepacket,
given by the Wannier function |Ψ f 0⟩. The dark state can be expressed as a coherent superposition of
the four dark eigenstates |DSn⟩ of the 12-level Hamiltonian

|DS⟩ = ∑
n=0,2,4,6

cn|DSn⟩. (9)

The subsequent coherent evolution of these dark states will again in principle lead to breathing
oscillations. The amplitude of these oscillations depends on the extent to which higher bands (i. e.,
|DS⟩n, n > 0) are excited. The excitation increases with increasing deviation of |DS⟩ from the initial
state | f ⟩, i. e., with rising Ω1/Ω2.

This can also be understood from another point of view. The effective lattice potential felt by
the molecules in such a superposition state is the weighted average of the potentials for the two
contributing states | f ⟩ and |g⟩. For the case Ω1 = Ω2 this effective potential is about half as deep
as that for the Feshbach molecules. Compared to the case of pure ground state molecules (Fig. 4)
where the lattice potential is reduced by a factor of 10, the oscillations of the wavepacket are strongly
suppressed and cannot be observed with our current experimental precision. For Ω1 ≫ Ω2, the dark
state |DS⟩ has a dominant contribution from state |g⟩, and the effective lattice potential essentially
corresponds to the one for ground state molecules. In this case oscillations appear despite the strong
coupling, a fact which we also have experimentally verified6.

6For these experiments we have ramped into the dark state and back in a fashion similar to STIRAP transfer pulses to
avoid strong losses caused by direct projection into |DS⟩ ≈ |g⟩⟨g|DS⟩.
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Figure 8: Shown is a typical absorption image which displays the atomic quasi-momentum dis-
tribution in the optical lattice after exposure to the Raman laser beams and subsequent adiabatic
molecule dissociation. Atoms inside the square region come from the lowest Bloch band. 2π h̄/a is
the modulus of the reciprocal lattice vector.

Conclusion We have analyzed coherent wavepacket dynamics and their suppression in a 3D opti-
cal lattice. We observed optically induced phase locking of a number of quantum levels, which can
also be viewed as the appearance of a novel multi-level dark state. The experiments were carried
out with tightly bound molecules as a component of a dark quantum superposition state. Thus, the
experiments demonstrate control of molecular motion in an optical lattice for the first time. In addi-
tion, different models have been introduced and discussed in detail, with which the lattice dynamics
can be understood and quantitatively described.
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Appendix: Theoretical band population analysis
As stated before, our signals only include molecules for which the constituent atoms end up in the
lowest Bloch band of the lattice. A controlled lattice rampdown in a few milliseconds maps the
bands and quasi-momentum distribution of the atoms into momentum space [16,12]. We image these
distributions after 13 ms of time-of-flight via absorption imaging. Fig. 8 shows a typical distribution.
The dotted square region corresponds to the lowest Bloch band and is dominantly populated.

An important question is how the Bloch bands for the Feshbach molecules map onto the Bloch
bands for the atoms. In other words, if we measure the atomic population of the Bloch bands – do we
know what the band population for the molecules was? As the lattice is very deep for the Feshbach
molecules and atoms, we can approximate the potential at an individual lattice site as harmonic with
trap frequency ωt . In one dimension, the eigenfunctions of the harmonic oscillator are

|Φn⟩ =
1√

2nn!
√

πx0
exp

(
−1

2

(
x
x0

)2
)

Hn

(
x
x0

)
, (10)

10



Faraday Discussions 142:
DOI:10.1039/b818964a

Cold and Ultracold Molecules RSC Publishing
2009

|x | (a.u.)r

V
(a

.u
.)

r

0

Interaction
potential

Lattice
confinement

-2 -1 0 1 2

x (a.u.)c

V
(a

.u
.)

c
(a) (b)

...

C.o.m. potential Relative potential

Figure 9: Potentials for the center-of-mass and relative coordinate of two atoms trapped at a site
of the optical lattice. (a) The bound states (solid lines) of the harmonic center-of-mass potential Vc
correspond to the molecular Bloch bands. (b) At short interatomic distances the relative potential
Vr is dominated by the interaction potential, which allows the formation of bound molecular states
(solid lines). Unbound atoms are trapped by the lattice potential at larger separation (dashed lines).
With the help of a Feshbach resonance the lowest trap state can be converted into a high molecular
state. Note that in this schematic view both energy and distance for the two contributions to the
relative potential are not to scale.

where x0 =
√

h̄/ωtm is the oscillator length and Hn is the nth Hermite polynomial. We assume
that we have two atoms in a lattice site with coordinates x1,2. The relative and c.o.m. coordinates of
the atom pair are

xr = 1/
√

2(x1 − x2) (11)

xc = 1/
√

2(x1 + x2) (12)

The c.o.m. potential Vc for the pair will be harmonic with trap frequency ωt and the potential Vr for
the relative coordinate will be a sum of the harmonic potential and the interaction potential (Fig. 9).

When we form or dissociate a molecule by adiabatically ramping across a Feshbach resonance,
only the quantum level in the Vr potential will change – from a molecular bound state to an unbound
atomic pair state in the lowest Bloch band. The wavefunction in the c.o.m. coordinate remains un-
changed. We can now calculate how band populations of Feshbach molecules converted to atomic
band populations by using the coordinate transformations. As an example: A Feshbach molecule in
the lowest Bloch band (i. e., center-of-mass coordinate) will produce an atom pair with the following
wavefunction: |Ψ⟩ ∝ exp(−1/2 x2

c)exp(−1/2 x2
r ) = exp(−1/2 x2

1)exp(−1/2 x2
2). This means that

both atoms will also end up in the lowest Bloch band of the lattice. This analysis can be extended
to any band. Table 1 gives the conversion amplitudes from molecular to atomic bands for the four
lowest symmetric molecular bands. Correlations between the two constituent atoms of a molecule
are not discussed here.

We finally note that when we apply absorption imaging, the optical density of the atomic sample
is integrated in the direction of observation. Thus in this direction no band population analysis is
possible. We accounted for this in our multi-band model described in Sec. 6.
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Table 1: Band conversion amplitudes in the harmonic oscillator approximation. Each line gives the
amplitudes for a constituent atom of a molecule in a certain band to populate various atomic bands
after dissociation. Note that the squares of the amplitudes correspond to the binomial coefficients.
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We report here on the production of an ultracold gas of tightly bound Rb2 triplet molecules in the

rovibrational ground state, close to quantum degeneracy. This is achieved by optically transferring weakly

bound Rb2 molecules to the absolute lowest level of the ground triplet potential with a transfer efficiency

of about 90%. The transfer takes place in a 3D optical lattice which traps a sizeable fraction of the tightly

bound molecules with a lifetime exceeding 200 ms.

DOI: 10.1103/PhysRevLett.101.133005 PACS numbers: 37.10.Mn, 37.10.Jk, 37.10.Pq, 42.50.�p

The successful production of quantum degenerate gases
of weakly bound molecules has triggered a quest for quan-
tum gases of tightly boundmolecules. These can be used to
investigate ultracold collisions and chemistry of mole-
cules, to produce molecular Bose-Einstein condensates
(BEC), and to develop molecular quantum optics.
Standard laser cooling techniques as developed for atoms
[1] do not work for molecules due to their complex internal
structure. Other pathways to cold and dense samples of
molecules are required, such as Stark or Zeeman decelera-
tion [2,3] and sympathetic cooling [4] or association of
ultracold atoms [5–7]. Association via Feshbach reso-
nances [6,7] has directly produced quantum degenerate
or near-degenerate ultracold molecular gases [8–12], but
only in very weakly bound states with a high vibrational
quantum number. Furthermore, such molecules are in gen-
eral unstable when colliding with each other, particularly if
they are composed of bosonic atoms.

Recently, optical schemes have been developed with the
goal to selectively produce cold and dense samples of
deeply bound molecules [13–18], ultimately in a rovibra-
tional ground state. We report here the realization of this
goal by optically transferring a dense ensemble of 87Rb2
Feshbach molecules to a single quantum level in the rovi-
brational ground state of the Rb2 triplet potential (a

3�þ
u ).

The transfer is carried out in a single step using stimulated
Raman adiabatic passage (STIRAP) [14–16,19] with an
efficiency of almost 90%, which is only technically lim-
ited. The molecules are held in a 3D optical lattice in which
they exhibit a trap lifetime exceeding 200 ms, after an
initial relaxation within 50 ms.

In contrast to singlet molecules, triplet molecules exhibit
a magnetic moment giving rise to a rich energy level
structure in the presence of magnetic fields. Thus, colli-
sions of triplet molecules should exhibit magnetically tun-
able scattering resonances, e.g., Feshbach resonances.
Molecules in the triplet rovibrational ground state can
potentially relax to the singlet state X 1�þ

g through inelas-

tic collisions. This process has not yet been investigated
and can possibly be suppressed. Such a regime would open

interesting prospects for future experiments with molecu-
lar Bose-Einstein condensates and ultracold chemistry
[20].
The starting point for our transfer experiments is a

50 �m-size pure ensemble of 3� 104 weakly bound Rb2
Feshbach molecules, produced from an atomic 87Rb Bose-
Einstein condensate using a Feshbach resonance at a mag-
netic field of 1007.4 G (1 G ¼ 10�4 T). They are trapped
in the lowest Bloch band of a cubic 3D optical lattice with
no more than a single molecule per lattice site [21] and an
effective lattice filling factor of about 0.3. The lattice depth
for the Feshbach molecules is 60 Er, where Er ¼
�2

@
2=2ma2 is the recoil energy, with m the mass of the

molecules and a ¼ 415:22 nm the lattice period. Such
deep lattices suppress tunneling between different sites.
The magnetic field is set to 1005.8 G where the Feshbach
molecules are in a quantum state jfi which correlates with
jF ¼ 2; mF ¼ 2; f1 ¼ 2; f2 ¼ 2; v ¼ 36; l ¼ 0i at 0 G
[22]. Here, F and f1;2 are the total angular momentum

quantum numbers for the molecule and its atomic constit-
uents, respectively, and mF is the total magnetic quantum
number; v is the vibrational quantum number for the triplet
potential and l is the quantum number for rotation.
For the transfer, we use a stimulated optical Raman

transition. Two lasers (1 and 2) connect the Feshbach
molecule level, jfi, via an excited level, jei, to the absolute
lowest level in the triplet potential, jgi [see Fig. 1(a)]. State
jgi has a binding energy of 7:0383ð2Þ THz� h and can be
described by the quantum numbers jF ¼ 2; mF ¼ 2; S ¼
1; I ¼ 3; v ¼ 0; l ¼ 0i where S and I are the total elec-
tronic and nuclear spins of the molecule, respectively. At
1005.8 G, the ground state is separated by hundreds of
MHz from any other bound level, so there is no ambiguity
in what level is addressed. The level jei is located in the
vibrational v0 ¼ 13 manifold of the electronically excited
3�þ

g (5sþ 5p) potential and has 1g character. It has an

excitation energy of 294:6264ð2Þ THz� h with respect to
jfi, a width � ¼ 2�� 8 MHz, and a Zeeman shift of
3:4 MHz� h=G. From resonant excitation measurements,
we deduce a coupling strength for the transition from jfi to
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jei of �1=
ffiffiffiffi

I1
p ¼ 2�� 0:4 MHz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wcm�2
p

where �1 is
the Rabi frequency and I1 is the intensity of laser 1. In
comparison, the coupling strength for the transition from

jgi to jei is �2=
ffiffiffiffi

I2
p ¼ 2�� 30 MHz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wcm�2
p

. As in
Autler-Townes splitting [11], we deduce �2 from the
measured width of a dark resonance which appears when
both lasers resonantly couple to level jei [see Fig. 1(b)].

The positions of the deeply bound energy levels of the
Rb2 triplet potentials 3�þ

g and a 3�þ
u were not precisely

known before this work. Therefore, we have carried out
extensive single- and two-color spectroscopy on our pure
ensemble of Feshbach molecules. We have mapped out the
vibrational progression of both potentials to the ground
state v ðv0Þ ¼ 0 and find good agreement with theoretical
calculations based on ab initio potentials [23]. In order to
determine the hyperfine and rotational structure of the
a 3�þ

u vibrational ground state, we use a different inter-
mediate level in the 3�þ

g potential instead of jei. It has 0�g
character and quantum number I ¼ 3. Because of the
selection rule �I ¼ 0 and the fact that I is a good quantum
number for the deeply bound a 3�þ

u states, this consider-
ably restricts the number of observed lines. We find ex-
cellent agreement of the measured data with theoretical
calculations based on a close-coupled channel model with

essentially no free parameters [see Fig. 1(c)]. In particular,
we identify the lowest observed state jgi as absolute
ground state of the a 3�þ

u potential. A detailed discussion
of further spectroscopic measurements as well as their
analysis will be presented elsewhere.
STIRAP is a very efficient transfer method based on a

stimulated Raman transition. It uses a counterintuitive
pulse sequence during which molecules are kept in a
dynamically changing dark superposition state j�dsi ¼
ð�2jfi ��1jgiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1 þ�2

2

q

. This dark state is decoupled

from the light in the sense that there is no excitation of the
short lived state jei, which suppresses losses during trans-
fer [see, e.g., the dark resonance in Fig. 1(b)]. A vital
condition for STIRAP is the relative phase stability be-
tween the two Raman lasers. Both of our Raman lasers, a
Ti:Sapphire laser at 1017.53 nm (laser 1) and a grating-
stabilized diode laser at 993.79 nm (laser 2) are Pound-
Drever-Hall locked to a single cavity which itself is locked
to an atomic 87Rb-line. From the lock error signals, we
estimate frequency stabilities on a ms time scale of 40 and
80 kHz for lasers 1 and 2, respectively. Thus, the transfer
has to take place on a �s time scale in order not to lose
phase coherence during STIRAP. Both laser beams have a
waist of 130 �m at the location of the molecular sample,
propagate collinearly, and are polarized parallel to the

-1 0 1 2

0

0.2

0.4

0.6

0.8

1

/2 (MHz)

n
oital

u
p

o
pf

o
n

oitcar
F

2,1
)z

H
M(

2/

0 10

0
2
4
6
8

Time ( s)

h
Pulse1 Pulse2

2 /ah

FIG. 2 (color online). STIRAP. We plot the efficiency for
population transfer from state jfi to state jgi and back with
two STIRAP pulses (circles) as a function of two-photon detun-
ing �. In the dead time between the two STIRAP pulses, no
Feshbach molecules can be detected (diamonds). The continuous
lines are from model calculations as described in the text. The
right inset shows the corresponding pulse sequence indicating
the Rabi frequencies of laser 1 (solid line) and laser 2 (dashed
line). The hold time �h, the time between the actual population
transfers, is equal to 2 �s. The left inset is an absorption image
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FIG. 1 (color online). (a) Molecular levels of Rb2. The lasers 1
and 2 couple the molecule levels jfi, jgi to the excited level jei
with Rabi frequencies �1;2, respectively. Note the different

energy scales for the ground and excited triplet potentials.
(b) Dark resonance. The data show the remaining fraction of
Feshbach molecules jfi after exposing them to both Raman
lasers in a 3 �s square pulse. The two-photon detuning � is
scanned by varying the wavelength of laser 2 while keeping laser
1 on resonance. The Rabi frequencies are �1 ¼ 2�� 0:7 MHz
and �2 ¼ 2�� 10 MHz. The solid line is a fit from a simple
three-level model [14]. (c) Hyperfine and rotational spectrum for
the v ¼ 0 manifold of the a 3�þ

u potential. The shaded bars
correspond to measurements, and their width represents the
typical error margin. The thin solid lines are from theoretical
calculations and are shown with respective quantum numbers F,
l, and its projectionml. The line at � ¼ 0 corresponds to state jgi
and is the absolute lowest level of the a 3�þ

u potential.
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direction of the magnetic bias field. Thus, the lasers can
only induce � transitions.

We perform STIRAP by adiabatically ramping the
Raman laser intensities as shown in the right inset of
Fig. 2. Pulse 1 efficiently transfers the molecules from
jfi to jgi. In order to detect the molecules in state jgi after
the transfer, we bring them back to jfi with a second,
reversed STIRAP pulse sequence. We then dissociate the
molecules into pairs of atoms at the Feshbach resonance.
By releasing these atoms from the optical lattice in the
manner described in [24], we can map out the Bloch bands
in momentum space. After 13 ms of ballistic expansion, the
corresponding atomic distribution is recorded with stan-
dard absorption imaging (see left inset in Fig. 2). For our
signals, we only count atoms in the central square zone,
corresponding to the lowest Bloch band [24].

Figure 2 shows the total transfer efficiency after two
STIRAP transfers which are separated by a hold time �h ¼
2 �s. The transfer efficiency for this round-trip STIRAP
process is plotted as a function of the two-photon detuning
� and reaches about 75% at resonance (� ¼ 0). Assuming
equal efficiencies for both transfers, this corresponds to a
single transfer efficiency of 87% and a total number of
2:6� 104 molecules in state jgi. We have experimentally
verified that no molecules remain in state jfi between the
two STIRAP pulses (diamonds in Fig. 2). Any such mole-
cules would quickly be removed by laser 1 at the end of the
first STIRAP pulse, which is kept on at maximum power
for 1 �s after ramping down laser 2. Thus, all molecules
that are retrieved after the second STIRAP transfer have
been deeply bound in state jgi. The 1 MHz width (FWHM)
of the transfer efficiency is determined by power- and
Fourier-broadening [25] and is in good agreement with a
3-level model (see solid lines in Fig. 2). We use a master
equation which takes into account decoherence due to
phase fluctuations of the Raman lasers [26]. These fluctua-
tions can be expressed in terms of a short-term relative
linewidth of the lasers, �, which from fits, we determine to
be about 2�� 20 kHz. Our calculations indicate that half
of the losses are due to nonadiabaticity and half are due to
the nonideal laser system. In principle, losses could also be
due to other effects, such as coupling to levels outside of
jfi, jei, and jgi. However, we have verified that this is not
the case because losses due to optical excitation are com-
pletely negligible when we expose a pure ensemble of jfi
(jgi) molecules only to laser 2 (1). In addition, we did not
detect any laser power dependent shift of the two-photon
resonance within the accuracy of our measurements of
2�� 200 kHz.

We also investigate the dynamics and lifetime of the
deeply bound molecules in the optical lattice. Because of
their strong binding, molecules in state jgi cannot be
expected to have a polarizability similar to that of
Feshbach molecules, and it is not clear a priori what
strength or even sign the optical lattice potential will

have for them. Indeed, as we show below, the lattice
potential is attractive for the jgi molecules, but a factor
10� 2 shallower compared to the potential for the
Feshbach molecules. Repeating the transfer experiment,
we now vary the hold time �h between the two STIRAP
transfers (see Fig. 3). Interestingly, for short hold times, the
transfer efficiency exhibits a damped oscillation (see inset).
The period and damping time are both about 80 �s. After
250 �s, the efficiency levels off at 40% and then decays
much more slowly. The initial oscillation can be under-
stood as follows. We consider the localized spatial wave
packet of a Feshbach molecule at a particular lattice site in
the lowest Bloch band. The first STIRAP transfer projects
this wave packet onto the much shallower lattice potential
felt by the jgi molecules. As a consequence, jgi molecules
are coherently spread over various Bloch bands, and the
wave packet undergoes ‘‘breathing’’ oscillations with the
lattice site trap frequency !t. These coherent oscillations
are damped by tunneling of jgi molecules in higher Bloch
bands to neighboring lattice sites. The reverse STIRAP
transfer maps this periodic oscillation back to the
Feshbach molecules. Higher Bloch bands are populated
here as well, but are at most partially counted in our
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FIG. 3 (color online). Dynamics and lifetime of jgi molecules
in the optical lattice. We plot the transfer efficiency for the
round-trip STIRAP process as a function of the hold time �h
between the two STIRAP pulses. We only count molecules
whose constituent atoms end up in the lowest Bloch band after
transfer (see left inset of Fig. 2). Except for �h, all other
experimental parameters are the same as in Fig. 2. Molecules
are lost on three different time scales, 100 �s, 50 ms, and
�200 ms. The inset zooms into the first 400 �s. The oscillations
in the transfer efficiency are due to breathing oscillations of
localized spatial wave packets of molecules in the lattice sites.
The solid line is from a multiband model calculation. The data
shown in the inset are plotted with open plot symbols in the main
plot. The line connects neighboring data points.
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scheme, which leads to an apparent loss of our transfer
efficiency. We can describe the data well using a 3D multi-
band model (see solid line, inset Fig. 3). In this model, the
states jfi, jei, and jgi have a substructure due to the Bloch
bands of the optical lattice, and the resulting levels are
coupled by the laser fields. From fits to the data, we extract
the trap frequency !t in a single lattice site, which deter-
mines the lattice depth for the molecules in state jgi. We
note that the earlier analysis of Fig. 2 does not include
optical lattice effects. However, because the hold time �h is
so short (2 �s), molecule signal losses due to oscillation
amount to only 4%. In fact, the multiband model leads to
the same theoretical curve as shown when we use a short-
term relative laser line width � ¼ 2�� 18 kHz, close to
the previous value.

For longer hold times of up to 200 ms, Fig. 3 shows the
time dependent loss of the deeply bound molecules. Within
the first 50 ms, the fraction of recovered molecules drops to
20%. We attribute this loss mainly to the fact that all
molecules in excited bands will simply fall out of the
lattice since they are essentially unbound. For the remain-
ing molecules in the lowest band, we find a lifetime ex-
ceeding our maximum experimental observation time
which is limited due to heating of the magnetic field coils.

To conclude, using a nearly 90% efficient STIRAP trans-
fer, we have created a dense and ultracold ensemble of
deeply bound Rb2 molecules in the absolute lowest quan-
tum state of the a 3�þ

u potential. These deeply bound
molecules were trapped in a 3D optical lattice, and we
observed coherent motional dynamics of their spatial wave
packets in the sites. This indicates that besides the internal
degrees of freedom, the external degrees of freedom are
also precisely defined after transfer. The transfer of mole-
cules into a single Bloch band should be possible, either by
matching the lattice depths of weakly and deeply bound
molecules, or by spectroscopically resolving the Bloch
bands [27]. The latter involves longer STIRAP pulses
and more tightly phase-locked Raman lasers, with the
added benefit of increasing the transfer efficiency further.
Investigating the collisional behavior of the triplet mole-
cules will be the next goal as it is of central importance for
ultracold chemistry [20] and for achieving molecular BEC.
An appealing way to reach BEC is by melting an optical-
lattice-induced Mott insulator of rovibrational ground state
molecules [28]. For this, we have to improve the lattice
occupation of our initial ensemble of Feshbach molecules
[12] and use a selective STIRAP transfer to the lowest
Bloch band.

During the preparation of our Letter, we learned that
rovibrational ground state molecules have been produced
with KRb [29].
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The production of ultracold molecules with their rich internal
structure is currently attracting considerable interest1–4. For
future experiments, it will be important to efficiently transfer
these molecules from their initial internal quantum state
at production to other quantum states of interest. Transfer
tools such as optical Raman schemes5,6, radiofrequency
transitions (see, for example, ref. 7) or magnetic field ramping8,9

exist, but are either technically involved or limited in their
applicability. Here, we demonstrate a simple, highly efficient
hybrid transfer method that overcomes a number of the
previous limitations. The scheme is based on magnetically tuned
mixing of two neighbouring molecular levels, which enables
otherwise forbidden radiofrequency transitions between them.
By repeating this process at various magnetic fields, molecules
can be successively transported through a large manifold of
quantum states. Applying nine transfers, we convert very weakly
bound Feshbach molecules to a much more deeply bound level
with a binding energy corresponding to 3.6 GHz. As an important
spin-off of our experiments, we demonstrate a high-precision
spectroscopy method for investigating level crossings.

Radiofrequency has important applications for ultracold
molecules, such as spectroscopy7,10–14 and molecule production15–17.
Using radiofrequency to transfer ground-state molecules between
states of different vibrational quantum numbers, as demonstrated
here, is not obvious. For simple molecular potentials, transition
matrix elements for magnetic dipole transitions between different
vibrational levels are expected to vanish on the basis of an overlap
argument of the spatial wavefunctions. However, for real molecules
such as Rb2, the situation is more complex, for example, owing to
exchange interaction, hyperfine structure and the Zeeman effect.
The combined effect of these interactions induces mixing of
states with different vibrational quantum numbers, leading to new
eigenstates between which radiofrequency transitions can be driven
(see the Methods section). This mixing effect is maximal at avoided
crossings. (As a consequence, it is important for radiofrequency
spectroscopy at Feshbach resonances12.)

We carry out our experiments with a pure, ultracold ensemble
of 2 × 104 ultracold 87Rb2 Feshbach molecules, each of which
is held in an individual optical microtrap (see the Methods
section). Figure 1 shows the relevant molecular level spectrum
for our experiment as calculated by a coupled-channel model18,19

based on adjusted ab initio Rb2 Born–Oppenheimer potentials20.
It essentially consists of straight lines of s- and d-wave levels
(corresponding to a rotational angular momentum l = 0, 2,
respectively). In general, at magnetic fields where two levels
intersect, coupling between them gives rise to an avoided crossing.

In the following, we will use the level spectrum like a street
map, as the molecules move through the manifold of molecular
bound states by sweeping the magnetic field. When arriving at
a level intersection we can turn off or go straight, traversing
the avoided crossing. In principle, the avoided crossing can
be jumped via a fast magnetic field ramp8,9. This, however, is
limited to very small splittings (typically <200 kHz×h) owing to
practical limitations of the controllable magnetic ramp speed. This
constraint can be easily overcome using a radiofrequency transition
as we demonstrate below.

As an example for cruising through molecular bound-state
levels, we choose the diagonal path in Fig. 1, as marked with
the red circles A to K, each indicating an avoided crossing. This
converts our Feshbach molecules with their weak binding energy
of 24 MHz × h to a deeper bound level at zero magnetic field,
3.6 GHz×h below the f = 1,mf = 1 dissociation limit.

Figure 2a shows an expanded view of the first avoided crossing
A. The upper branch is connected to the Feshbach resonance
at 1,007.4 G and is initially populated with Feshbach molecules
at point i. We use adiabatic passage as a very efficient way for
population transfer to the lower branch. We switch on a magnetic
radiofrequency field which couples the upper and lower branches,
inducing two narrow avoided crossings between the dressed states
(Fig. 2b). An adiabatic magnetic field sweep to point ii and
subsequent switching off the radiofrequency completes the transfer
(see the Methods section).

Figure 2d shows the fraction N/N0 of remaining molecules in
the upper branch after the transfer to the lower branch (diamonds)
as a function of the radiofrequency field amplitude Brf. For
sufficiently high amplitude, no more molecules are detected (see
the Methods section). To verify that molecules are not simply lost
for high amplitude, we also carry out a transfer back (ii → i) to
the upper branch (circles). All molecules can be recouped again for
strong enough radiofrequency fields.

From similar measurements with repeated transfers between
the upper and lower branches, we infer single transfer efficiencies
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Figure 1 Path through manifold of molecular levels. Energy spectrum of relevant
molecular levels of 87Rb2 in the electronic ground state with mFtot = 2. The zero of
energy is taken to be that of two separated atoms at each field strength and marks
the dissociation threshold for a pair of f= 1; mf = 1 ground-state atoms. Molecules
are transported through the bound-level manifold by traversing avoided crossings,
marked A–K. These levels are characterized by their respective quantum numbers at
zero magnetic field, that is, global angular momentum Ftot ,mFtot = 2, the angular
momenta f1 , f2 of the atomic constituents, their combined angular momentum F and
the vibrational quantum number v. Out of the number of existing g-wave levels, we
only show the single relevant one (1 G = 0.1 mT).

of up to 99.5%. Our experimental data are well fitted with
the well-known Landau–Zener model21 (solid lines) where
the transfer probability for a single transition is given by
1 − exp(−πω2

R h̄/2|Ḃ| |µ2 − µ1|). Here ωR is the Rabi frequency,
|Ḃ| is the ramp speed and µ1,µ2 are the magnetic moments of the
two states.

After this successful demonstration at crossing A, we will use
such adiabatic transfers across avoided crossings (ATAC) repeatedly
for traversing the remaining crossings on our path. We typically
find avoided crossings to lie within a few Gauss of their predicted
magnetic field position based on the coupled-channel calculation,
which is within the accuracy of our model. This identification also
helps us to verify that the molecules are in the right quantum level
during transport (see the Methods section).

After traversing A, the next wide s-wave crossing is C. Before
we get to C, however, we hit the avoided crossing B at 874 G with
a ∼7 MHz × h splitting, on the basis of an intersecting d-wave
level (see Fig. 1 inset). To circumvent crossing B, we carry out the
ATAC transfer between the s-waves levels already at 876 G, far
from the s-wave crossing. This raises the question, how far from an
avoided crossing the radiofrequency transitions can still be driven.
Figure 3a is a zoom into the energy spectrum showing the avoided
crossings A and C. Figure 3b shows the corresponding calculated
magnetic dipole matrix elements µu,l between the corresponding
upper and lower level branches using the coupled-channel model
(see also the Methods section). The matrix elements are clearly
peaked at their respective crossing, reaching values of more than
a Bohr magneton. Such high coupling strengths are in agreement
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with our measurements in Fig. 2d, where µu,l can be extracted from
the fits by using ωR = Brfµu,l and measuring Brf. The width of the
peaks scales with the energy splitting of their avoided crossing.
When moving away from the crossing at B0, the matrix elements
vanish inversely proportional to |B−B0| (see the Methods section).

Continuing our path down by lowering the magnetic field, we
hit consecutively five avoided crossings (D,E,F,H,I) with d-wave
states. The corresponding energy splittings are of the order
of 1 MHz × h and are each crossed by the ATAC method,
which demonstrates its universal character. In general, however,
ATAC transfers at narrow avoided crossings are technically more
challenging owing to a small magnetic field range of strong
coupling and thus a greater susceptibility to magnetic field noise
which can lead to unwanted non-adiabatic transitions. Coupling
to a g-wave state is observed as well (crossing G), but it is weak
enough to be overcome by diabatic ramping of the magnetic field.
Finally, after crossing J and K we reach zero magnetic field, with
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the molecules in state |l = 0,Ftot = F = f1 = f2 = mFtot = 2,v =−5〉,
3.6 GHz below the f1 = f2 = 1, mf1 = mf2 = 1 threshold. We
have also produced d-wave molecules at zero magnetic field
(|l = 2,Ftot = 2,F = 0, f1 = f2 = mFtot = 2,v = −5〉) by adiabatically
following the upper branch in crossing K, that is, taking a right
turn. The complete transfer down across all 10 avoided crossings
takes about 90 ms with a global transfer efficiency of about
50%. The losses during transfer can be explained mainly by the
limited molecular lifetime of 280 ms in the lattice, due to inelastic
scattering of lattice photons22, and by not fully optimized transfers
at several crossings.

We also developed a high-precision spectroscopy method for
measuring the minimal energy splitting of an avoided crossing.
For a given avoided crossing, the energy splitting is measured for
various magnetic fields. We use two methods. Method 1 determines
the resonance frequency for transfer of molecules between the two
branches of the avoided crossing. Using a single radiofrequency
pulse of a few milliseconds length, we look for the frequency of
maximal transfer. The corresponding data for crossing A are shown
in Fig. 4 and are very well fitted by a hyperbolic curve, yielding a
splitting of (13.331±0.005) MHz×h.

To increase the precision we use method 2, where we carry out
a Ramsey-type interferometric measurement (Fig. 5a). A π/2-pulse
of radiofrequency transfers 50% of the Feshbach molecules to the
lower branch, creating a 50/50 coherent superposition. After a
hold time th and a second π/2-pulse, the number of Feshbach
molecules is detected. We observe an oscillation of this population
N (Fig. 5b) that corresponds precisely to the detuning of the
radiofrequency field from resonance. Coherence times reach 1 ms.
Figure 5c shows a set of data taken in the region indicated by the
dotted box in the centre of Fig. 4. The clear deviation from the
hyperbolic curve results from a ∼2 G mm−1 magnetic field gradient
across the molecular cloud (∼20 µm diameter) in combination
with ∼20 mG fluctuations of the magnetic field during the time of a
scan. This behaviour is reproduced by our model calculation (solid
line) taking these experimental imperfections into account. From
the model, we obtain a best estimate of the minimum splitting
of (13.33210 ± 0.00015) MHz × h for the ideal hyperbolic curve.
The upshift of about 150 Hz of the minimum of the model curve
with respect to the hyperbolic curve is due to averaging over the
magnetic field inhomogeneities.

We have also carried out detailed measurements of the energy
splitting at the avoided crossings marked C, E and J in Fig. 1.
These data are shown in Supplementary Information, Table S1.
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Figure 5 Spectroscopy with Ramsey interferometry. a, Ramsey scheme
consisting of two π/2-pulses of radiofrequency and a holding time th. b, Fraction of
remaining Feshbach molecules after a Ramsey measurement as holding time is
varied (here, B= 1,001.39 G). The oscillation frequency corresponds to the detuning
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curve (dashed line) results from magnetic field fluctuations and inhomogeneities and
is reproduced by our model calculation (solid line). The error bars indicate a 95%
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The measurements are complementary to conventional bound-
state spectroscopy because instead of measuring the plain energy
spectrum of the bound states, our method determines the strength
of the coupling between levels. The precision of our data is several
orders of magnitude better than the accuracy of our current
coupled-channel model. Thus, the data can serve to improve and
test the theoretical models used to calculate molecular energy levels.

To conclude, we have demonstrated an efficient method (ATAC)
to transfer molecules between neighbouring quantum states. It
works for any kind of molecule, whether tightly or loosely bound,
as long as the two levels for transfer exhibit a magnetically
tunable avoided crossing in an accessible magnetic field range. For
weakly bound Rb2 molecules, our experiments highlight ATAC
transfers between different vibrational levels. For tightly bound
triplet Rb2 levels, ATAC will be particularly useful for transfer
between states of different rotational angular momentum l (see also
Supplementary Information). This opens interesting perspectives
for experiments in cold collisions23–25, chemistry in the ultracold
regime, high-resolution spectroscopy, matter-wave interferometry
and molecular Bose–Einstein condensates. In particular, we plan
to use the ATAC method to prepare Feshbach molecules in a
convenient start position for an optical Raman transition to a
deeply bound molecular state or even the vibrational ground
state6,26, optimizing in this way Franck–Condon factors and stability
issues. Furthermore, the ATAC scheme can be extended in a
straightforward manner to avoided crossings that are tuned by
electrical fields.
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METHODS

PREPARATION OF FESHBACH MOLECULES IN MICROTRAPS
We load a Bose–Einstein condensate of 87Rb atoms into the lowest Bloch band
of a deep cubic three-dimensional optical lattice with lattice period 415 nm.
After the atoms are prepared in state f = 1, mf = 1, ramping over a Feshbach
resonance at 1,007.4 G (ref. 27) (1 G = 0.1 mT) produces Feshbach molecules.
A final purification step removes all chemically unbound atoms22. There is no
more than a single molecule per lattice site and the lattice potential is deep
enough (≈10 µK×kB) to effectively isolate the molecules from each other,
shielding them from detrimental collisions22. Thus, the sites can be viewed as
microtraps holding single molecules in the trap ground state.

ADIABATIC TRANSFER ACROSS AN AVOIDED CROSSING
Exemplarily for all ATAC transfers, we discuss here in detail the transfer at
avoided crossing A (Fig. 2a). At the beginning of the transfer sequence, the
radiofrequency field is off (Fig. 2c). The Feshbach molecules are brought to
point i by ramping the magnetic field to B = 1,001.4 G. We then switch on
a longitudinal radiofrequency magnetic field (that is, it points in the same
direction as the magnetic bias field) which couples the upper and lower
branches of the avoided crossing via a magnetic dipole transition. We use a
frequency of 13.6 MHz, which is blue-detuned with respect to the minimal
splitting of the avoided crossing of about 13.3 MHz. In the dressed-state picture,
the radiofrequency field with field amplitude of Brf ∼ 50 mG produces two
radiofrequency-induced avoided crossings, one above and one below point i
(Fig. 2b). Each avoided crossing shows an energy splitting corresponding to
the Rabi frequency ωR ∼ 2π×70 kHz. Further lowering the magnetic field
adiabatically, we reach point ii at 1,001.1 G after 1 ms. Subsequent switching
off the radiofrequency field completes the transfer of the molecules to the
lower branch.

DETECTION OF MOLECULES AND THEIR QUANTUM STATE
To detect the molecules at any stage during their transport through the
manifold of molecular levels, we trace back exactly the path we have come
before, adiabatically traversing all avoided crossings in the opposite direction.
We end up with Feshbach molecules that are dissociated into unbound atoms
by sweeping over the Feshbach resonance at 1,007.4 G. These atoms are then
counted via standard absorption imaging, after switching off the optical lattice
and the bias magnetic field.

We use two methods to verify that molecules are in the right quantum
level during transport. (1) Checking for consistency between predicted and
experimentally found avoided crossings, in terms of magnetic field location
and energy splitting. (2) Optical spectroscopy to measure the binding energy
of molecules. By irradiating the molecules with resonant laser light, we
transfer them to an electronically excited molecular level, |0−

g , v = 31, J = 0〉
(ref. 6), leading to losses. The shift of this laser frequency compared with the
frequency of the photoassociation transition to the same excited molecular level
corresponds to the binding energy of the molecules.

SIMPLE MODEL FOR RADIOFREQUENCY TRANSITIONS AT AN AVOIDED CROSSING
A simple two-level model gives insight into the mechanism of the
radiofrequency transitions at the avoided crossing. Two molecular bare
levels |b1〉, |b2〉 with magnetic moments µ1 and µ2 cross at a magnetic field
B = B0. The hamiltonian for these levels reads

Ĥ = (B−B0 +Brf cos(ωrft))

(
µ1 0
0 µ2

)
+

h̄

2

(
0 Ω
Ω 0

)
.

A coupling Ω between the two levels, for example, due to exchange interaction
or dipole–dipole interaction, leads to mixing and the new eigenstates |u〉

and |l〉. These states form the upper and lower branches of an avoided
crossing, similar to Fig. 2a. A longitudinal magnetic radiofrequency field with
amplitude Brf and frequency ωrf can drive transitions between levels |u〉 and |l〉
which read

|u〉 = cos(θ)|b1〉+ sin(θ)|b2〉

|l〉 =−sin(θ)|b1〉+cos(θ)|b2〉,

with mixing angle θ = arctan((δ+
√

δ2 +Ω 2)/Ω ), where
δ = ((µ2 −µ1)(B−B0))/h̄. The matrix element for the radiofrequency

transition is then

µu,l ≡ 〈u|

(
µ1 0
0 µ2

)
|l〉 = (µ2 −µ1)sin(2θ)

= 2(µ2 −µ1)
Ω (δ+

√
δ2 +Ω 2)

Ω 2 + (δ+
√

δ2 +Ω 2)2
.

Thus, µu,l is resonantly peaked at the avoided crossing with a width (full-width
at half-maximum) of 2

√
3Ω and vanishes as 1/(B − B0) far away from

the crossing.
We find good agreement when comparing the matrix elements of

our simple model to the ones of the coupled-channel model, given by
µu,l = 〈u|µBgsSz +µNgIIz|l〉. Here |u〉,|l〉 are the wavefunctions as calculated
with the coupled-channel model. µB,µN are the Bohr magneton and nuclear
magneton, gs and gI are the g-factors of the electrons and nuclei, respectively,
and Sz, Iz are the corresponding spin operator components in the direction of
the magnetic field.
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Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State
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Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred
ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measure-
ments indicate a high transfer efficiency of up to 87%. Because the molecules are held in an optical lattice
with not more than a single molecule per lattice site, inelastic collisions between the molecules are
suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created
quantum superpositions of the two molecular states and tested their coherence interferometrically. These
results represent an important step towards Bose-Einstein condensation of molecules in the vibrational
ground state.

DOI: 10.1103/PhysRevLett.98.043201 PACS numbers: 34.50.Rk, 03.75.Nt, 32.80.Pj, 42.50.Gy

Recently, there has been a rapidly growing interest in
ultracold molecules since they lend themselves to a large
number of interesting studies in, for instance, few body
collision physics [1–3], chemistry in the ultracold regime,
high resolution spectroscopy, as well as quantum compu-
tation [4]. Furthermore, molecules in their vibrational
ground state are of special interest, because they allow
for the formation of an intrinsically stable molecular
Bose-Einstein condensate (BEC). Current pathways to-
wards the production of ultracold molecules in well-
defined quantum states are either based on sympathetic
cooling [5] or association of ultracold neutral atoms using
photoassociation [6] or Feshbach resonances [7]. The
method of Feshbach ramping has proved especially suc-
cessful and efficient, but it only produces molecules in the
last bound vibrational level. In order to selectively convert
molecules into more deeply bound states, it has been
proposed [8] to use a sequence of stimulated optical
Raman transitions to step molecules down the vibrational
ladder. This process takes place while the molecules are
held in an optical lattice isolating them from each other and
thus shielding them from detrimental collisions. Recently,
optical transfer of molecules into their vibrational ground
state was demonstrated experimentally using a ‘‘pump-
dump’’ method without a lattice at a moderate efficiency
and selectivity [9].

Here we report the realization of an efficient and highly
selective transfer scheme, where an ensemble of 87Rb2
Feshbach molecules in an optical lattice is coherently
converted to a deeper bound molecular state via stimulated
Raman adiabatic passage (STIRAP). STIRAP is known as
a fast, efficient, and robust process for population transfer
based on a Raman transition [10]. During transfer it keeps
the molecules in a dark superposition state, which decou-
ples from the light and thus suppresses losses due to
spontaneous light scattering. In our proof-of-principle ex-

periment we transfer the Feshbach molecules with a
STIRAP pulse from their last bound vibrational level
(binding energy 24 MHz� h), which we denote jai, to
the second-to-last bound vibrational level, jgi [see Fig. 1(a)
and 1(b)]. Both levels have a rotational quantum number
l � 0 and a total spin F � 2, mF � 2. The level jgi is
known from previous experiments [11–14]. It has a binding
energy of 637 MHz� h at 973 G and can be conveniently
reached via Raman beams generated with an acousto-optic
modulator (AOM). In order to detect the more deeply
bound molecules, a second STIRAP pulse converts the
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FIG. 1 (color online). (a) Level scheme for STIRAP. Lasers 1,
2 couple the ground state molecular levels jai, jgi to the excited
level jbi with Rabi frequencies �1, �2, respectively. � and �
denote detunings. �a, �b, �g give effective decay rates of the
levels. (b) Zeeman diagram of relevant energy levels. At
1007.4 G a molecular state crosses the threshold of the unbound
two atom continuum (dashed line) giving rise to a Feshbach
resonance. From there this molecular state adiabatically con-
nects to the last bound vibrational level jai, the state of the
Feshbach molecules.
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molecules back to the last bound vibrational level, where
they are detected as atoms after dissociation via Feshbach
ramping. The complete cycle has an efficiency of 75%,
indicating a single STIRAP efficiency of 87%.

We use essentially the same setup as in Ref. [15].
Starting point for the experiments is a pure ensemble of
2� 104 ultracold 87Rb2 Feshbach molecules which are
held in the lowest Bloch band of a cubic 3D optical lattice.
There is no more than a single molecule per site and the
whole molecular ensemble occupies a volume of about
20� 20� 20 �m3. The lattice is 50 Er deep for mole-
cules (Er � 2�2

@
2=m�2, where m is the mass of the atoms

and � � 830:44 nm the wavelength of the lattice laser),
suppressing tunneling between sites. The molecular en-
semble is initially produced from an atomic 87Rb BEC
after loading it into the lattice, subsequent Feshbach ramp-
ing at 1007.40 G [16] and a final purification step [15]
which removes all chemically unbound atoms. Lowering
the magnetic field to 973 G transfers the atoms to the
adiabatically connected state jai, which has nearly the
same magnetic moment as jgi (see Fig. 1). This results in
an almost magnetic field insensitive Raman transition [17].

In order to efficiently carry out STIRAP, a suitable
excited molecular level, jbi, has to be identified (see
Fig. 1). We chose the electronically excited molecular state
j0�g ; � � 31; J � 0i located 6:87 cm�1 below the S1=2 �

P3=2 dissociation asymptote [18]. The corresponding line is
strong and solitary; i.e., within a 2 GHz vicinity no other
strong molecular lines are found which could interfere with
STIRAP. Coupling to other excited molecular states leads
to loss of the molecules, since these levels typically decay
spontaneously into a variety of undetected vibrational lev-
els in the ground state. Furthermore, it is advantageous that
the chosen level jbi has a similar Franck-Condon overlap
with states jai and jgi. It can be shown that this also helps
to minimize losses through off-resonant coupling channels.

With this choice of states jai, jbi, jgi, we observe a clear
molecular dark resonance when coupling the states with
resonant Raman laser light (see Fig. 2). The corresponding
molecular dark superposition state shows a long lifetime.
This is a necessary precondition for our STIRAP experi-
ments, because the molecules have to be kept in a dark
state during the whole STIRAP process which in our case
typically takes hundreds of�s. The Raman laser beams are
both derived from a single Ti:sapphire laser with a short
term linewidth of less than 1 MHz. The Ti:sapphire laser is
offset locked relative to the D2 line of atomic rubidium
with the help of a scanning optical cavity, which yields an
absolute frequency stability of better than 5 MHz. The
frequency difference between the two beams is created
with an acousto-optical modulator (AOM) with a fre-
quency of about 307 MHz in a double-pass configuration.
This allows precise control of the relative frequency dif-
ference between the beams over several tens of MHz and
ensures phase locking. Both beams propagate collinearly
and have a waist of about 290 �m at the location of the

molecular ensemble. The polarization of the beams is
parallel to the direction of the magnetic bias field of 973 G.

In order to transfer the molecules from state jai to state
jgi, we carry out a STIRAP pulse which consists of a so-
called counterintuitive succession of two laser pulses [see
Fig. 3(a)]. We first switch on laser 2 and then ramp its
intensity to zero within the pulse time �p � 200 �s.
Simultaneously we ramp up the intensity of laser 1 from
zero to its final value. We fix the ratio of the maximal pulse
intensities of laser 1 and 2 to Imax

2 =Imax
1 � 1=3:2 in order to

partially compensate for the unequal Franck-Condon fac-
tor of the jai � jbi and jgi � jbi transitions. Ideally, after
the first STIRAP pulse all molecules from state jai should
end up in state jgi. In order to determine the population in
state jgi, we apply, after a holding time of �h � 5 ms, a
second STIRAP pulse which is the mirror image in time of
pulse 1. This transfers the molecules back into state jai. We
then ramp the magnetic field over the Feshbach resonance
at 1007.4 G which dissociates the molecules with unit
efficiency [15] into pairs of atoms. These are subsequently
detected with standard absorption imaging. Figure 3(b)
shows in a time resolved way how molecules in state jai
first disappear and then reappear during the course of the
STIRAP sequence. After applying the first STIRAP pulse,
no molecules can be observed in state jai. This is to be
expected, since any molecule which is left over in state jai
at the end of the first STIRAP pulse is in a bright state and
will be quickly removed by resonantly scattering photons
from laser 1. This confirms, that after completion of the

 

−0.2 −0.1 0 0.1 0.2 0.3

0.2

0.4

0.6

0.8

1

two photon detuning δ/2π (MHz)

no
rm

al
iz

ed
 m

ol
ec

ul
e 

nu
m

be
r

−50 0 50
0

0.5

1

FIG. 2 (color online). Dark resonance. The data show the
remaining fraction of Feshbach molecules in state jai, after
subjecting them to a 200 �s square pulse of Raman laser light
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line shape of the dark states. The solid and dashed lines are
model calculations (see text).
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second STIRAP pulse we only detect molecules that were
previously in state jgi. We observe an efficiency of 75% for
the full cycle of conversion into state jgi and back.
Figure 3(c) shows how this efficiency depends critically
on the two-photon detuning �.

In Fig. 4 we investigate further the complete STIRAP
cycle efficiency as a function of the laser intensity and
pulse length. In these measurements we use pulses with the
same shape as in Fig. 3(a), which are rescaled to adjust
pulse time �p and laser intensity. Again, for the best
settings we reach an efficiency of about 75% for the two
pulses, which corresponds to a transfer efficiency to state
jgi of about 87%. The dependence of the efficiency on
intensity and pulse length can be qualitatively understood
as follows. For short pulse lengths or low intensities, the
dark state cannot adiabatically follow the STIRAP pulse,
resulting in a low transfer efficiency. For very long pulse
lengths and high intensities the losses due to an imperfect
dark state become dominant, also resulting in a low transfer
efficiency. Thus in order to find an optimum value for the
transfer efficiency there is a trade off between adiabaticity
and inelastic photon scattering.

We are also able to quantitatively understand our data by
using a three level model. It describes the evolution of the
quantum mechanical probability amplitudes a, b, and g for
a molecule in the respective states jai, jbi, and jgi in terms
of the following set of differential equations:

 i _a � ��i�a=2�a� 1
2�1b;

i _b � ���� �� � i�b=2	b� 1
2��1a��2g�;

i _g � ��� i�g=2�g� 1
2�2b:

(1)

Here, the Rabi frequencies �1, �2, the detunings � and
�, and the decay rates �a, �b, �g are defined as shown in
Fig. 1. After experimentally determining �1, �2 and
�a, �g and using �b � 2�� 12 MHz, we are able to
consistently describe all data in Figs. 2–4 with a single
set of parameters. From one-photon and two-photon
scans (as, e.g., in Fig. 2) we obtain �1 � 2��
2:9 MHz�I1=�W cm�2�	1=2 and �2 � 2��
6:0 MHz�I2=�W cm�2�	1=2. The effective decay rates �a,
�g are intensity dependent and are mainly due to the off-
resonant coupling of jai with laser 2 and jgi with laser 1.
We determine �a (�g) by shining laser 2 (laser 1) on the
molecules in state jai (jgi) and measuring the off-resonant
losses. We find that �a=I2 � 2�� 0:72 kHz=�W cm�2�
and �g=I1 � 2�� 0:40 kHz=�W cm�2�. From these inde-
pendent measurements, all parameters of Eqs. (1) are
determined without further adjustable parameters. In the
calculations shown in Fig. 3(b), 3(c), and 4 the time
dependent pulse shapes [see Fig. 3(a)] are included. The
agreement between theory and experiment is very good.
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FIG. 4 (color online). Efficiency for population transfer from
state jai to state jgi and back with two STIRAP pulses.
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would reach unity for a fully adiabatic transfer (dashed lines).
Using for �a, �a the experimentally determined values, the
calculations (solid lines) are in good agreement with the data.
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FIG. 3 (color online). STIRAP. (a) Counterintuitive pulse
scheme. Shown are laser intensities as a function of time (laser
1: dashed line, laser 2: solid line). The first STIRAP pulse with
length �p � 200 �s transfers the molecule from state jai to state
jgi. After a holding time �h � 5 ms, the second pulse (identical,
but reversed) transfers the molecules back to jai. Imax

1;2 indicates
the maximal intensity of laser 1 (2) in the pulse, respectively.
(b) Corresponding population in state jai (data points, solid line)
and state jgi (dashed line). The data points are measurements
where at a given point in time the STIRAP lasers are abruptly
switched off and the molecule population in state jai is deter-
mined. For these measurements � � 0 � �. The lines are model
calculations (see text). (c) Efficiency for population transfer
from state jai to state jgi and back via STIRAP as a function
of the two-photon detuning �. The line is a model calculation,
showing a Gaussian line shape with a FWHM width of
� 22 kHz.
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During STIRAP the molecules are in a quantum super-
position, �2jai ��1jgi. In order to probe the coherence
of this superposition, we perform a Ramsey-type experi-
ment. First we create a dark superposition state with equal
population in the two states, jai � jgi, by going halfway
into the first STIRAP pulse of Fig. 3(a). We then simulta-
neously switch off both STIRAP lasers for a variable
holding time �h, after which we retrace in time the same
STIRAP half pulse. As a result we observe oscillations in
the number of molecules in level jai as a function of the
holding time �h (see Fig. 5). During the holding time, the
superposition state freely evolves, coherently flopping be-
tween the dark and a bright state with a frequency equal to
the two-photon detuning �. At the end of the holding time,
when we switch on again the STIRAP lasers, the dark state
is transferred back to state jai whereas the bright state will
be immediately destroyed by the light and leads to com-
plete loss of the corresponding molecules. The observed
oscillations are exponentially damped on a time scale of
about 2 ms. This damping can be explained by a magnetic
field inhomogeneity of about 20 mG over the molecular
cloud, which leads to a spatial variation of 2�� 250 Hz in
the two-photon detuning �. Additionally we observe a
slight shift of the oscillation frequency with time on the
order of 2�� 50 Hz=ms. This can be attributed to a small
drift of the magnetic field.

Furthermore, we have performed lifetime measurements
of the molecules in state jgi by varying the holding time �h
between the two STIRAP pulses [see Fig. 3(a)]. At a lattice
depth of 60 Er for molecules, we observe a long lifetime of
0.8 s (assuming exponential decay), which is longer than

the lifetime of 0.4 s for Feshbach molecules in state jai. At
these deep lattices molecular decay is exclusively due to
inelastic scattering of lattice photons.

To conclude, using STIRAP we have demonstrated a
coherent transfer of a molecular quantum gas from a
weakly bound molecular level to a more deeply bound
molecular level with a high transfer efficiency of 87%.
The method can be extended in a straightforward manner
to create arbitrarily deeply bound molecules. With a single
STIRAP pulse all vibrational levels down to level
X1��g �v � 116�=a3��u �v � 32� should be easily reached
since the Franck-Condon factors to state jbi are of similar
order as for level jgi [19]. This includes the level
X1��g �v � 119�=a3��u �v � 35� with its binding energy
of 30 GHz� h, from which the vibrational ground state
X1��g �v � 0� of the singlet potential can be reached with
two additional Raman (or STIRAP) transitions [8]. Thus
STIRAP is a promising tool for the creation of a molecular
BEC in the molecular ground state.
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[16] T. Volz, S. Dürr, S. Ernst, A. Marte, and G. Rempe, Phys.

Rev. A 68, 010702(R) (2003).
[17] At 973 G the dependence of the two-photon resonance on

the magnetic field is about 12 kHz=G.
[18] A. Fioretti et al., Eur. Phys. J. D 15, 189 (2001).
[19] C. Koch (private communication).

 

0.5

no
rm

al
iz

ed
 m

ol
ec

ul
e 

nu
m

be
r

(b)

δ/2π ≈ 1.4 kHz

0 1 2 3 4
0

0.5

hold time τ
h
 (ms)

(c)

δ/2π ≈ 4.0 kHz

0.5

1
(a)

δ/2π ≈ 0 kHz0
1

0
1

FIG. 5 (color online). Coherence of the (jai � jgi) superposi-
tion state. Shown is the molecule number in state jai as a
function of holding time �h for different detunings � as indi-
cated. The oscillations indicate coherent flopping of the molecu-
lar superposition state between the dark and a bright state. The
lines are given by 0:5 exp���h=�� cos���h� � 0:5, with a damp-
ing time � � 2 ms.

PRL 98, 043201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 JANUARY 2007

043201-4



ar
X

iv
:c

on
d-

m
at

/0
60

87
21

v2
  [

co
nd

-m
at

.o
th

er
]  

1 
S

ep
 2

00
6

Repulsively bound atom pairs: Overview,
Simulations and Links
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Abstract. We review the basic physics of repulsively bound atom pairs in an optical lattice,
which were recently observed in the laboratory [1], including the theory and the experimental
implementation. We also briefly discuss related many-body numerical simulations, in which time-
dependent Density Matrix Renormalisation Group (DMRG) methods are used to model the many-
body physics of a collection of interacting pairs, and give acomparison of the single-particle
quasimomentum distribution measured in the experiment andresults from these simulations. We
then give a short discussion of how these repulsively bound pairs relate to bound states in some
other physical systems.

Keywords: optical lattices, repulsively bound pairs, Bose-Hubbard model, time-dependent Density
Matrix Renormalization Group
PACS: 03.75.Lm, 42.50.-p

Introduction

Stable bound states, in which the composite object has a lower energy than the
separated constituents, give rise to much diversity and complexity in many physical
systems. Well-known examples ranging from chemically bound atomic molecules to
excitons in solid state physics rely on attractive interactions to give rise to bound objects.
The converse, particles bound by a repulsive interaction, is impossible in free space
because interaction energy can be freely converted to kinetic energy of the constituent
atoms. However, by placing particles on a lattice, kinetic energy is restricted to fall
within the Bloch bands, and repulsively interacting atoms cannot always move apart and
convert their interaction energy to kinetic energy. Recently we have reported on the first
clear observation of such states, in the form of repulsivelybound pairs of atoms in an
optical lattice [1].

The stability of these pairs relies on the weak coupling of atoms in optical lattices to
dissipative processes, which would otherwise lead to rapidrelaxation of the system to its
ground state (as is typically seen, e.g., in the context of solid state lattices). In this article
we give an overview of repulsively bound atom pairs, beginning with a discussion of a
single pair, and proceeding with a discussion of the experimental implementation, and
many-body numerical simulations used to analyse a system ofmany interacting pairs.
We then comment on analogies between these composite objects and bound states found
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n=0
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FIGURE 1. A state with two atoms located on the same site of an optical lattice has an energy offset
≈ U with respect to states where the atoms are separated. Breaking up of the pair is suppressed due to
the lattice band structure and energy conservation, so thatthe pair remains bound as a composite object,
which can tunnel through the lattice. In the figure,n = 0 denotes the lowest Bloch band andn = 1 the first
excited band.

in other physical systems.

Repulsively bound atom pairs in an optical lattice

The existence of repulsively bound atom pairs is predicted by the Bose-Hubbard
model [2], which describes well the dynamics of ultracold atoms loaded into the lowest
band of a sufficiently deep optical lattice [3]. The corresponding Hamiltonian is

Ĥ = −J ∑
〈i, j〉

b̂†
i b̂ j +

U
2 ∑

i
n̂i (n̂i −1) , (1)

whereb̂i (b̂†
i ) are destruction (creation) operators for the bosonic atoms at sitei of the

lattice, and ˆni = b̂†
i b̂i is the corresponding number operator.J/h̄ denotes the nearest

neighbor tunnelling rate, andU the on-site collisional energy shift. The relative value of
U andJ can be adjusted by varying the depth of the latticeV0.

In the limit of U/J → ∞, the repulsively bound pair can be seen as an object where
two atoms are located on the same lattice site. Due to the interaction between atoms, this
state has an energy offset ofU compared with states where atoms are present on different
lattice sites. The stability of the pair can then be understood by energy conservation
arguments: Two separated atoms moving in the lowest Bloch band of a lattice can have
a maximum combined kinetic energy of 8J (in 1D). Thus, the atoms cannot separate and
convert their interaction energy to kinetic energy (see Figure 1).



More generally, repulsively bound pairs arise from the eigenstates of the Bose-
Hubbard model with two atoms present on the lattice. Denoting the primitive lattice
vectors in each of thed dimensions byei , we can write the position of the two atoms
by x = ∑d

i=1xiei andy = ∑d
i=1yiei , wherexi ,yi are integers, and we can write the two

atom wave function in the formΨ(x,y). The related Schrödinger equation from the
Bose-Hubbard model then takes the form

[

−J
(

∆̃0
x + ∆̃0

y
)

+Uδx,y
]

Ψ(x,y) = E Ψ(x,y), (2)

where the operator

∆̃K
x Ψ(x)=

d

∑
i=1

cos(Kei/2) [Ψ(x+ei)+Ψ(x−ei)−2Ψ(x)] (3)

denotes the discrete lattice Laplacian on a cubic lattice. Writing the wavefunction in
relative and centre of mass coordinatesΨ(x,y) = exp(iKR)ψK(r), the Schrödinger
equation can be reduced to a single particle problem in the relative coordinate

[

−2J∆̃K
r +EK +Uδr,0

]

ψK(r) = EψK(r) (4)

whereEK = 4J∑i=1 [1−cos(Kei/2)] is the kinetic energy of the center of mass motion.
The short range interaction potential makes it possible to resum the perturbation

expansion for the associated Lippman-Schwinger equation,and we obtain the scattering
states

ψE(r) = exp(ikr)−8πJ fE(K)GK(E,r) (5)

with scattering amplitude

fE(K) = −
1

4π
U/(2J)

1−GK(E,0)U
(6)

with total energyE = εk,K +EK, andεk,K = 4J∑i=1cos(Kei/2) [1−cos(kei)]. Further-
more,GK(E,r) denotes the Greens function of the non-interacting problem, which in
Fourier space takes the form̃GK(E,k) = 1/(E− εk,K −EK + iη). The scattering states
ψE(r) correspond to two free atoms moving on the lattice and undergoing scattering
processes.

In addition, the pole in the scattering amplitude indicatesthe presence of an additional
bound state for each value ofK, which corresponds to the repulsively bound pair. The
energyEbs of the bound states is determined by 1= UGK(Ebs,0) while the bound
state wave function takes the formψbs

K (r) = c GK(Ebs,r) with c a normalization factor.
Note that in one dimension such bound states exists for arbitrary repulsive interaction,
but for a three-dimensional lattice such bound states, and therefore repulsively bound
pairs, appear only for a repulsive interaction above a critical valueU > Ucrit ≈ 8J (for
K = 0). These states have a square-integrable relative wavefunctionψK(r), as shown for
two different values ofU/J in Figure 2. For a deep lattice, i.e.U/J ≫ 1, bound pairs
essentially consist of two atoms occupying the same site, whereas for smallU/J, the pair
is delocalized over several lattice sites. A main feature ofthe repulsive pair wavefunction



FIGURE 2. Relative wavefunctionsψK(r) for repulsively bound pairs (as = 100a0) in 1D with K = 0,
for (a) U/J = 30 (V0 = 10Er) and (b)U/J = 3 (V0 = 3Er), whereEr is the recoil energy. (Er =
2π2h̄2/mλ 2, wherem is the mass of the atoms andλ is the twice the lattice period,a.)
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FIGURE 3. Single particle quasimomentum distributions for repulsively bound pairs in 1D from exper-
iment and numerical simulations (see text) for (a)V0 = 5ER and (b)V0 = 20ER. The density values have
been scaled to facilitate comparison between experimentaland theoretical results. These results agree
well, up to experimental artifacts related to repulsion between atoms during expansion (before imaging)
and also relatively long imaging times (many photons are scattered from each atom, which performs a
random walk). This leads to smearing out of the sharp structure at the edge of the Brillouin zone.

is its oscillating character: the wavefunction amplitude alternates sign from one site to
the next. In quasimomentum space this corresponds to a wavefunction which is peaked
at the edges of the first Brillouin zone, as is shown in Figure 3.

When many repulsively bound pairs exist, they will interactwith one another as
described by the Bose-Hubbard model. This many-body behaviour can be computed
numerically as described below.

Experimental realization of repulsively bound atom pairs

We experimentally create repulsively bound atom pairs froma sample of ultracold
87Rb atoms in a cubic 3D optical lattice. About 2×104 atom pairs are initially prepared
in a deep lattice of 35Er depth, with each site of the lattice either doubly-occupiedor
unoccupied. By adiabatically ramping down the lattice depth afterwards the initially



localized pair wavefunctions become delocalized (see Fig.2). The initial preparation
is carried out in several steps as described in the following. In the beginning, a Bose
Einstein condensate of87Rb atoms is carefully loaded into the vibrational ground state of
the optical lattice, such that many lattice sites are occupied with two atoms. Besides the
doubly occupied sites, there are also sites which are occupied by single atoms or more
than two atoms. In order to remove atoms from these sites we use a purification scheme
which involves the use of a Feshbach resonance and a combinedpulse of laser and radio-
frequency (rf) radiation [4]. The laser and rf pulse resonantly blows atoms out of the
lattice, whereas the Feshbach resonance serves to protect (shelve) the pairs temporarily
from this pulse by converting pairs into Feshbach moleculesand then back into atoms.
Besides lifetime measurements, we have been able to experimentally map out the single
particle momentum distribution (see Fig. 3) and to measure their binding energy. The
properties and the dynamics of the pairs can be controlled bytuning the atom-atom
interaction with the help of a Feshbach resonance at 1007G and by controlling the depth
of the optical lattice and particle density. Consistent with our theoretical analysis, the
repulsively bound pairs exhibit long lifetimes of hundredsof milliseconds, even under
collisions with one another.

Many-Body simulations

Many-body numerical simulations for a gas of repulsively bound pairs are performed
using time-dependent DMRG methods [5]. These methods allowfor ground state cal-
culation and time-dependent calculation of the dynamics ofatoms for a variety of 1D
situations, including many lattice and spin models. The basic algorithm provides near-
exact integration of a many-body Schrödinger equation, with the Hilbert space being
adaptively decimated. This works provided that the state ofthe system is always able
to be efficiently represented as a matrix product state [6]. As a result, it is possible to
compare the dynamics of a gas of interacting repulsively bound pairs in a 1D lattice with
experimental data. For example, we can simulate a 1D Bose-Hubbard model with time
dependent parameters, beginning with an initial state corresponding to a distribution of
atoms situated in doubly occupied lattice sites. We computethe corresponding dynam-
ics as the lattice depth is decreased by decreasingU and increasingJ. These many-body
simulations account for interactions between bound pairs,and let us compute final mo-
mentum distributions that agree well with the experimentalresults. We can also use these
simulations to model lattice modulation spectroscopy of atoms in optical lattices. In fig-
ure 3 we show a comparison of quasimomentum distributions from the experiment and
from many-body simulations.

Analogy to Other Bound States

Although no stable repulsively bound pairs have previouslybeen observed, they
have an interesting relationship to many bound states in other physical systems. For
example, resonance behaviour based on similar pairing of Fermions of different spin



in the Hubbard model was first discussed by Yang [7], and playsan important role
in SO(5) theories of superconductivity [8]. There are several examples of many-body
bound states that can occur for repulsive as well as attractive interactions, such as the
resonances discussed in the context of the Hubbard model by Demler et al. [9]. Such
resonance behaviour is common in many-body physics, although states of this type are
normally very short-lived. Optical lattice experiments will now provide an opportunity
to prepare and investigate stable versions of such states, which until now have only
appeared virtually as part of complex processes.

The stability and many-body physics of repulsively bound pairs is perhaps most
closely associated with that of excitons, which are bound pairs of a particle in the
conduction band and a hole in the valence band of a periodic system [10]. These bind
to form a composite boson, a gas of which can, in principle, Bose-condense. Excitons
are excited states of the many-body system, but are bound by an attractive interaction
between the particle and hole that form the pair. They are also discussed in the specific
context of fermionic systems. However, a single exciton on alattice could have a
description very similar to that of a single repulsively bound pair, and could be realised
and probed in optical lattices experiments [11].

Repulsively bound atom pairs in an optical lattice are also reminiscent of photons
being trapped by impurities in photonic crystals [12], which consist of transparent
material with periodically changing index of refraction. An impurity in that crystal in
form of a local region of index of refraction can then give rise to a localized field
eigenmode. In an analogous sense, each atom in a repulsivelybound pair could be as
an impurity that “traps” the other atom.

An analogy can also be drawn between repulsively bound atom pairs and gap solitons,
especially as found in atomic gases [13, 14, 15, 16]. Solitons are normally a non-linear
wave phenomenon, and in this sense have a very different behaviour to repulsively bound
pairs, which exhibit properties characteristic of many-body quantum systems. However,
there has been increasing recent interest in discussing thelimit of solitons in atomic
systems where very few atoms are present, giving rise to objects that are often referred
to as quantum solitons [17]. These are N-body bound states in1D, and thus a 2-atom
bright quantum soliton is a bound state of two atoms moving in1D. In this sense, the
solution for a single repulsively bound pair in 1D is relatedto a single quantum soliton
on a lattice.

Conclusion

In summary, a metastable bound state that arises from repulsion between the con-
stituents and the lattice band structure has been demonstrated in the laboratory. This
state exemplifies in a new way the strong correspondence between the optical lattice
physics of ultracold atoms and the Hubbard model, a connection which has particu-
lar importance for applications of these cold atom systems to more general simulation
of condensed matter models, to quantum computing. The existence of such metastable
bound objects will be ubiquitous in cold atoms lattice physics, giving rise to new poten-
tial composite objects also in Fermions or in systems with mixed Bose-Fermi statistics.



These states could also be formed with more than two particles, or as bound states of
existing composite particles. Repulsively bound pairs have no counterpart in condensed
matter physics due to the strong inelastic decay channels observed in solid state lattices,
and could be a building block of yet unstudied quantum many body states or phases.

ACKNOWLEDGMENTS

We would like to thank Eugene Demler for interesting discussions. We acknowledge
support from the Austrian Science Fund (FWF) within the Spezialforschungsbereich 15,
from the European Union within the OLAQUI and SCALA networks, from the TMR
network "Cold Molecules", and the Tiroler Zukunftsstiftung.

REFERENCES

1. K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P.
Büchler, and P. Zoller,Nature441, 853–856 (2006).

2. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,Phys. Rev. B40, 546–570 (1989).
3. D. Jaksch, and P. Zoller,Annals of Physics315, 52–79 (2005), and references therein.
4. G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and J. Hecker Denschlag,Phys. Rev. Lett.

96, 050402 (2006).
5. G. Vidal,Phys. Rev. Lett.91, 147902 (2003); 93, 040502 (2004);

A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal,J. Stat. Mech.: Theory Exp., P04005 (2004);
S. R. White and A. E. Feiguin,Phys. Rev. Lett.93, 076401 (2004);
F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac,Phys. Rev. Lett.93, 207204 (2004).

6. U. Schollwöck,Rev. Mod. Phys., 77, 259–315 (2005).
7. C. N. Yang,Phys. Rev. Lett.63, 2144–2147 (1989).
8. E. Demler, W. Hanke, and S.-C. Zhang,Rev. Mod. Phys.76 909 (2004).
9. E. Demler, and S.-C. Zhang,Phys. Rev. Lett.75, 4126–4129 (1995).
10. S. A. Moskalenko and D. W. Snoke,Bose-Einstein Condensation of Excitons and Biexcitons(Cam-

bridge University Press, Cambridge, 2000).
11. A. Kantian et al., in preparation.
12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crystals: Molding the Flow of Light

Princeton University Press, Princeton, 1995.
13. P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Yu. S. Kivshar,Phys. Rev. A67, 013602 (2003).
14. N. K. Efremidis, and D. N. Christodoulides,Phys. Rev. A67, 063608 (2003).
15. B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler,

Phys. Rev. Lett.92, 230401 (2004).
16. V. Ahufinger, A. Sanpera, P. Pedri, L. Santos, and M. Lewenstein,Phys. Rev. A69, 053604 (2004).
17. See, for example, P. D. Drummond, K. V. Kheruntsyan, and H. He, J. Opt. B: Quant. Semiclass.

Optics 1, 387–395 (1999); R. K. Bullough and M. Wadati,J. Opt. B: Quant. Semiclass. Optics6,
S205– (2004); I. E. Mazets and G. Kurizki,Europhysics Letters, in press (2006).





© 2006 Nature Publishing Group 

 

Repulsively bound atom pairs in an optical lattice
K. Winkler1, G. Thalhammer1, F. Lang1, R. Grimm1,3, J. Hecker Denschlag1, A. J. Daley2,3, A. Kantian2,3,
H. P. Büchler2,3 & P. Zoller2,3

Throughout physics, stable composite objects are usually formed
by way of attractive forces, which allow the constituents to lower
their energy by binding together. Repulsive forces separate par-
ticles in free space. However, in a structured environment such as a
periodic potential and in the absence of dissipation, stable com-
posite objects can exist even for repulsive interactions. Here we
report the observation of such an exotic bound state, which
comprises a pair of ultracold rubidium atoms in an optical lattice.
Consistent with our theoretical analysis, these repulsively bound
pairs exhibit long lifetimes, even under conditions when they
collide with one another. Signatures of the pairs are also recog-
nized in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional
condensed matter systems of such repulsively bound pairs, owing
to the presence of strong decay channels. Our results exemplify the
strong correspondence between the optical lattice physics of
ultracold bosonic atoms and the Bose–Hubbard model1,2—a link
that is vital for future applications of these systems to the study of
strongly correlated condensed matter and to quantum
information.
Cold atoms loaded into a three-dimensional (3D) optical lattice

provide a realization of a quantum lattice gas1,2. An optical lattice can
be generated by pairs of counterpropagating laser beams, where the
resulting standing wave intensity pattern forms a periodic array of
microtraps for the cold atoms, with period a given by half the
wavelength of the light, l/2. The periodicity of the potential gives
rise to a band structure for the atom dynamics with Bloch bands
separated by bandgaps, which can be controlled by the laser param-
eters and beam configuration. The dynamics of ultracold atoms
loaded into the lowest band of a sufficiently deep optical lattice is well
described by the Bose–Hubbard model with hamiltonian1,3:

Ĥ¼2J
ki;jl

X
b̂
†

i b̂j þ
U

2 i

X
n̂iðn̂i 2 1Þþ

i

X
1in̂i ð1Þ

Here b̂i (b̂i
†) are destruction (creation) operators for the bosonic

atoms at site i, and n̂i ¼ b̂i
† b̂i is the corresponding number operator.

J/" denotes the nearest-neighbour tunnelling rate, U the on-site
collisional energy shift, and 1i the background potential. The high
degree of control available over the parameters in this system—for
example, changing the relative values ofU and J by varying the lattice
depth, V0—has led to seminal experiments on strongly correlated
gases in optical lattices. These experiments include the study of
the superfluid–Mott insulator transition4, the realization of one-
dimensional (1D) quantum liquids with atomic gases5,6 (see also refs
7 and 8), and the investigation of disordered systems9. 3D optical
lattices have also opened new avenues in cold collision physics and
chemistry10–13.
A striking prediction of the Bose–Hubbard hamiltonian (equation

(1)) is the existence of stable repulsively bound atom pairs. These are
most intuitively understood for strong repulsive interaction

jUj .. J, U . 0, where an example of such a pair is a state of two
atoms occupying a single site, j2il ; ðb̂†2i jvaclÞ=

ffiffiffi
2

p
, where jvacl is the

vacuum state. This state has a potential energy offset U with respect
to states where the atoms are separated (Fig. 1a). The pair is unable to
decay by converting the potential energy into kinetic energy, as the
Bloch band allows a maximum kinetic energy for two atoms given by
8J, twice its width. The pair can move around the lattice, with both
atoms tunnelling to a neighbouring site (Fig. 1b), but the atoms
cannot move independently. The stability of repulsively bound pairs
is intimately connected with the absence of dissipation, in contrast to
solid state lattices, for example, where interactions with phonons
typically lead to rapid relaxation.
We obtain experimental evidence for repulsively bound pairs with

a sample of ultracold 87Rb atoms in a cubic 3D optical lattice with
lattice period a ¼ 415.22 nm. The key tool used to prepare and
observe the pairs is their adiabatic conversion into chemically

LETTERS

Figure 1 | Atom pairs in an optical lattice. a, Repulsive interaction
(scattering length a . 0) between two atoms sharing a lattice site in the
lowest band (n ¼ 0) gives rise to an interaction energyU. Breaking up of the
pair is suppressed owing to the lattice band structure and energy
conservation. b, The pair is a composite object that can tunnel through the
lattice. c, Long lifetime of repulsively bound atom pairs that are held in a 3D
optical lattice. The potential depth is (10 ^ 0.5)E r in one direction and
(35 ^ 1.5)E r in the perpendicular directions. Shown is the remaining
fraction of pairs for a scattering length of 100a0 (open diamonds; a0 is the
Bohr radius) and a scattering length of about (0 ^ 10)a0 (filled circles) as a
function of the hold time. The lines are fitted curves of an exponential
(dashed line) and the sum of two exponentials (solid line).
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bound dimers using a magnetic-field sweep across a Feshbach
resonance13–20 at 1,007.40 G. The initial state is prepared from a
pure sample of Rb2 Feshbach molecules in the vibrational ground
state of the lattice where each lattice site is occupied by not more than
a single molecule (see Methods). Sweeping across the Feshbach
resonance, we adiabatically dissociate the dimers and obtain a lattice
correspondingly filled with 2 £ 104 atom pairs, at an effective filling
factor of typically 0.3. Away from the Feshbach resonance, the
effective interaction between the atoms is repulsive with scattering
length a s ¼ þ100a0 (where a0 is the Bohr radius).
In order to demonstrate the stability of repulsively bound pairs, we

lower the lattice potential in one direction from its initial depth of
V0 ¼ 35E r (corresponding to J/" < 2p £ 0.7Hz and U/J < 3,700,
where E r ¼ 2p2"2/ml2 and m is the mass of the atoms) in 1ms to a
depth of V0 ¼ 10E r. This increases dramatically the tunnelling rates
along this direction to J/" < 2p £ 63Hz (U/J < 30), potentially
allowing the atom pairs to quickly separate. After a variable hold
time we determine the number of remaining pairs. This is done by
adiabatically raising the lattice to its full initial depth of V0 ¼ 35E r,
and converting doubly occupied sites to Feshbach molecules with
near unit efficiency13. A purification pulse13 then removes all remain-
ing atoms due to dissociated pairs. Afterwards the molecules are
again converted back into atoms, and can then be detected by
conventional absorption imaging.
The results of these lifetime measurements are shown in Fig. 1c.

For repulsive interaction (a s ¼ 100a0), the atom pair sample exhibits
the remarkably long lifetime of 700ms (exponential fit). This lifetime
is mainly limited by inelastic scattering of lattice photons13, and
greatly exceeds the calculated time for an atom to tunnel from one
site to the next, 2p"/(4J) < 4ms. In contrast, if we turn off the
on-site interaction by tuning the scattering length near zero, we
observe a much faster decay in the number of doubly occupied sites
owing to the rapid diffusion of unbound atoms through the lattice
(Fig. 1c). This observation clearly demonstrates that the stability of
the pairs is induced by the on-site interaction U.
We can more deeply understand these repulsively bound pairs

through an exact solution of the two-particle Lippmann–Schwinger
scattering equation based on the Bose–Hubbard model. We write
the two-atom wavefunction as W(x, y), where the positions of the
two particles are denoted x ¼ Si x i e i and y ¼ Si yie i , with e i
being the primitive lattice vectors, and x i ,yi integer numbers. Intro-
ducing centre of mass, R ¼ (x þ y)/2, and relative coordinates,
r ¼ x 2 y, we can solve the Schrödinger equation with the ansatz
W(x, y) ¼ exp(iKR)wK(r), where K is the quasi-momentum of the
centre of mass motion and wK(r) is the pair wavefunction. We derive
two types of solutions (for details see Methods), each of which are
eigenstates of K. These states, as illustrated in Fig. 2a, correspond to
(1) unbound scattering solutions (shaded area in Fig. 2a), where the
two particles move on the lattice, and scatter from each other
according to the interaction U, and (2) repulsively bound pairs for

which wK(r) is square integrable. In one and two dimensions, states
of repulsively bound pairs always exist for non-zeroU, while in three
dimensions they exist above a critical value Ucrit < 0.5J.
In this Letter, we focus primarily on the 1D situation, which in the

experiment corresponds to a low depth of the lattice along one
direction, whilst the lattice in the perpendicular directions
remains very deep (35E r). Here the energy of the bound pairs is

EðKÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðcos Ka

2 Þ
2 þ ðU=2JÞ2

q
þ 2

h i
: This is plotted in Fig. 2a as

the Bloch band of a stable composite object above the continuum of
two-particle scattering states. In the limit of strong interaction,
U .. J, this reduces to E(K) < 4J þ U þ (4J 2/U)(1 þ cosKa),
which shows that the bound pairs indeed have binding energy of,U
and hop through the lattice with an effective tunnelling rate J2/("U).
Figure 2b shows the pair wavefunctions wK(r) for repulsively

bound pairs (a s ¼ 100a 0) in one dimension with K ¼ 0, for
U/J ¼ 30 (V 0 < 10E r) and U/J ¼ 3 (V 0 < 3E r). For large U/J,
bound pairs essentially consist of two atoms occupying the same
site, whereas for small U/J, the pair is delocalized over several lattice
sites. The corresponding quasi-momentum distribution can be
found from the Fourier transform ~w0ðkÞ of the pair wavefunction
(Fig. 2c), where k is the relative quasi-momentum. Because K ¼ 0,
j ~w0ðkÞj

2
is also equal to the single-particle quasi-momentum distri-

bution. When the two particles are localized on the same site, the
quasi-momentum distribution is essentially flat. However, for lower
U/J the wavefunction is characteristically peaked at the edges of the
Brillouin zone. This occurs because the energy of the repulsively
bound state is above that of the continuum, and thus the contri-
bution to the corresponding wavepacket of single-particle quasi-
momentum states with higher energy is favoured. In contrast, if we
had U , 0, the pair would be attractively bound, and would have
energy lower than that in the continuum. Thus contributions from
the low-energy quasi-momentum states would be favoured, leading
to a single peak in the centre of the Brillouin zone. In both cases, the
amplitude of the peaks grows with increasing width 4J of the Bloch
band. In general, the stable bound pairs will not be prepared in a fixed
quasi-momentum state K in an experiment, but rather in a super-
position of different momentum states. For non-zero K, the peaks in
the single-particle quasi-momentum distribution are translated byK,
but their strength is also reduced. As a consequence, for typical
symmetric distributions of K, the peak at the edge of the Brillouin
zone remains present, but is less strong than in the optimal case of
vanishing K. We have verified this using many-body numerical
simulations, which were performed using time-dependent density-
matrix renormalization group methods21–23.
We have experimentally investigated the quasi-momentum distri-

bution of the pairs in various regimes by mapping it onto a spatial
distribution, whichwemeasured using standard absorption imaging.
For this, we first adiabatically lower the lattice depth in the X

Figure 2 |Atompair states in one dimension. a, Spectrum of energy E of the
1D hamiltonian for U/J ¼ 8 (V0 < 6E r) as a function of centre of mass
quasi-momentum K. The Bloch band for repulsively bound pairs is located
above the continuumof unbound states. The grey level for the shading of the
continuum is proportional to the density of states. b, The pair wavefunction

w0(r), showing the amplitude at each site with U/J ¼ 30 (V0 < 10E r, blue
bars) and U/J ¼ 3 (V0 < 3E r, orange bars). c, The square modulus of the
corresponding momentum space wavefunctions j ~w0ðkÞj

2; which are
equivalent to the single-particle momentum distributions, as K ¼ 0.
Note the characteristic peaks at the edge of the Brillouin zone.
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direction (Fig. 3a) at a rate of 1.3E r (ms21) to a pre-chosen height
while the lattice depth in the other two directions is kept high (35E r).
This will prepare repulsively bound pairs at the chosen lattice depth.
We then turn off the lattice rapidly enough for the pair wavefunction
not to change, but slowly with respect to the bandgap, so that single-
particle quasi-momenta are mapped to real momenta24,25. We have
typically employed linear ramps with rates of 0.2E r ms

21. The result-
ing momentum distribution is converted to a spatial distribution
after ,15ms time of flight.
Figure 3a–c shows typical measured quasi-momentum distri-

butions that were obtained after adiabatically lowering the lattice
depth in theX direction to the lowest values, below 3E r. If only empty
sites and sites with single atoms are present in the lattice, then the first
Brillouin zone is homogeneously filled24 (Fig. 3a). For repulsively
bound pairs, the momentum distribution is, in general, peaked at the
edges of the first Brillouin zone (Fig. 3b), whereas for attractively
bound pairs, it is peaked in the centre of the first Brillouin zone
(Fig. 3c). In order to change the interaction between the atoms from
repulsive to attractive, we change the scattering length, making use
of the Feshbach resonance26 at 1,007.40 G. Figure 3d and e
shows the dependence on lattice depth V0 of the single-particle
quasi-momentum distribution for repulsively bound pairs from
experiment and numerical simulation, respectively. As expected,
the peak structure is more pronounced for lower values of V0, and
diminishes for larger V0. This characteristic is a clear signature of the
pair wavefunction for repulsively bound pairs.
We also performed spectroscopic measurements, determining

the binding energy from pair dissociation produced by modulating
the depth of the lattice at a chosen frequency. On resonance, the
modulation allows pairs to release their binding energy. Figure 4a
shows the number of remaining pairs as a function of themodulation
frequency. This was repeated for a variety of lattice depths V0 in one
directionwhile keeping the lattice in the other two directions at 35E r.
The behaviour of the binding energy as a function of the lattice depth
provides an additional key signature of repulsively bound pairs. As
shown in Fig. 4b, the resonance positions are in good agreement with
numerical simulations and essentially coincide with the interaction
energy, U.
It is important to note that for sufficiently large U/J, repulsively

bound pairs are stable under collisions with each other. This is
particularly evident in the limit U .. J where, by energy arguments,

the elastic scattering between pairs is the only open channel. This
means that even a relatively dense quantum lattice gas of these objects
can be long-lived. When the lattice height is lowered so that U/J
becomes sufficiently small, it is possible for a certain fraction of the
pairs to dissociate by collisionwith other pairs. In our experiments, we
observe the onset of this behaviour for lattice depths lower than 6E r,
that is,U/J < 9. The dynamics of the collisions and details of the decay
depend crucially on lattice depth and the local density of pairs
across the lattice. Further details of these processes will be discussed
elsewhere.
In conclusion, we have demonstrated the formation of a novel

composite object in an optical lattice: a stable bound state that arises
from the lattice band structure and repulsion between the constitu-
ents. Although no direct analogue to repulsively bound atomic pairs
is known to exist, the formation of ametastable state is reminiscent of
trapping light in photonic bandgap materials27, or extended lifetimes
of excited atoms in cavity quantum electrodynamics28. In both cases,
decay is suppressed by restriction of the accessible light field modes.
Stable repulsively bound objects should be viewed as a general
phenomenon, and their existence will be ubiquitous in cold atom
lattice physics. They also give rise to new potential composites with
fermions29 or Bose–Fermi mixtures30, and can be formed in an
analogous manner with more than two particles. The stability of
repulsively bound objects could thus be the basis of a wealth of new
quantum many-body states or phases. In particular, the next exper-
imental step in investigating repulsively bound atomic pairs is the
possible realization of a condensate of pairs, together with the means
to characterise long-range order in this system.

METHODS
Preparation of pure molecular sample.We use a set-up which was described in
detail in ref. 13, starting with a Bose–Einstein condensate of 6 £ 105 87Rb atoms
in an Ioffe-type magnetic trap with trap frequencies qx,y,z ¼ 2p £ (7, 19, 20)
Hz).Within 100ms the Bose–Einstein condensate is adiabatically loaded into the
cubic 3D optical lattice which is 35E r deep. After turning off the magnetic trap,
we flip the spins of our atoms from their initial state jF ¼ 1,mF ¼ 21l to jF ¼ 1,
mF ¼ þ1l by suddenly reversing the bias magnetic field of a few gauss. This spin
state features a 210-mG-wide Feshbach resonance at 1,007.40 G (ref. 26). By
adiabatically ramping over this resonance we convert pairs of atoms in multiply
occupied lattice sites into Rb2 Feshbach molecules. Fast inelastic collisions of
molecules within lattice sites and a subsequent combined radio-frequency and
optical purification pulse remove all chemically unbound atoms, thus creating a
pure molecular sample of about 2 £ 104 molecules.
Exact solution for single pair bound state. Within the Bose–Hubbard
model (equation (1)), the Schrödinger equation describing two particles in a

Figure 3 | Quasi-momentum distribution of atoms in the lattice.
a–c, Absorption images of the atomic distribution after release from the 3D
lattice and a subsequent 15-ms time of flight. The horizontal and vertical
black lines enclose the first Brillouin zone. a, Distribution when lattice sites
are occupied by single atoms; b, distribution for repulsively bound atom
pairs (see text for details); c, same as b but pairs are attractively bound.
d, e, The quasi-momentum distribution for pairs in the X direction as a
function of lattice depth V0, after integration over the Ydirection.
d, Experiment; e, numerical calculation. See Methods for a definition of E r.

Figure 4 | Modulation spectroscopy of repulsively bound pairs.
a, Typical resonance dip showing the remaining number of atom pairs as a
function of the modulation frequency, for V0 < 6E r. The solid line is a
gaussian fit, a choice that was justified by numerical calculations.
b, Plot showing the measured resonance frequencies (filled circles) as a
function of the lattice depth. They show good agreement with numerical
simulations (crosses) and also coincide with the on-site collisional energy
shift U (line). Experimental error bars correspond to the 95% confidence
interval for the gaussian fit parameters of the resonance dips.
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homogenous optical lattice takes the form

2J ~D
0

x þ
~D
0

y

� �
þUdx;y

h i
Wðx;yÞ ¼ EWðx;yÞ ð2Þ

where the vectors x and y describe the positions of the two particles as
defined in the main text. The operator ~DK

xWðxÞ ¼
Pd

i¼1 cos ðKei=2Þ½Wðxþ e iÞþ
Wðx2 e iÞ2 2WðxÞ� denotes the discrete lattice laplacian with d the dimension-
ality in the cubic lattice, and dx,y is a Kronecker delta. Writing the wavefunction
in relative and centre of mass coordinates W(x, y) ¼ exp(iKR)wK(r), the
Schrödinger equation (2) then reduces to a single-particle problem in the
relative coordinate

22J ~D
K

r þ EK þUdr;0

h i
wK ðrÞ ¼ EwK ðrÞ ð3Þ

with EK ¼ 4JSi[1 2 cos(Kei/2)] being the kinetic energy of the centre of mass
motion.

The short range character of the interaction potential allows for a
resummation of the perturbation expansion generated by the corresponding
Lippmann–Schwinger equation. We obtain the scattering states

wðþÞðrÞ ¼ exp ðikrÞ2 8pJ f EðKÞGKðE; rÞ ð4Þ

with scattering amplitude

f EðKÞ ¼2
1

4p

U=ð2JÞ

12GK ðE;0ÞU
ð5Þ

where the total energy E ¼ 1k,K þ EK, and 1k,K ¼ 4JSicos(Kei/2)[1 2 cos(kei)].
Furthermore, GK(E, r) denotes the Green’s function of the non-interacting
problem, which in Fourier space takes the form ~GKðE;kÞ ¼ 1=ðE2 1k;K þ ihÞ:

The energy spectrum for these states in one dimension is shown as a function
of K by the shaded region in Fig. 2a. In addition, the pole in the scattering
amplitude indicates the presence of an additional bound state. The energy Ebs

of the bound state is determined by GK(Ebs,0)U ¼ 1 and the bound state
wavefunction takes the form wbs(r) ¼ cGK(Ebs, r), with c being a normalization
factor.
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phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms. Nature 415, 39–-44 (2002).

5. Paredes, B. et al. Tonks–-Girardeau gas of ultracold atoms in an optical lattice.
Nature 429, 277–-281 (2004).
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fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006).
13. Thalhammer, G. et al. Long-lived Feshbach molecules in a 3D optical lattice.

Phys. Rev. Lett. 96, 050402 (2006).
14. Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom–-

molecule coherence in a Bose–-Einstein condensate. Nature 417, 529–-533
(2002).

15. Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules
from a Fermi gas of atoms. Nature 424, 47–-50 (2003).

16. Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301,
1510–-1513 (2003).

17. Xu, K. et al. Formation of quantum-degenerate sodium molecules. Phys. Rev.
Lett. 91, 210402 (2003).

18. Cubizolles, J., Bourdel, T., Kokkelmans, S. J. J. M. F., Shlyapnikov, G. V. &
Salomon, C. Production of long-lived ultracold Li2 molecules from a Fermi gas.
Phys. Rev. Lett. 91, 240401 (2003).
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Abstract. We study the horizontal transport of ultracold atoms over
macroscopic distances of up to 20 cm with a moving 1D optical lattice. By
using an optical Bessel beam to form the optical lattice, we can achieve nearly
homogeneous trapping conditions over the full transport length, which is crucial
in order to hold the atoms against gravity for such a wide range. Fast transport
velocities of up to 6 m s−1 (corresponding to about 1100 photon recoils) and
accelerations of up to 2600 m s−2 are reached. Even at high velocities the
momentum of the atoms is precisely defined with an uncertainty of less than one
photon recoil. This allows for construction of an atom catapult with high kinetic
energy resolution, which might have applications in novel collision experiments.
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1. Introduction

Fast, large-distance transport of Bose–Einstein condensates (BEC) from their place of production
to other locations is of central interest in the field of ultracold atoms. It allows for exposure
of BECs to all different kinds of environments, spawning progress in BEC manipulation and
probing.

Transport of cold atoms has already been explored in various approaches using magnetic and
optical fields. Magnetic fields have been used to shift atoms, e.g. on atom chips (for a review see
[1]) and to move laser-cooled clouds of atoms over macroscopic distances of tens of centimetres,
e.g. [2, 3]. By changing the position of an optical dipole trap, a BEC has been transferred over
distances of about 40 cm within several seconds [4]. This approach consisted of mechanically
relocating the focusing lens of the dipole trap with a large translation stage. A moving optical
lattice offers another interesting possibility to transport ultracold atoms. Acceleration of atoms
with lattices is intimately connected to the techniques of Raman transitions [5], STIRAP [6, 7] and
the phenomenon of Bloch oscillations [8, 9]; (for a recent review on atoms in optical lattices see
[10]). Acceleration with optical lattices allows for precise momentum transfer in multiples of two
photon recoils to the atoms. Transport of single, laser-cooled atoms in a deep optical lattice over
short distances of several mm has been reported in [11]. Coherent transport of atoms over several
lattice sites has been described in [12]. Even beyond the field of ultracold atoms, applications of
optical lattices for transport are of interest, e.g. to relocate submicron sized polystyrene spheres
immersed in heavy water [13].

Here, we experimentally investigate transporting BECs and ultracold thermal samples with
an optical lattice over macroscopic distances of tens of centimetres. Our method features the
combination of the following important characteristics. The transport of the atoms is in the
quantum regime, where all atoms are in the vibrational ground state of the lattice. With our
setup, mechanical noise is avoided and we achieve precise positioning (on the order of the
imaging resolution of 1 µm). We demonstrate high transport velocities of up to 6 m s−1, which
are accurately controlled on the quantum level. The velocity spread of the atoms is not more than
2 mm s−1, corresponding to 1/3 of a photon recoil.

2. Basic principle of transport

Horizontal transport of atoms over larger distances holds two challenges: how to move the atoms
and how to support them against gravity. Our approach here is to use a special 1D optical lattice
trap, which is formed by a Bessel laser beam and a counterpropagating Gaussian beam. The lattice
part of the trap moves the atoms axially, whereas the Bessel beam leads to radial confinement
holding the atoms against gravity.

In brief, lattice transport works like this. We first load the atoms into a 1D optical lattice,
which in general is a standing wave interference pattern of two counterpropagating laser beams
far red-detuned from the atomic resonance line (see figure 1). Afterwards the optical lattice
is carefully moved, ‘dragging’ along the atoms. Upon arrival at the destination, the atoms are
released from the lattice.

New Journal of Physics 8 (2006) 159 (http://www.njp.org/)
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Figure 1. Scheme for atom transport. Two counterpropagating laser beams form
a standing wave dipole trap. A BEC is loaded adiabatically into the vibrational
ground state of this 1D optical lattice. A relative frequency detuning �ν between
the two laser beams results in a lattice motion at a velocity v = �ν · λ/2 which
drags along the trapped atoms. We chose the counterpropagating laser beams to
consist of a Gaussian beam with diameter 2w0 and a Bessel beam with a central
spot diameter of 2r0. The (in principle) diffraction-free propagation of the Bessel
beam leads to tight radial confinement of the atoms over long distances, which
supports the atoms against gravity during horizontal transport.

The lattice motion is induced by dynamically changing the relative frequency detuning �ν

of the two laser beams, which corresponds to a lattice velocity

v = λ

2
�ν, (1)

where λ is the laser wavelength of the lattice.
In comparison to the classical notion of simply ‘dragging’ along the atoms in the lattice,

atom transport is more subtle on the quantum level. Here, only momenta in multiples of two
photon recoil momenta, 2h̄k = 4πh̄/λ can be transferred to the atoms. This quantized momentum
transfer can be understood in several ways, e.g. based on stimulated Raman transitions or based
on the concept of Bloch-like oscillations in lattice potentials. For a more thorough discussion in
this context, the reader is referred to [14].

In order to prevent the atoms from falling in the gravitational field, the lattice has to act as
an optical dipole trap in the radial direction. It turns out that for radial trapping, optical lattices
formed by Bessel beams have a clear advantage over Gaussian beam lattices. To make this point
clear, we now show, that a standard optical lattice based on Gaussian beams is not well suited for
long distance transports on the order of 50 cm. During transport, we require the maximum radial
confining force Fmax to be larger than gravity mg, where m is the atomic mass and g ≈ 9.81 m s−2

is the acceleration due to gravity. For a Gaussian beam this is

Fmax = 3

4π3
√

e

λ3

c

�

�

P0

w(z)3
> mg, (2)

where � is the natural linewidth of the relevant atomic transition, � the detuning from this
transition, w(z) the beam radius and P0 the total power of the beam. The strong dependence on
the beam radius w(z) suggests, that w(z) = w0

√
1 + (z/zR)2 should not vary too much over the

transport distance. If we thus require the Rayleigh range zR = πw2
0/λ to equal the distance of

25 cm, the waist has to be w0 ≈ 260 µm. For a lattice beam wavelength of e.g. λ = 830 nm, the
detuning from the D-lines of 87Rb is � ≈ 2π × 130 THz. To hold the atoms against gravity for
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Figure 2. Gaussian and Bessel beams. (a) The radial intensity distribution of a
Gaussian beam changes as it propagates. The smaller the waist w0 of the beam,
the higher its divergence (for a given wavelength). (b) Bessel beam: the radial
distribution and in particular the radius of the central spot r0 do not change with
z (see equation (8)). (c) Within a certain axial range zmax a Bessel-like beam can
be produced by illuminating an axicon lens with a collimated laser beam.

all z, where |z| < zR, a total laser power of P0 ≈ 10 W is needed, which is difficult to produce.
In addition, the spontaneous photon scattering rate

�scatt = 3

8π3h̄

λ3

c

(
�

�

)2
P0

w(z)2
(3)

would reach values on the order of �scatt = 2 s−1. For typical transport times of 200 ms, this
means substantial heating and atomic losses.

A better choice for transport are zero order Bessel beams (figure 2). They exhibit an intensity
pattern which consists of an inner intensity spot surrounded by concentric rings and which does
not change during propagation. In our experiments, we have formed a standing light wave by
interfering a Bessel beam with a counterpropagating Gaussian beam, giving rise to an optical
lattice which is radially modulated according to the Bessel beam.1 Atoms loaded into the tightly
confined inner spot of the Bessel beam can be held against gravity for moderate light intensities,
which minimizes the spontaneous photon scattering rate. In comparison to the transport with a
Gaussian beam, the scattering rate in a Bessel beam transport can be kept as low as 0.05 s−1 by
using the beam parameters of our experiment.

3. Bessel beams

Bessel beams are a solution of the Helmholtz equation and were first discussed and experimentally
investigated about two decades ago [15, 16].

1 In principle, one could also use a pure Bessel lattice (produced by two counterpropagating Bessel beams) for
transport. This would improve radial confinement, however, alignment is more involved.
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In cylindrical coordinates, the electric field distribution of a Bessel beam of order l is given by

E(r, ϕ, z) = E0 eiβz eilϕJl(αr), (4)

where Jl(αr) is the Bessel function of the first kind with integer order l. The beam is characterized
by the parameters α and β. In the following, we restrict the discussion to order l = 0 which we
have used in the experiment. By taking the absolute square of this expression, one gets the
intensity distribution given by

I(r, z) = I0J
2
0 (αr), (5)

where α determines the radius r0 of the central spot via the first zero crossing of J0(αr)

r0 ≈ 4.81

2α
. (6)

As pointed out before, r0 and I0 do not change with the axial position z. Because of this axial
independence, the Bessel beams are said to be ‘diffraction-free’.

Bessel-like beams were realized experimentally for the first time by illuminating a circular
slit [16]. Since this method is very inefficient, two other ways are common now-a-days. To
generate Bessel beams of arbitrary order, holographic elements, such as phase-gratings, are used
[17]. In our setup, we use a zero order Bessel beam, which can be produced efficiently by simply
illuminating an axicon (conical lens) with a collimated laser beam [18]. How this comes about
can be understood by looking at the Fourier transform of the Bessel field

Ẽ(k⊥, ϕk, kz) =
∫

d3rE(r, ϕ, z)e−ik⊥r cos(ϕ−ϕk)e−ikzz ∝ eilϕkδ(kz − β)δ(k⊥ − α). (7)

Thus a Bessel beam is a superposition of plane waves with (k⊥, kz) = (α, β). The k-vectors of
the plane waves all have the same magnitude |k| = k = 2π/λ = √

α2 + β2 and they are forming
a cone with radius k⊥ and height kz. Using an axicon with apex angle δ and index of refraction
n, α and β are given by

α = π(n − 1)

2λ tan δ/2
(8)

and

β =
√

k2 − α2. (9)

These experimentally produced Bessel beams are not ideal in the sense that their range
zmax = kwin

0 /α is limited by the finite size (waist win
0 ) of the beam impinging on the axicon lens

(see figure 2(c)). Also, the intensity of the Bessel beams might not be independent of the axial
coordinate z, as it is also determined by the radial intensity distribution of the impinging beam
(e.g. see figure 4(b)).

4. Experimental setup

We work with a 87Rb-BEC in the internal state |F = 1, mF = −1〉, initially held in a Ioffe-
type magnetic trap with trap frequencies of 2πνx,y,z = 2π (7, 19 and 20 Hz) [19, 20]. From
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the magnetic trap, the condensate is adiabatically loaded in about 100 ms into the inner core
of the 1D optical lattice formed by a Bessel beam of central spot radius r0 = 36 µm and
a counterpropagating Gaussian beam with a waist of w0 = 85 µm. About 70 lattice sites
are occupied with atoms in the vibrational ground state. The lattice periodicity is 415 nm,
corresponding to the laser wavelength of 830 nm. For our geometry (see below) the total power
needed for the Bessel beam to support the atoms against gravity is typically 200 mW, since only
a few per cent (≈10 mW) of the total power are stored in the central spot. For the Gaussian beam,
a power of roughly 20 mW is chosen, leading to an optical trapping potential at the centre (r = 0)
of U(z) = −U0 + Ulatt sin2(kz), where the lattice depth (effective axial trap depth) is Ulatt ≈ 10Er

and the total trap depth U0 ≈ 11Er. Here, Er = (h̄k)2/(2m) is the recoil energy.
The corresponding trap frequencies are ν⊥ = 4.81

√
U0/(8mr2

0)/(2π) = 97 Hz in the radial
direction and νz = k

√
2Ulatt/m/(2π) = 21 kHz in the axial direction. In order to better analyse

the transport properties, we mostly perform round trips, where the atoms are first moved to a
distance D and then back to their initial spot, which lies in the field of vision of our CCD camera.
Once back, the atoms are adiabatically reloaded into the Ioffe-type magnetic trap. To obtain the
resulting atomic momentum distribution, a standard absorption imaging picture is taken after
sudden release from the magnetic trap and typically 12 ms of time-of-flight.

The lattice beams for the optical lattice are derived from a Ti:Sapphire-laser operating at
830 nm. The light is split into two beams, each of which is controlled in amplitude, phase and
frequency with an acousto-optical modulator (AOM). For both AOMs, the radio-frequency (RF)
driver consists of a home-built 300 MHz programmable frequency generator, which gives us
full control over amplitude, frequency and phase of the radio-wave at any instant of time. The
frequency generator is based on anAD9854 digital synthesizer chip fromAnalogue Devices and a
8-bit micro-controller ATmega162 from Atmel, on which the desired frequency ramps are stored
and from which they are sent to the AD9854 upon request. After passing the AOMs, the two laser
beams are mode-cleaned in single-mode fibres and converted into collimated Gaussian beams.
One of the Gaussian beams passes the axicon lens (apex angle = 178◦, radius = 25.4 mm, Del
Mar Photonics) with a waist of win

0 = 2 mm, producing the Bessel beam. From there the beam
propagates towards the condensate, which—before transport—is located 5 cm away.

5. Transport of ultracold atoms

Figure 3 shows results of a first experiment, where we have transported atoms over short distances
of up to 1 mm (round trip), so that they never leave the field of view of the camera. The atoms
move perpendicularly to the direction of observation. In situ images of the atomic cloud in the
optical lattice are taken at various times during transport and the centre of mass position of
the cloud is determined. As is clear from figure 3(a), we find very good agreement between the
expected and the measured position of the atoms. In figures 3(b) and (c), calculations are shown
for the corresponding velocity v(t) and acceleration a(t) of the optical lattice, respectively. As
discussed before (see equation (1)), the velocity v of the lattice translates directly into a relative
detuning �ν of the laser beam, which we control via the AOMs. In order to suppress unwanted
heating and losses of atoms during transport, we have chosen very smooth frequency ramps
�ν(t) such that the acceleration is described by a cubic spline interpolation curve which is
continuously differentiable (details are given in the appendix). In this way, also the derivative of
the acceleration (commonly called the jerk) is kept small.
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Figure 3. (a) Position, (b) velocity and (c) acceleration of the atomic cloud
as a function of time for a typical transport sequence, here a round-trip over
a short distance of 1 mm. Piecewise defined cubic polynomials are used for the
acceleration ramp (see appendix for an analytical expression). By integrating over
time, velocity and position are obtained. The frequency detuning �ν, which is
used to program the RF synthesizers, corresponds directly to the velocity v via
equation (1). The position ramp is compared with in situ measurements of the
cloud’s position (◦).

In the next set of experiments, we extended the atomic transport to more macroscopic
distances of up to 20 cm (40 cm round trip), where we moved the atoms basically from one end
of the vacuum chamber to the other and back. However, the transport distance was always limited
by the finite range zmax of the Bessel beam (see figures 2(c) and 4). As shown in figure 4, the total
number of atoms abruptly decreases at the axial position, where the maximum radial force drops
below gravity. It is also clear from the figure how the range of the Bessel beam is increased by
enlarging the waist win

0 of the incoming Gaussian beam. Of course, for a given total laser power,
the maximum radial force decreases as the Bessel beam diameter is increased. For the transport
distances of 12 and 20 cm, the total power in the Bessel beam was approximately 400 mW. For
comparison, we have also transported atoms with a lattice formed by two counterpropagating
Gaussian beams (see figure 4(a)). For this transport, both laser beams have a Rayleigh range of
zR ≈ 2 cm corresponding to a waist of 70 µm. The laser power of the two beams was ≈130 and
≈35 mW, respectively. We observe a sudden drop in atom number when the transport distance
exceeds the Rayleigh range. Using the scaling law given in equation (2), it should be clear that
transports of atoms over tens of centimetres with a Gaussian lattice is hard to achieve.
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Figure 4. Long distance transports. (a) Shown is the number of remaining atoms
after a round-trip transport (see figure 3) over various one-way distances D.
The first two data sets are obtained with two different Bessel beams which are
created by illuminating an axicon with a Gaussian beam with a waist win

0 = 1
and 2 mm, respectively. The transport time T was kept constant at T = 130 ms
and T = 280 ms, respectively. The third data set (�) corresponds to a transport
in a Gaussian beam lattice (see text). The calculated maximum radial trapping
force of the two Bessel beam lattice traps is shown in (b) in units of mg,
where g ≈ 9.81 m s−2 denotes the gravitational acceleration. The variation of the
trapping force with distance is an imperfection of the Bessel beam and reflects
its creation from a Gaussian beam. When the maximum radial force drops below
1g, gravity pulls the atoms out of the trap, as can be clearly seen in (a).

Interestingly, the curve corresponding to the Bessel beam with waist win
0 = 1 mm in

figure 4(a) exhibits a pronounced minimum in the number of remaining atoms at a distance
of about 3 cm. The position of this minimum coincides with the position, where the lattice depth
has a maximum (see figure 4(b)). This clearly indicates, that high light intensities adversely
affect atom lifetimes in the lattice. Although we have not studied in detail the origin of the
atomic losses in this work, they should partially originate from spontaneous photon scattering
and three body recombination. In the deep lattice here (60Er), the calculated photon scattering
rate is �scatt = 0.4 s−1. The tight lattice confinement leads to a high calculated atomic density
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Figure 5. Transporting BEC. Shown are the momentum distributions (thin black
lines) of the atoms after a return-trip transport over various one-way distances D.
A bimodal distribution (a blue parabolic distribution for the condensed fraction
and a red Gaussian distribution for the thermal fraction) is fit to the data. For
D below 10 cm, a significant fraction of the atomic cloud is still condensed.
For D = 18 cm, (≈ the limit in our experiments) only a thermal cloud remains,
however, with a temperature below the recoil limit (T < 0.2Er/kB ≈ 30 nK).

of n0 ≈ 2 × 1014 cm−3. Adopting L = 5.8 × 10−30 cm6 s−1 as rate coefficient for the three body
recombination [21], we expect a corresponding loss rate Ln2

0 = 0.3 s−1.
In figure 5, we have studied the transport of a BEC, which is especially sensitive to heating

and instabilities. It is important to determine, whether the atoms are still Bose-condensed after
the transport and what their temperature is afterwards. Figure 5 shows momentum-distributions
for various transport distances D, which were obtained after adiabatically reloading the atoms
into the magnetic trap by ramping down the lattice and subsequent time-of-flight measurements.

Before discussing these results, we point out that loading the BEC adiabatically into the
stationary optical lattice is already critical. We observe a strong dependence of the condensate
fraction on the lattice depth. For too low lattice depths, most atoms fall out of the lattice trap due
to the gravitational field. For too high lattice depths, all atoms are trapped but the condensate
fraction is very small. One explanation for this is that high lattice depths lead to the regime of
2D pancake shaped condensates where tunnelling between adjacent lattice sites is suppressed.
Relative dephasing of the pancake shaped condensates will then reduce the condensate fraction
after release from the lattice. We obtain the best loading results for a 11Er deep trap, where we lose
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about 65% of the atoms, but maximize the condensate fraction. Because high lattice intensities
are detrimental for the BEC, we readjust the power of the lattice during transport, such that the
intensity is kept constant over the transport range. The adjustments are based on the calculated
axial intensity distribution of the Bessel beam. In this way, we reach transport distances for BEC
of 10 cm.We believe, that more sophisticated fine tuning of the power adjustments should increase
the transport length considerably. After transport distances of D = 18 cm (36 cm round trip), the
atomic cloud is thermal. Its momentum spread, however, is merely 0.3h̄k, which corresponds
to a temperature of 30 nK. Additionally, we want to point out that the loss of atoms due to the
transport is negligible (<10%) compared to the loss through loading and simply holding in such
a low lattice potential (≈65%).

An outstanding feature of the lattice transport scheme is the precise positioning of the atomic
cloud. Aside from uncontrolled phase shifts due to residual mechanical noise, such as vibrating
optical components, we have perfect control over the relative phase of the lattice lasers with our
RF/AOM setup. This would in principle result in an arbitrary accuracy in positioning the optical
lattice. We have experimentally investigated the positioning capabilities in our setup. For this,
we measured in many runs the position of the atomic cloud in the lattice after it had undergone a
return trip with a transport distance of D = 10 cm. The position jitter, i.e. the standard deviation
from the mean position, was slightly below 1 µm. For comparison, we obtain very similar values
for the position jitter when investigating BECs in the lattice before transport. Hence, the position
jitter introduced through the transport scheme is negligible.

Another important property of the lattice transport scheme is its high speed. For example,
for a transport over 20 cm (40 cm round trip) with negligible loss, a total transport time of
200 ms turns out to be sufficient. This is more than an order of magnitude faster than in the MIT
experiment [4], where an optical tweezer was mechanically relocated. The reason for this speed
up as compared to the optical tweezer is mainly the much higher axial trapping frequency of the
lattice and the non-mechanical setup.

In order to determine experimentally the lower limit of transportation time, we have
investigated round-trip transports (D = 5 mm), where we have varied the maximum acceleration
and the lattice depth (figure 6(a)). The number of atoms, which still remain in the lattice after
transport, is measured. As soon as the maximum acceleration exceeds a critical value, the number
of atoms starts to drop. For a given lattice depth, we define a critical acceleration acrit as the
maximum acceleration of the particular transport where 50% of the atoms still reach their final
destination. Figure 6(b) shows the critical acceleration acrit as a function of lattice depth. The
upper bound on acceleration observed here can be understood from classical considerations. In
our lattice, the maximum confining force along the axial direction is given by Ulattk, where k is
the wave vector of the light field. Thus in order to keep an atom bound to the lattice, we require
the acceleration a to be small enough such that

ma < Ulattk. (10)

Our data in figure 6 are in good agreement with this limit.2

There is in principle also a lower bound on the acceleration, which is due to instabilities
exhibited by BECs with repulsive interactions loaded into periodic potentials [23]–[26]. Due to
the fact that these instabilities mainly occur at the edge of the Brillouin zones, the time spent

2 In the weak lattice regime (Ulatt � 10Er) transport losses would be dominated by Landau–Zener tunnelling, see
e.g. [14, 22].
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Figure 6. Critical acceleration in lattice. (a) For several round-trip transports with
varying maximum acceleration a and lattice depth (see legend), the number of
remaining atoms after transport is shown. As the maximum acceleration exceeds
a critical value, the number of atoms starts to drop significantly. We define a
critical acceleration as the maximum acceleration for transports in which 50% of
the atoms still reach their final destination. This critical acceleration is shown as
a function of the lattice depth in (b). The experimentally determined values are
compared with the limit expected from classical considerations: acrit = Ulattk/m.

in this critical momentum range should be kept small. For our lattice parameters, nearly half of
the Brillouin zone is an unstable region, where the lifetime of the BEC is only on the order of
10 ms [25]. Thus we tend to sweep through the Brillouin zone in much less than �t = 20 ms,
which corresponds to an acceleration of a = v̇ 	 2vr/�t 
 0.6 m s−2. In this way, BECs may
be transported without introducing too much heating through these instabilities.

In contrast to acceleration, the transport velocity in our experiment is only technically
limited due to the finite AOM bandwidth. As discussed before, the lattice is set in motion
by introducing a detuning between the two beams via AOMs (equation (1)). For detunings
exceeding the bandwidth of the AOM, the diffraction efficiency of the modulator starts to drop
significantly. Consequently the lattice confinement vanishes, and the atoms are lost. In our setup,
we can conveniently reach velocities of up to v = 6 m s−1 ≈ 1100vr, corresponding to a typical
AOM bandwidth of 15 MHz. This upper bound actually limits the transport time for long distance
transports (D > 5 cm).
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Figure 7. Stability requirements for transport. Sudden phase jumps are
introduced in the relative phase of the two counterpropagating lattice laser beams.
The corresponding abrupt displacements of the optical lattice lead to heating and
loss of the atoms. We measure the number of atoms which remain in the lattice
after transport. (a) Data obtained after a single relative phase jump of variable
magnitude. (b) A phase jitter (200 positive Poissonian-distributed phase jumps
with a variable mean value) is introduced during transport. Mean values on the
order of a few degrees already lead to a severe loss of atoms.

Finally we have investigated the importance of phase stability of the optical lattice for the
transport (see figure 7). For this, we purposely introduced sudden phase jumps during transport
to one of the lattice beams. The timescale for the phase jumps, as given by AOM response time
of about 100 ns, was much smaller than the inverse trapping frequencies. The phase jumps lead
to abrupt displacements of the optical lattice, causing heating and loss of atoms. In figure 7(a),
the atomic losses due to a single phase jump during transport are shown. Phase jumps of 60◦

typically induce a 50% loss of atoms. For continuous phase jitter (see figure 7(b)), the sensitivity
is much larger.

6. Atom catapult

In addition to transport of ultracold atoms, acceleration of atoms to precisely defined velocities
is another interesting application of the moving optical lattice. For instance, it could be used
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Figure 8. Atom catapult. After acceleration in x-direction and subsequent release
from the lattice, the position of the atomic cloud is tracked as it flies ballistically
through the field of view of the CCD camera. Shown are two data sets where
atoms were accelerated to velocities of either vx = 10vr or vx = 290vr. (a) The
horizontal position x as a function of time. (b) For the slower cloud (vx = 10vr) a
parabolic trajectory y = −g/2 · (x/vx)

2 is observed as it falls under the influence
of gravity.

to study collisions of BECs with a very high but well-defined relative velocity, similar to the
experiments described in [27, 28]. As already shown above, we have precise control to impart
a well-defined number of up to 1100 photon recoils to the atoms. This corresponds to a large
kinetic energy of kB × 200 mK. At the same time, the momentum spread of the atoms is about
1/3 of a recoil (see figure 5). To illustrate this, we have performed two sets of experiments, where
we accelerate a cloud of atoms to velocities v = 10vr and v = 290vr ≈ 1.6 m s−1. After adiabatic
release from the lattice, we track their position in free flight (see figure 8). Initially the atomic
cloud is placed about 8 cm away from the position of the magnetic trap. It is then accelerated
back towards its original location. Before the atoms pass the camera’s field of vision, the lattice
beams are turned off within about 5 ms, to allow a ballistic flight of the cloud. Using absorption
imaging, the position of the atomic cloud as a function of time is determined. The slope of the
straight lines in figure 8(a) corresponds nicely to the expected velocity. However, due to a time
jitter problem, individual measurements are somewhat less precise than one would expect.3 For
v = 10vr, figure 8(b) shows the trajectory of the ballistic free fall of the atoms in gravity.

3 This is linked to the fact that our clock for the system control is synchronized to the 50 Hz of the power grid.
Fluctuations of the line frequency lead to shot to shot variations in the ballistic flight time of the atoms, which
translates into an apparent position jitter.
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7. Conclusion

In conclusion, we have realized a long distance optical transport for ultracold atoms, using a
moveable standing wave dipole trap. With the help of a diffraction-free Bessel beam, macroscopic
distances are covered for both BEC and ultracold thermal clouds. The lattice transport features
a fairly simple setup, as well as a fast transport speed and high positional accuracy. Limitations
are mainly technical and leave large room for improvement. In addition to transport, the lattice
can also be used as an accelerator to impart a large but well-defined number of photon recoils to
the atoms.
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Appendix. Transport ramp

We give here the analytic expression for the lattice acceleration a(t) as a function of time t which
was implemented in our experiments (see for example figure 3). a(t) is a smooth piecewise
defined cubic polynomial,

a(t) =


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for 3T/4 < t � T.

Here, D is the distance over which the lattice is moved and T is the duration of the transport.
From a(t), both the velocity v(t) and the location x(t) may be derived via integration over time.
Our choice for the acceleration a(t) features a very smooth transport. The acceleration a(t) and
its derivative ȧ(t) are zero at the beginning (t = 0) and at the end (t = T ) of the transport. At
t = T/4 and t = 3T/4, the absolute value of the acceleration reaches a maximum.
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We have created and trapped a pure sample of 87Rb2 Feshbach molecules in a three-dimensional optical
lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long
lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into
molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of
inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification
scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or
filled with a single molecule in the vibrational ground state of the lattice.
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Using magnetic Feshbach resonances [1] to create ultra-
cold diatomic molecules in their highest rovibrational state
has become a key to exciting developments and break-
throughs. Feshbach molecules made of bosonic atoms
behave in a strikingly different way from Feshbach mole-
cules made of fermionic atoms. For weakly bound dimers
of fermionic atoms, vibrational quenching and inelastic
decay are strongly suppressed by a Pauli blocking effect
in a close encounter of two molecules [2]. This has been
vital to the experimental creation of molecular Bose-
Einstein condensates (BEC) and investigations of the
crossover to a strongly interacting fermionic superfluid
[3]. For dimers of bosonic atoms [4–7], however, progress
has been hampered by strong inelastic decay due to atom-
molecule and molecule-molecule collisions. Therefore, the
experiments have been focused on the transient regime,
studying, e.g., the collision and dissociation dynamics
[6–11].

A three-dimensional optical lattice offers many interest-
ing opportunities for research on ultracold molecules.
Lattice sites occupied with exactly two atoms represent a
perfectly controlled quantum system which can be rigor-
ously treated theoretically. Matrix elements for atom-
molecule coupling are strongly enhanced with the prospect
of efficient atom-molecule conversion. Moreover, it is ex-
pected that the lattice can isolate molecules from each
other and shield them from detrimental collisions so that
a long-lived sample can be created also with dimers of
bosonic atoms. Recently, first experiments with molecules
in a lattice have studied photoassociation [12,13] or dem-
onstrated modifications of the binding energy of tightly
confined Feshbach molecules [14].

In this Letter, we report on the creation of a pure sample
of ultracold Rb2 Feshbach molecules trapped in a 3D
optical lattice. The observed long lifetimes of up to
700 ms greatly exceed previous values reported for dimers
of bosonic atoms [6,7,9,10]. Further, we experimentally
investigate association and dissociation of the Feshbach
molecules and reach efficiencies of 95% for convert-
ing pairs of atoms into molecules. In brief, we adiabati-

cally load a 87Rb BEC into the vibrational ground state
of the lattice. For our experimental conditions, about 20%
of the condensate atoms are grouped in pairs of two into
the lattice sites. By ramping adiabatically over a mag-
netic Feshbach resonance at 1007.4 G, we convert these
pairs into molecules. Another 20% of atoms are located in
triply and more highly occupied lattice sites. After the
Feshbach ramp, however, inelastic collisions between the
created molecules and atoms within the high occu-
pancy sites quickly remove these particles from the lattice.
Finally, the remaining 60% of the condensate atoms
are found in singly occupied sites and are unaffected
by the Feshbach ramp. Using a novel resonant purifica-
tion scheme, we can remove these atoms from the lattice,
which results in a pure molecular sample with each
molecule being shielded from the others by the lattice
potential.

The starting point for our experiments is an almost pure
BEC of about 6� 105 87Rb atoms in the spin state
jF � 1; mF � �1i [15]. It is transferred from a quadrupole
Ioffe configuration trap (QUIC) into another Ioffe-type
magnetic trap with trap frequencies !x;y;z � 2��
�7; 19; 20� Hz, leading to a peak density of the BEC of
about 4� 1013 cm�3. Our 3D lattice is cubic and consists
of three retroreflected intensity-stabilized laser beams
which propagate orthogonally to each other. They are
derived from a frequency-stable single-mode Ti:sapphire
laser (�500 kHz linewidth) with a wavelength of � �
830:44 nm. For this wavelength, the laser is detuned by
about 100 GHz from the closest transition to an excited
molecular level, minimizing light induced losses as a pre-
condition for long molecular lifetimes. The laser beams are
polarized perpendicularly to each other, and their frequen-
cies differ by several tens of megahertz to avoid disturbing
interference effects. The waists of all three beams are about
160 �m, and the maximum obtainable power is about
110 mW per beam, which results in calculated lattice
depths of up to 40 recoil energies (Er � h2=2m�2, where
m is the atomic mass of 87Rb and h is Planck’s constant).
We have verified the lattice depths by measuring the energy
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gap between bands of the lattice [16]. The relative uncer-
tainty of our lattice depth is �15%.

After the BEC is adiabatically loaded into a 35Er deep
3D optical lattice within 100 ms, we turn off the magnetic
trap. By suddenly reversing the bias magnetic field of a few
gauss, we flip the spins of our atoms to the high field
seeking state jF � 1; mF � �1i with an efficiency higher
than 99% (see also [17]). This state features the Feshbach
resonance at 1007.4 G. Afterwards, we ramp up a homo-
geneous magnetic field in 3 ms to about 1015 G using the
QUIC quadrupole coils in Helmholtz configuration. The
current through the coils is actively stabilized to a relative
accuracy of about 10�4. The fast diabatic crossing of the
Feshbach resonance has basically no effect on the atoms in
the lattice. If we slowly ramp in 5 ms from 1015 to 1000 G
(crossing the Feshbach resonance at 1007 G), molecules
are adiabatically produced in the multiply occupied lattice
sites. If, however, we cross the Feshbach resonance very
quickly, e.g., by simply switching off the magnetic field,
less than 10% of the atoms are converted into molecules.
Note that, after the first Feshbach ramp, we observe an
immediate irretrievable loss of 20% of the atoms. We
attribute this loss to inelastic collisions involving mole-
cules for sites initially occupied by 3 or more atoms. The
remaining occupied sites each contain either a single atom
or a single molecule.

Atom numbers are measured with absorption imaging at
low magnetic fields (�2 G) after release from the optical
lattice and 11 ms of ballistic expansion. In order to deter-
mine molecule numbers, they are first dissociated into
atoms by slowly ramping back across the Feshbach reso-
nance and then quickly switching off the magnetic field.
We also use absorption imaging to map out the band
occupation of the lattice. For this, the lattice is ramped
down in 2 ms, and we typically observe a momentum
distribution which is fully contained in a cube of width
2@k corresponding to the first Brillouin zone of the lattice
[18]. This demonstrates that atoms and molecules are in the
vibrational ground state of the lattice sites.

In order to create a pure molecular sample, we have
developed an advanced purification scheme to remove all
atoms which combines the great selectivity of microwave
excitation with the high efficiency of atom removal
through resonant light pressure [7]. We apply a combined
microwave and light pulse at a magnetic field of 1000 G for
3 ms. The microwave drives the transition at a frequency of
9113 MHz between levels which correlate with jF � 1;
mF � �1i and jF � 2; mF � �2i. The light pulse drives
the closed transition jF � 2; mF � �2i ! jF � 3; mF �
�3i. The optical transition frequency is 1402 MHz blue
detuned compared to the transition at zero magnetic field.
After this pulse, which heats the atoms out of the lattice
and an additional hold time (	20 ms), no more atoms can
be detected. The direct effect of the microwave and light
field pulse on the molecules is negligible because the

radiation is off resonance. As an indirect effect, however,
we find that during the first purification pulse we still lose
about 40% of the molecules, probably due to inelastic
collisions with the blown away atoms. Further losses are
not observed in subsequent purification pulses. We end up
with a pure molecular sample formed from about 10% of
the initial atoms, which corresponds to 3� 104 molecules.

We have investigated the lifetimes of the Feshbach
molecules in the lattice under various conditions (see
Figs. 1 and 2). Figure 1 shows the decay of molecules at
a lattice depth of 10Er. The pure molecular sample exhibits
a remarkably long lifetime of 700 ms. For the case of an
unpurified sample, where the atoms at singly occupied sites
have not been removed, the lifetime of the molecules is
considerably reduced to � 35 ms. This observation sug-
gests that the molecular decay is based on a process where
an atom tunnels to a site occupied by a molecule and
inelastically collides with it. These inelastic collisions
can, in principle, also happen between two molecules.
However, compared to an atom, a molecule has a much
lower tunneling rate, since it experiences twice the dipole
potential and has twice the mass of a single atom. Using
simple scaling arguments, for a molecule to have the same
tunneling rate as an atom, the lattice light intensity needs to
be more than 4 times smaller. This explains the compara-
tively long lifetime of the purified molecular samples. We
note that, if molecular decay is based on inelastic colli-
sions, its time dependence is intrinsically nonexponential.
However, exact modeling of the decay would be quite
involved and requires precise knowledge of atom or mole-
cule distributions in the lattice. Since these distributions
are not known to us, we simply base our estimates for the
molecular lifetimes on an exponential decay law.

Figure 2 shows the measured lifetimes of the molecules
for various lattice depths. For sufficiently high lattice
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FIG. 1 (color online). Decay of molecules in a 3D optical
lattice with a potential depth of �10� 2�Er. Shown is the
remaining fraction of molecules in purified (solid circles) and
unpurified (squares) samples as a function of hold time. The
continuous lines are exponential fits to the data indicating a
lifetime of 700 and 35 ms for purified and unpurified molecular
samples, respectively. In order to determine molecule numbers in
the unpurified sample, purification was performed at the end of
the hold time. The hold time was limited to below 400 ms due to
the heating up of the coils.
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depths, we observe a lifetime for the purified molecular
sample inversely proportional to the lattice depth (see
dashed line in Fig. 2). From this, we conclude that above
a lattice depth of about 12Er the tunneling of the molecules
is strongly suppressed, and the lifetime is limited by light
induced losses due to off-resonant transitions to an excited
molecular state which subsequently decays. Below this
value, decay is dominated by tunneling [19] and following
inelastic collisions. Thus, the molecular lifetime is maxi-
mized in a tradeoff between tunneling and light induced
losses. As already shown in Fig. 1, the presence of atoms
considerably reduces the lifetime of the molecules, even at
larger lattice depths. In the limit of vanishing lattice depths,
our experimental lifetimes decrease to values similar to
those observed in Refs. [6–10]. Figure 2 clearly demon-
strates that shielding of the molecules against inelastic
collisions grows with increasing lattice depth.

We now investigate the dynamics for both association
and dissociation of a single Feshbach molecule in a lattice
site during Feshbach ramping. This fundamental system is
of special interest since it can be theoretically treated
exactly and solved analytically [21]. We prepare a purified
sample of molecules at 1000 G in a lattice of 35Er depth.
We then ramp the magnetic field in a symmetric way across
the Feshbach resonance up to 1015 G and back (see Fig. 3).
Afterwards, purification is applied to remove atoms which
have not recombined to form molecules. In a last step, the
molecule number is measured. If dissociation and associa-
tion are not fully adiabatic in a conversion cycle, a loss of
molecules will result; e.g., during the association ramp, a
pair of atoms might not be converted into a molecule or
during dissociation the molecule might break up into two
atoms which, after tunneling, are located in separate sites.
For slow ramps, we observe small loss signals indicating
high adiabaticity for the dissociation-association cycle. In
order to increase the loss signal, to improve its accuracy,
and to check for consistency, we repeated this experiment
with a higher number of cycles (see Fig. 3). The two data

sets in Fig. 3(b) correspond to two different ramp speeds
(2� 103 G=s, 8� 103 G=s) and can be described by the
exponential functions 0:95n and 0:89n, respectively, where
n is the number of cycles. Thus, for a slow Feshbach ramp
(2� 103 G=s), we observe an unprecedented high effi-
ciency of up to 95% for the whole dissociation-association
cycle. For a faster ramp (8� 103 G=s), the efficiency
drops to 89%. We have taken care that light induced losses
have been corrected for in the data [Fig. 3(b)]. Our high
conversion efficiencies in the optical lattice are in strong
contrast to the low values of	10% observed previously in
a 87Rb BEC [10] which were presumably limited by strong
inelastic collisions. In our deep lattice, however, inelastic
collisions are suppressed.

After having determined the efficiency for the full
dissociation-association cycle, we now study dissociation
and association individually. Figure 4(a) shows the mea-
sured conversion efficiency of atom pairs to molecules for
different ramp speeds. The atom pairs were prepared by
creating a pure molecular sample and then dissociating the
molecules by slowly (2� 103 G=s) ramping backward
over the Feshbach resonance. Then, again, the magnetic
field was swept across the Feshbach resonance at various
speeds, and, finally, after switching off completely the
magnetic field, the remaining nonconverted atoms are
detected. The dashed line in Fig. 4(a) is based on a
Landau-Zener expression without adjustable parameters
[21] and is given by
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FIG. 3 (color online). (a) Scheme for measurement of conver-
sion efficiency, shown for 7 dissociation-association cycles. The
shaded areas indicate the application of our purification proce-
dure to remove atoms. The dashed line at 1007 G shows the
position of the Feshbach resonance. (b) Conversion efficiency
for a given number of complete dissociation-association cycles
for two different ramp speeds of the magnetic field. We measure
a conversion efficiency of 95% per cycle for the slow ramp and
89% per cycle for the fast ramp. The solid lines are described by
exponential fit curves as described in the text. The lattice depth is
35Er.
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FIG. 2 (color online). Molecular lifetimes for purified molecu-
lar samples (circles) and for unpurified samples (squares) as a
function of the lattice depth. For this measurement, the lattice
depth was reduced from 35Er to the given value after the
creation of the molecules. The dashed line is inversely propor-
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where p is the probability of creating a molecule, abg �
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p
the har-

monic oscillator length. Using the best estimate for our
trapping frequency of ! � 2�� �39� 3� kHz (corre-
sponding to a lattice depth of 35� 5Er), we get good
agreement with our data. We note that, even for the slowest
ramp speeds, the measured conversion efficiency never
reaches unity but levels off at 95%, in agreement with
the results in Fig. 3. This, however, does not exclude a
true unit conversion efficiency for atom pairs into mole-
cules, because it is possible that 5% of the atoms are not
grouped in pairs, e.g., due to nonadiabaticity in dissocia-
tion and tunneling. In order to facilitate the comparison of
the data distribution and theory, we have scaled the
Landau-Zener curve by a factor of 0.95 (dashed line).
The maximum controllable ramp speed (	105 G=s; see
Fig. 4) is limited by the performance of our current supply
for the magnetic field coils. The data point at 3� 106 G=s
was obtained by simply switching off the coil currents with
an external switch. The abrupt switching induces eddy
currents, which results in a less controlled ramp with a
large error margin. For fast switching, we measured a
conversion efficiency of 5� 5%.

In Fig. 4(b), we study the dissociation of a purified
sample of molecules. We measure the number of atoms
which populate the lowest band of the lattice after disso-
ciation. At low ramp speeds, Feshbach molecules get

adiabatically converted to pairs of atoms in the lattice
ground state. At higher speeds, molecules are energetically
lifted above the molecule threshold and can decay into
higher lattice bands or into the continuum. Assuming the
reversibility of the Landau-Zener transition, we use the
same theory curve as in Fig. 4(a). For higher ramp speeds,
we measure larger atom numbers than expected. This is
probably due to imperfections of our data analysis which
can overestimate the atom number in the lowest band by
adding in some atoms from higher bands.

To summarize, we have demonstrated that ultracold
Feshbach molecules can be created with high conversion
efficiency in a 3D optical lattice. After purification, we
observe long molecular lifetimes up to 700 ms. These
strong improvements over previous experiments open
promising perspectives for applications, e.g., in high reso-
lution molecular spectroscopy and quantum information
processing in optical lattices. They may also represent an
important step in the creation of a stable BEC of molecules
in their vibrational ground state.
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magnetic Feshbach resonance with laser light”. Nat. Phys., Vol. 5, pp. 339–
342, 2009.

[Berg 98] K. Bergmann, H. Theuer, and B. W. Shore. “Coherent population transfer
among quantum states of atoms and molecules”. Rev. Mod. Phys., Vol. 70,
pp. 1003–1025, 1998.

[Bert 06] J. F. Bertelsen and K. Mølmer. “Molecule formation in optical lattice
wells by resonantly modulated magnetic fields”. Phys. Rev. A, Vol. 73,
p. 013811, 2006.
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H. Ritsch, R. Hart, and H.-C. Nägerl. “Precision molecular spectroscopy
for ground state transfer of molecular quantum gases”. Faraday Discuss.,
2009.

[Davi 95] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S.
Durfee, D. M. Kurn, and W. Ketterle. “Bose-Einstein condensation in a
gas of Sodium atoms”. Phys. Rev. Lett., Vol. 75, pp. 3969–3973, Nov 1995.

[Deig 08] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange,
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R. Grimm. “Preparation of a pure molecular quantum gas”. Science,
Vol. 301, pp. 1510–1513, 2003.

[Hind 97] E. A. Hinds. “Testing time reversal symmetry using molecules”. Phys.
Scr., Vol. T70, pp. 34–41, 1997.

[Ho 83] T.-S. Ho, S. Chu, and J. V. Tietz. “Semiclassical many-mode Floquet
theory”. Chem. Phys. Lett., Vol. 96, pp. 464–471, 1983.

[Hsu 06] H. Hsu and L. E. Reichl. “Floquet-Bloch states, quasienergy bands, and
high-order harmonic generation for single-walled Carbon nanotubes under
intense laser fields”. Phys. Rev. B, Vol. 74, p. 115406, 2006.

[Huds 05] J. J. Hudson, H. T. Ashworth, P. C. Condylis, M. R. Tarbutt, B. E. Sauer,
and E. A. Hinds. “Towards a new measurement of the electron’s dipole
moment”. In: E. A. Hinds, E. Ferguson, and E. Riis, Eds., Proceedings
of the 17th International Conference on Laser Spectroscopy, pp. 129–136,
World Scientific Publ., Singapore, 2005.

[Ingr 56] D. J. E. Ingram. “Spectroscopy at radio and microwave frequencies”. J.
Electrochem. Soc., Vol. 103, pp. 124–125, 1956.

[Inou 98] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn,
and W. Ketterle. “Observation of Feshbach resonances in a Bose-Einstein
condensate”. Nature, Vol. 392, pp. 151–154, 1998.

[Jaks 02] D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller. “Creation
of a molecular condensate by dynamically melting a Mott insulator”. Phys.
Rev. Lett., Vol. 89, p. 040402, Jul 2002.

157



Bibliography

[Jaks 98] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. “Cold
bosonic atoms in optical lattices”. Phys. Rev. Lett., Vol. 81, p. 3108, 1998.

[Jaks 99] D. Jaksch. Bose-Einstein condensation and applications. PhD thesis,
Naturwissenschaftliche Fakultät der Leopold-Franzens-Universität Inns-
bruck, 1999.

[Joch 03] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Den-
schlag, and R. Grimm. “Pure gas of optically trapped molecules created
from fermionic atoms”. Phys. Rev. Lett., Vol. 91, p. 240402, 2003.

[Jone 06] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne. “Ultracold pho-
toassociation spectroscopy: Long-range molecules and atomic scattering”.
Rev. Mod. Phys., Vol. 78, p. 483, 2006.

[Kett 99] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. “Making, probing and
understanding Bose-Einstein condensates”. In: M. Inguscio, S. Stringari,
and C. E. Wieman, Eds., Bose-Einstein Condensation in Atomic Gases,
IOS Press, 1999.

[Kins 05] I. Kinski. Magnetic trapping apparatus and frequency stabilization of a ring
cavity laser for Bose-Einstein condensation experiments. Master’s thesis,
Freie Universität Berlin, 2005.

[Knoo 09] S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schoebel, H.-C. Nägerl,
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An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen meiner Dok-
torarbeit beigetragen haben: Johannes Hecker Denschlag, unter dessen ausgezeichneter
Betreuung ich diese Arbeit absolvieren konnte. Sein physikalischen Gespür und sein für
Fragen und Anliegen stets offenes Ohr haben wesentlich zum Gelingen dieses Projektes
beigetragen. Ebenso bei Rudi Grimm, der die Gruppe mit ausserordentlichem Einsatz
und großem Weitblick leitet, und so ihren weltweiten Ruf etabliert hat.

Besonderer Dank gilt auch Klaus, Gregor und Matthias, meinen Vorgängern als Dok-
toranden am Rubidium-Projekt. Von ihnen konnte ich unglaublich viel lernen, und
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