

Mathematik II für Chemie und Wirtschaftschemie (Bachelor) Fr 10-11(12): O27/123, O25/151, O25/648, N24/131 Übungsblatt 3, abrufbar ab 30.04.2008, Übung 09.05.2008

Die Ubungsblätter können von http://www.uni-ulm.de/theochem/lehre heruntergeladen werden.

Aufgabe 1: Grenzwerte: Darstellung von e

Es sei

$$A_n = \left(1 + \frac{1}{n}\right)^n.$$

Bestimmen Sie die 4 größten Terme von A_n für $n \to \infty$ mit Hilfe des Binomialsatzes. Bestimmen Sie mittels der größten 4 Terme eine Näherung für $\lim_{n\to\infty}A_n$ und geben Sie diese auf 2 Nachkommastellen an. Geben Sie (ohne Beweis) den exakten Wert von $\lim_{n\to\infty} A_n$ an.

Hinweis: Schreiben sie die ersten Terme der Reihe explizit auf.

Aufgabe 2: Taylorentwicklung einfacher Funktionen ohne Differentation

Bestimmen Sie die Taylorentwicklung folgender Funktionen um x_0 bis zur Ordnung n ohne die Funktionen abzuleiten. Verwenden Sie die im Skript angegebenen bekannten Taylorreihen.

(a)
$$f(x) = e^{-2x^2}$$
, $x_0 = 0$, $n = 8$

(b)
$$q(x) = \cos^2(x)$$
, $x_0 = 0$, $n = 5$

(a)
$$f(x) = e^{-2x^2}$$
, $x_0 = 0$, $n = 8$
(b) $g(x) = \cos^2(x)$, $x_0 = 0$, $n = 5$
(c) $h(x) = \frac{1}{1-x}$, $x_0 = -2$, $n = 3$
(d) $i(x) = \sqrt{16+x}$, $x_0 = 0$, $n = 2$

(d)
$$i(x) = \sqrt{16 + x}$$
, $x_0 = 0$, $n = 2$

Bestimmen Sie mit Hilfe der Näherung aus (d) $\sqrt{17}$ und vergleichen Sie ihr Ergebniss mit dem des Taschen-

Warum kann man nicht einfach x=16 in die Taylorreihe von $\sqrt{1+x}$ einsetzen? Wie lautet der Ansatz zur Näherung von $\sqrt{147}$?

Aufgabe 3: Grenzwerte: Taylorentwicklung vs. l'Hospital

Berechnen Sie folgende Grenzwerte auf zwei Wegen: Unter Verwendung von Taylor-Reihen und mit Hilfe der Regel von l'Hospital. Vergleichen Sie den Aufwand, den Sie auf den beiden Wegen haben.

(a)
$$\lim_{x \to 0} \frac{\sin^3 x}{x^3}$$
 (b) $\lim_{x \to 0} \frac{x}{e^x - 1}$

(b)
$$\lim_{x \to 0} \frac{x}{e^x - 1}$$

Und für alle, die immer noch nur L'Hôpital verwenden wollen, eine Zusatzaufgabe: $\lim_{x\to 0} \frac{2-x^2+\frac{x^4}{12}-2\cos(x)}{x^6e^x}$

Aufgabe 4: Taylorreihe mit dem Verfahren des unbestimmten Ansatzes

Bestimmen Sie mit dem Verfahren des unbestimmten Ansatzes die Taylorreihe der Funktion $f(x) = \sqrt{1 + x + x^2}$ an der Stelle $x_0 = 0$ bis zur dritten Ordnung einschließlich.

Aufgabe 5: Taylorentwicklung per Integration

Bestimmen Sie die Taylorreihe von $f(x) = \arctan(x)$ an der Stelle $x_0 = 0$, indem Sie zunächst die Reihe von f'(x) mit Hilfe der geometrischen Reihe bestimmen und diese dann integrieren. Wie lautet die Integrationskonstante?

(Tip: Integration und Summe können vertauscht werden. Lösung: $\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$)