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Abstract

Recently it was shown [Phys. Rev. Lett. 100, 230402 (2008)] that a combination of an exact stochastic decomposition of

non-Markovian dissipative quantum dynamics with the time-dependent semiclassical initial value formalism offers a powerful

tool to describe quantum Brownian motion in domains of parameter space where other approaches fail. In particular, low

temperatures, stronger friction, a wide range of spectral bath densities, and continuous nonlinear systems can be treated.

Details of this formulation including its numerical implementation and the impact of non-Markovian phenomena are discussed

for the exactly solvable case of a harmonic oscillator.
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1. Introduction

Brownian motion, that is the fate of a heavy particle

immersed in a fluid of lighter particles, is the proto-

type of a dissipative system coupled to a thermal bath.

The corresponding classical theory is well-established

and formulated in terms of generalized Langevin equa-

tions for stochastic trajectories or Fokker-Planck equa-

tions for phase space densities. Within this framework

weak and strong friction as well as processes in pres-

ence of colored noise have been studied. In contrast,

for a long time the quantum mechanical theory could

handle only a weak interaction between ”system” and

”bath” so that master equations for the reduced den-

sity matrix have been derived perturbatively. This type

1 Corresponding author. E-mail:joachim.ankerhold@uni-
ulm.de

of approach has been followed very successfully e.g. in

quantum optics [1].

Based on the work by Feynman and Vernon [2] it has

been shown in the 1980s how to take advantage of the

path integral representation to gain a formally exact

expression for the reduced density as a sum of forward

and backward paths, which is valid for arbitrary damp-

ing strength and temperature [3]. These two sets of

paths arise from the two time evolution operators in the

expression for the full density of the total compound,

i.e., W (t) = exp(−iHt/�)W (0) exp(iHt/�), where H

is the total Hamiltonian. In the reduced description the

influence of the bath emerges as time-nonlocal kernels

including also a coupling between forward and back-

ward paths. This feature, which is characteristic for

quantum theory, makes a direct evaluation of the path

integral impossible apart from the case of quadratic

systems (harmonic oscillator). Another consequence of
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the non-Markovian nature of quantum Brownian mo-

tion is that in general there exists no ”simple” (i.e.

tractable) equation of motion for the density.

Everything becomes simpler in the domains of weak

and strong dissipation, where, as mentioned above,

master equations have been in use in the former one and

the quantum-Smoluchowski equation in the latter one

[4]. In both cases though, non-Markovian effects disap-

pear due to a sort of coarse graining in time. The cen-

tral question thus arises: Is there any efficient method-

ology to attack the formally exact expression for the

density matrix directly? Progress in this direction has

been made in two ways. First, numerical schemes like

Quantum Monte Carlo approaches have been shown to

work for systems with a discrete Hilbert space (tight-

binding) [5]; second, it was shown that the path inte-

gral dynamics can be mapped exactly onto a stochastic

Liouville-von Neumann equation with complex noise

forces [6]. Equivalently, a system of two Schrödinger

equations coupled by two complex noise forces can

be formulated. Unfortunately, a direct numerical cal-

culation of these stochastic Schrödinger equations is

plagued by severe convergence problems [7].

There is thus need for a formulation of quantum

Brownian motion which can be employed efficiently,

treats the system-bath interaction exactly, and pre-

serves the quantum nature of the bare bath. In fact,

such a formulation has been developed recently in [8].

The basic idea is to apply an extremely accurate and

powerful semiclassical representation of the quantum

propagator in terms of phase-space coherent states [9]

to solve the stochastic Schrödinger equations. In ab-

sence of a bath this approach captures interferences

and coherences and, as a leading term in an asymptotic

series [10], can be extended to describe also deep quan-

tum tunneling [11]. This way, quantum Brownian mo-

tion appears for each realization of the complex noise

forces as a randomly driven system dynamics obtained

from stochastic orbits. Upon averaging over the noise

distributions the full density matrix is recovered. From

a semiclassical point of view this method is a type of

uniform approximation and thus free of caustics. From

the point of view of dissipative quantum dynamics

this Semiclassical Brownian Motion approach (SCBM)

starts from an approximation, a very accurate though,

of the bare system and treats the bath and its interac-

tion exactly. It is thus able to describe non-Markovian

phenomena, stronger friction, very low temperatures,

and a wide class of spectral bath densities. While the

practicability of the SCBM has been demonstrated in

[8], in this paper we give a more detailed account on its

numerical implementation and non-Markovian effects

by analysing the case of a damped harmonic oscillator.

For this model exact analytical results are known and

the SCBM is numerically exact as well.

In Sec. 2 we briefly recall the central results of

the Feynman-Vernon theory and the mapping onto

stochastic Schrödinger equations. The semiclassical

propagator is introduced in Sec. 3. Details about the

numerical implementation are described in Sec. 4. To

discuss the impact of non-Markovian effects, Sec. 6,

the well-known Markovian Caldeira-Leggett master

equation is specified in Sec. 5 .

2. Unraveling of the Feynman Vernon

Influence Functional

We start with the standard decomposition of the

total Hamiltonian

Ĥ = ĤS + ĤB + ĤI (1)

as a sum of a system part, that for reasons of simplic-

ity shall in the sequel depend on one degree of free-

dom x only, a bath part consisting of an infinity of har-

monic oscillators together with a bilinear interaction

between them. In case of a factorized initial density

with a bath residing in thermal equilibrium at tem-

perature T one derives a path integral expression for

the time-evolution of the reduced density matrix of the

form [3]

ρ(xf , x′
f , t) =

∫
dxidx′

iρ(xi, x
′
i, 0)

∫
D[x1]D[x2]

exp
{ ı

�
(SS[x1] − SS[x2])

}
F [x1, x2], (2)

where the two real time paths x1 and x2 run in time

t from xi and x′
i to xf and x′

f , respectively. They are

coupled by the influence functional, which takes the

form F [y, r] = exp(−Φ[y, r]/�) with

Φ[y, r] =
1

�

∫ t

0

du

∫ u

0

dv y(u)
[
L′(u − v)y(v)

+2iL′′(u − v)r(v)
]
+ iμ

∫ t

0

duy(u)r(u) , (3)
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where y = x1 − x2, r = (x1 + x2)/2 denote difference

and sum paths, respectively. The complex valued fric-

tion kernel L(t) = L′(t)+ ıL′′(t) is related to the force-

force auto-correlation function of the bath and com-

pletely determined by its spectral density J(ω) and in-

verse temperature β. The static susceptibility denoted

by μ = −
∫ ∞

o
duL′′(u)/(2�) is a property of the reser-

voir.

The above formula is an exact expression for the re-

duced density matrix. It has been the starting point

for further analytical treatments as well as numeri-

cal evaluations via path integral Monte Carlo tech-

niques [5]. With respect to the former ones perturba-

tive approaches for weak and strong friction, respec-

tively, have been put forward leading for weak dissi-

pation/high temperature particularly to the Caldeira-

Leggett master equation discussed below. An exact re-

formulation based on a stochastic unraveling of forward

and the backward paths has been achieved in [6]. This

procedure leads to

ρ(xf , x′
f , t) =

∫
dxi

∫
dx′

iρ(xi, x
′
i, 0)

×M [Kz1(xf , t; xi, 0)(Kz2(x′
f , t; x′

i, 0))
∗] , (4)

where M denotes the average over noise realizations zj

(j=1,2), with the noise augmenting the system actions

via

Szj [xj ] = SS [xj ] + μ

∫ t

0

duxj(u)2 +

∫ t

0

du xj(u)zj(u)

(5)

in the path integral expressions of the respective prop-

agators Kzj . This stochastic unraveling differs from a

similar one by Strunz et al. [12] through the appear-

ance of two noise variables, allowing for the elimination

of quantum memory effects.

Now, when representing a general initial density

operator through ρ̂(t = 0) = |Ψ1〉〈Ψ2| (or through

an ensemble of such projectors) one arrives at two

Schrödinger equations coupled via two noise forces,

i.e.,

i�|Ψ̇1〉 =

[
HS − ξ(t)x +

μ

2
x2 − �

2
ν(t)x

]
|Ψ1〉 (6)

i�|Ψ̇2〉 =

[
HS − ξ∗(t)x +

μ

2
x2 +

�

2
ν∗(t)x

]
|Ψ2〉, (7)

where ξ(t) = 1
2
[z1(t)+z∗

2(t)] and ν(t) = 1
�
[z1(t)−z∗

2(t)].

The reduced density matrix (2) is obtained exactly

by averaging ρ̂ calculated from equations (6) and

(7) for individual representations of the noise when

the correlations of ξ and ν reproduce the integral

kernel of the influence functional: M [ξ(t)ξ(t′)] =

L′(t − t′), M [ξ(t)ν(t′)] = (2i/�)Θ(t − t′)L′′(t − t′),
and M [ν(t)ν(t′)] = 0 (Θ denotes the Heaviside step

function).

Even though the above linear Schrödinger equations

capture quantum Brownian motion in an appealing

and transparent form, they are of limited use for prac-

tical calculations since individual samples do not stay

normalized. This in turn slows down convergence and

makes a direct sampling impractical [13,6]. One way

out is to impose norm conservation for each individual

noise realization. It was shown [6,7] that this condition

can be implemented while keeping the formulation ex-

act when one (i) replaces x → x− r̄ in the ν-dependent

terms in (6,7) with an arbitrary ”reference trajectory”

r̄(t) and (ii) modifies the noise probability measure ac-

cordingly, which is equivalent as to putting

ξ → ξ̃ = ξ −
∫ t

0

duχ(t − u)r̄u , (8)

with χ(u) = −Θ(u)L′′(u)/2� being the response func-

tion of the reservoir. In fact, with the choice r̄u =

〈Ψ1|x|Ψ2〉u, the diffusion of tr ρ̂ is eliminated. Unfortu-

nately, this does solve the problem only partially since

this mapping can lead to subtle mathematical difficul-

ties limiting the times for which numerical simulations

are stable [7]. However, there are two situations known

to be free of such instabilities, namely, linear systems

and the classical limit. The idea which we followed in

[8] was thus to combine the stochastic quantum dy-

namics with a semiclassical propagation scheme based

on coherent states, the so-called Herman-Kluk (HK)

representation of the quantum propagator [9].

3. Herman-Kluk Semiclassical IVR

It was shown recently in [10,11] that the quantum

mechanical propagator K = exp(−iHt/�) can exactly

be represented as an asymptotic series in � in terms of

phase space integrals, e.g. in the form

K(xf , t, xi, 0) =
∑
n≥0

�
n

∫
dpidqi

2π�
〈xf |gγ(pt, qt)〉

×Rn(pi, qi, t)e
iS(qi,pi,t)/�〈gγ(pi, qi)|xi〉 .(9)
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Here complex valued Gaussian wave packets 〈x|gγ〉 ∼
exp{− γ

2
(x − q)2 + i

�
p(x − q)} of fixed width param-

eter γ have been introduced, centered around the

initial phase space points pi, qi and the time-evolved

phase space points pt, qt, respectively. The contribu-

tion of each path is weighted by its corresponding

action S(qi, pi, t) and the pre-exponential factors Rn

are calculated recursively from R0, where the latter

one contains a complex valued combination of stabil-

ity matrix elements. When only the leading term in

the above series is retained (n = 0), one arrives at

the initial value representation for the semiclassical

propagator pioneered by Herman and Kluk [9], i.e.,

K(xf , t, xi, 0) ≈ KHK(xf , t, xi, 0). Already this lead-

ing order approximation has turned out to be an ex-

tremely powerful and accurate tool to capture the time

evolution of even high dimensional systems including

typical quantum phenomena such as interferences and

coherences. By taking into account next two order

contributions (n = 1, 2) also processes involving deep

tunneling can be described[11]. Here, we concentrate

on a one-dimensional problem without barrier and

thus work within the standard HK-approximation.

One now observes that the propagation of individual

samples of the stochastic processes (6) and (7) by the

HK propagator is, apart from simple potential terms of

quadratic order, equivalent to the time evolution of a

closed systems in presence of stochastic external forces.

The action reads as in (5) with the replacement of the

noise force described in (8). Obtaining the final density

matrix ρ(xf , x′
f , t) involves three Monte Carlo integra-

tions, two over the forward and backward phase spaces

of the semiclassical propagators and an additional one

over the noise trajectory distribution. The expectation

is that the asymptotic convergence properties of the

HK propagator for a closed systems [14] are ‘inherited’

by our stochastic samples.

How does the semiclassical dynamics correspond-

ing to the transformed versions of equations (6) and

(7) look like? Crucial is the fact that the complex

forces ξ and ν do not extend the phase space to com-

plex numbers. Namely, since the frozen Gaussians are,

up to a trivial phase factor, coherent states |α〉 =

e−|α2|/2 eαâ† |0〉 with

α =

√
γ

2

(
q +

ip

�γ

)
, (10)

it is obvious that complex values of q and p lead only to

states already described by a real-valued phase space.

Thus, the classical equations of motion derived from

(6) and (7) read (j=1,2)

d

dt
αj =

√
γ

2

(
pj

m
− i

�γ
V ′(qj) +

i

�γ
fj

)
(11)

with f1 = ξ̃ + �

2
ν and f2 = ξ̃∗ − �

2
ν∗, to be solved

for real qj and pj using (10). In the limit � → 0 and

upon integrating by parts in (8), the classical Langevin

equation is indeed recovered from equation (11).

Semiclassically, the reference trajectory is again ob-

tained by demanding that the ν-dependent terms in

equations (6) and (7) do not change the trace of the

sample. One then finds the simple condition

r̄u = (α1 + α∗
2)/

√
2γ . (12)

This definition of r̄u includes a single pair of semiclas-

sical trajectories so that it is suggestive to merge the

integrations over the two HK phase spaces and the

function space of noise trajectories ξ(t) and ν(t) into a

joint Monte Carlo sampling scheme.

4. Sampling strategy

The naive procedure to calculate the semiclassical

time evolution would be to generate first phase space

trajectories for an individual noise realization until the

HK-propagation is converged and only afterwards to

average over a sufficiently large number of noise real-

izations. Thereby, the three integrations are performed

via Monte Carlo sampling. However, this procedure

is not only not necessary, it is also not very efficient.

In practice, all three samplings can be combined such

that for each trajectory pair a separate noise sample is

generated and two phase space points for the forward

and backward trajectories are chosen. For this combi-

nation the semiclassical trajectories are evaluated and

the desired expectation values are computed. The re-

sults are then accumulated. Since each trajectory eval-

uation contributes to a different noise sample, the sam-

ple count is increased by the number required to con-

verge the semiclassical propagator, which is typically

on the order of 102 to 103 for a one dimensional system.

Using a single pair of semiclassical trajectories for

each noise sample also greatly simplifies the compu-

tation of the guide trajectory as already mentioned

above. For a harmonic system it can even be performed
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Fig. 1. Expectation value of position and variance for three
different noise samplings: naive sampling (solid), improved
sampling (dotted), improved sampling and guide trajectory
(dashed). Parameters given in Sec. 6

analytically. For N > 1 trajectory pairs per noise sam-

ple, either the wave function has to be computed nu-

merically before the position expectation value can

be obtained or N2 analytical exponentials have to be

computed. Fig. 1 shows a comparison of the conver-

gence properties for such a simple harmonic test case

(for details see below). The three curves were obtained

for the naive sampling, the combined sampling, and

for the combined sampling including a guide trajec-

tory. Obviously, the naive sampling is far from be-

ing converged. The general trend for longer times not

even closely matched, but rather the results are also

severely plagued by ”spikes”. In order to eliminate

these, sample and trajectory count have to be increased

tremendously. The combined sampling, however, im-

proves convergence significantly and acceptable results

can be obtained with only a moderate increase of the

number of trajectory pairs. Convergence can be at-

tained even faster by also including the guide trajectory

(12). This way, as seen in Fig. 1, numerical data basi-

cally coincide with the analytical result (not shown).

For anharmonic systems the combined sampling

with guiding trajectory is crucial to even approach

convergence (see [8]). For these potentials the pres-

ence of complex noise forces may lead to significant

imaginary components of the action. In theory these

imaginary parts average to zero. In practice how-

ever, one faces a problem similar to the dynamical

sign problem known from standard HK-propagations.

Since the sample count is finite and imaginary parts

of the action produce an exponentially large/small

contribution to the integrand, a specific sample with

an unusually large negative imaginary action may not

be compensated for by other samples. There are a

number of ways to deal with this situation. The idea

to simply increase the number of samples fails, as one

may expect, since it leads to a typically exponential

increase in computer time. A feasible scheme would be

to detect these ”pathological” samples (e.g. define a

limiting value for the imaginary component of the ac-

tion) and to remove them before adding up. However,

depending on the parameters of the calculation and

the potential considered, the fraction of such samples

can be larger than a few percent. Thus simply elimi-

nating their contribution might have significant and

unpredictable impact on the results.

A more subtle procedure is based on the observa-

tion that an imaginary part of the action is not just

a consequence of the chosen noise sample but also de-

pends strongly on the chosen initial phase space coor-

dinates. Thus, upon detecting that a certain trajectory

pair is of adverse character, one can keep the corre-

sponding noise sample and attach to it two newly gen-

erated phase space points. Even better, one can keep

both, noise sample and initial phase space points, and

interchange this set with another one corresponding

to a second adverse trajectory pair. Thus, neither the

statistics of the noise distribution nor the semiclassical

sampling of the initial phase spaces are altered. The

only effect of this procedure is the introduction of a

correlation between the sampling of the phase spaces

and the noise distribution. Explicit calculations with

and without this swapping procedure show though that

apart from the removal of ”spikes” due to adverse sam-

ples, there is no systematic effect introduced on the

time dependence of the physical observables.

5. Caldeira-Leggett master equation

For sufficiently elevated temperatures the exact path

integral expression (2) can be represented in an approx-

imate time evolution equation for the reduced density,

the so-called Caldeira-Leggett (CL) master equation

[17]. One crucial assumption is that the memory time

of the environment, i.e., the correlation time of the

noise forces, is small compared to the relaxation time
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scale. Accordingly, only Markovian properties of the

bath survive. The CL-master equation is thus a conve-

nient reference to study to what extent non-Markovian

effects influence the full quantum dynamics even in

ranges of parameter space beyond its strict applicabil-

ity. Specifically, one has

i� ˙̂ρ(t) = [HS, ρ̂(t)] +
η

2m

[
x, [p, ρ̂]+

]
− i η

�β
[x, [x, ρ̂]]

(13)

with the classical damping constant η = limω→0
J(ω)

ω

[J(ω) is the spectral density of the bath]. Apparently,

the quantum dynamics of the bare system is fully de-

scribed, while the bath has lost its quantum nature

completely so that it reacts instantaneously on the sys-

tem and retardation effects are absent. Further, asymp-

totically (for long times) the density matrix reduces

to an expression for the thermal equilibrium density

whose statistics of position and momentum are valid

only at higher temperatures.

6. Results and discussion

In the following we will highlight a few features of

the SCBM approach by studying the one dimensional

damped harmonic oscillator under varying environ-

mental parameters. The reason for this is twofold: On

the one hand exact analytical results for this system

are available for comparison and on the other hand

the HK-propagation becomes exact which allows for

carefully studying convergence properties of various

numerical algorithms. Specifically, the system poten-

tial is

V (x) =
1

2
mω2 x2 ,

where we set m = 1, ω = 1 for convenience in the se-

quel. The initial wave packet will be a Gaussian shifted

in coordinate space away from the minimum of the po-

tential by 〈x〉0 = 1 and with zero momentum. The

spectral density of the bath oscillators is taken to be

Ohmic with a choice of two different cutoff behaviors,

namely,

Jκ(ω) =
η ω

(1 + ω2/ω2
c )κ

with κ = 1, 2 , (14)

where the dimensionless coupling strength is denoted

by η and the cutoff frequency by ωc. The form J2 facil-

itates numerical computation as its narrower spectral

width allows for a larger time step to be chosen whereas

J1 simplifies the comparison with analytical results as

explicit evaluations of the general analytical expres-

sions are straightforward for a Drude-Lorentz type of

cutoff (see e.g. [16]). For all examples shown in the fol-

lowing, the cutoff frequency is chosen to be ωc = 10,

sufficiently far above the system frequency. Accord-

ingly, non-Markovian effects in the dynamics are as-

sumed to be basically absent at higher temperatures.

Other cutoff-procedures are possible as well, of

course. A necessary requirement is though that the

friction kernel L(t), or for the purpose of noise gener-

ation its Fourier transform, to be given in analytical

form or at least to be calculated numerically with only

modest computational effort. A rather practical limit

is furthermore imposed by implementing the conver-

gence improving properties of the guide trajectory. In

this case, the integral in Eq. (8) needs to be evaluated

at every time step.

We start by comparing various sampling strategies

as already discussed in Sec. 4 in Fig. 1. For this pur-

pose, the spectral density J2 was chosen together with

an inverse temperature β = 2.0 and a coupling strength

η = 0.2. We emphasize that the differences in the ap-

proaches towards convergence are not due to a higher

trajectory count. The data for all three graphs were

obtained with about 106 trajectory pairs so that the

improvements are sole results of a combined sampling

and an inclusion of a guide trajectory.

For any realistic system the spectral density has a

finite cutoff frequency. In Figs. 2, 3, and 4 we also

demonstrate the significance of choosing the correct

type of cutoff behavior. Once again the lower panel de-

picts the expectation value of position and the upper

ones its variance calculated within the SCBM scheme

for two different numbers of trajectory pairs. For com-

parison the analytical expressions from Ref. [15] for a

purely ohmic environment (ωc → ∞) as well as for a

Drude-Lorentz density J1 are shown. For all cases the

inverse temperature of the bath is β = 0.5 and the cou-

pling strength is η = 0.2. While in Fig. 2 differences

are hardly discernable, the detailed plots of Figs. 3 and

4 clearly reveal that the analytical results for a purely

ohmic bath deviate significantly from those with a fi-

nite cutoff at early but also at intermediate times. Fur-

ther, a fourfold increase of the trajectory count in the

SCBM scheme (upper panel of Fig. 4) improves conver-

gence substantially and basically reproduces the exact

data.
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Fig. 2. Expectation values of position and variance for a
harmonic oscillator gained with SCBM calculations: 4 · 106

trajectory pairs (solid), 1·106 trajectory pairs (dotted), and
analytical results [the latter ones without cutoff (dashed)
and with Drude cutoff (dash-dotted)]. Boxes indicate the
ranges of the blowups in Figs. 3 and 4
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Fig. 3. Same as Fig. 2, detail.

To quantify the errors incurred by invoking a high

temperature Markov approximation in form of the

Caldeira-Leggett master equation and to demonstrate

the accuracy of the SCBM scheme, we compare the

latter ones with analytical results and those obtained

by means of a finite difference implementation in po-

sition space of the CL master equation [for details

see Ref. [18]]. For the sake of comparability with the

analytical results we again select a Drude-Lorentz

cutoff J1. In Fig. 5 the second moment of coordinate

〈x
2
〉−

〈x
〉2

1413.51312.51211.511
1.96

1.94

1.92

1.90

1.88

1.86

t

〈x
〉

1413.51312.51211.511

0.3

0.2

0.1

0.0

Fig. 4. Same as Fig. 2, detail.

for three different temperatures and for each of the

three methods is shown. Even at a relatively high

temperature (upper panel, β = 0.1) the dynamics ac-

cording to the CL clearly deviates from the exact data

at all intermediate times. Since in this temperature

range the CL provides the correct asymptotic value

for the thermal equilibrium, these deviations must be

attributed to the non-Markovian nature of the exact

quantum dynamics. At lower temperatures also the

asymptotic behavior is no longer captured and the dy-

namics for intermediate times scales is strongly off the

exact data in amplitude and phase. The SCBM sim-

ulations provide extremely accurate results over the

whole temperature range. They were obtained with

5 · 106 trajectory pairs which requires a computation

time of a few hours on a desktop PC.

To summarize, we have shown that an improved

SCBM scheme (combined sampling and guide trajec-

tory) reproduces nicely the known analytical results

for the harmonic oscillator in a wide range of parame-

ters and far beyond the applicability of the CL master

equation. For anharmonic potentials analytical exact

expressions are no longer available and one can assume

that CL results are accurate only for narrow windows

of parameters. In contrast, as already demonstrated in

[8], the SCBM can be employed efficiently also in do-

mains of parameter space where no other approximate

method is known to work. It remains to be seen how

substantial deviations are quantitatively. Apart from

this point, the SCBM scheme provides a level of accu-

racy where the form of the bath spectral density mat-
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Fig. 5. Second moment of the density 〈x2〉: β = 0.1 (top
panel), β = 1 (middle panel), and β = 10 (bottom panel).
SCBM calculations (solid line), analytical results (dotted),
and Caldeira-Leggett (dashed) (η = 0.4).

ters up to high frequencies on the order of the cutoff

frequency. It can thus be used as a powerful tool to

sensitively probe the quantum dissipative dynamics for

various models of the environment.
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