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Processes involving quantum tunneling can be found in a huge variety of physical and
chemical systems, ranging in length from the mesoscopic scale of a few microns to the
subatomic scale of a few fermi. It has been realized already three decades ago that thereby
the interaction of the tunneling degree of freedom with environmental degrees of freedom
plays a crucial role. Namely, any realistic description has to account for the fact that a
purely isolated system is always an idealization, an issue which tends to become more and
more relevant with the growing complexity of the system and particularly with increasing
system size. A quantitative understanding of experimental observations must include the
presence of e.g. electromagnetic modes in electrical circuits, vibrational modes in molecular
aggregates, or phonon backgrounds in solid state systems. Moreover, as a genuine quantum
effect tunneling processes serve as paradigm to analyze the boundary between the microscopic
and the macroscopic world or at least to elucidate how the latter one emerges from the former
one.

Experimental studies started in the 1980s mainly in the new field of mesoscopic physics
with the detection of the switching out of the zero voltage state in Josephson junctions. In
these systems the phase difference between the two superconducting reservoirs is a collective
degree of freedom the physics of which is equivalent to that of a fictitious particle in a
tilted periodic potential. The tunneling of this phase out of one of the metastable wells,
then coined macroscopic quantum tunneling, attracted a substantial amount of research
and triggered theoretical developments to describe tunneling in open systems. Presently,
advanced fabrication techniques have led to the design and tailoring of quantum systems
in atomic, molecular, and solid state physics which allow for the observation of quantum
effects in general and tunneling in particular with unprecedented accuracy. In fact, tunneling
processes have even been exploited as sensitive detection mechanisms close to the quantum
limit [1]. Theory is again challenged to provide a deeper understanding of the interaction of
these systems with their surrounding.
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434 Chapter 15. Tunneling in open quantum systems

Here, we give a brief overview of basic ideas and theoretical concepts for tunneling in pres-
ence of dissipation, established ones and recent developments, and illustrate them through
specific examples. A formally exact description of the dynamics of dissipative quantum sys-
tems is given in terms of path integrals. The explicit evaluation of this expression, however,
is even numerically possible only in few cases, which serve as benchmark results for approx-
imate approaches. In the context of tunneling rates there are basically two situations where
simplifications can be achieved. In one case the coupling to the environment is sufficiently
strong so that on the reactant side of the tunneling system a local thermodynamic state
is preserved over long periods of time. Then, thermodynamical methodologies apply and
heavily rely on semiclassical techniques to treat imaginary time path integrals. Another case
is the domain of weak friction and elevated temperatures, where thermodynamic methods
fail, but approximate equations of motion can be derived from the path integral expression.
Again semiclassical techniques are of importance to provide explicit expressions for decay
rates. This type of approach can also be extended to systems driven by time-periodic forces
where escape over and tunneling through dynamical barriers occurs.

15.1 Dynamics of dissipative quantum systems

Dissipative quantum systems are described with system+reservoir models [2, 3], where the
position q of a system with potential V (q) is bilinearly coupled to positions xα of environ-
mental degrees of freedom. Typically, the number of these reservoir degrees of freedom is
macroscopically large and they are assumed to reside in thermodynamic equilibrium at in-
verse temperature β = 1/kBT . In this situation the relevant system degree of freedom is
effectively subject to fluctuating forces which obey Gaussian statistics. It is thus possible to
mimic the reservoir by a quasi-continuum of harmonic oscillators, independent of its actual
microscopic realization. In turn, all properties of the bath are captured by the first and the
second cumulants of the bath-force interacting with the system.

Accordingly, one considers a Hamiltonian of the form H = HS +HR +HI with a system
part HS, a reservoir HR and an interaction HI , i.e.,

HS =
p2

2m
+ V (q) (15.1)
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∑
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where the translational invariant form of the coupling between system and reservoir avoids
coupling-induced potential renormalizations. The dynamics of the relevant system is de-
scribed by the reduced density operator with the environmental modes traced out

ρ(t) = TrR

{
e−

i
~

HtW (0)e+ i
~

Ht
}

(15.2)

and with W (0) being the initial state of the total compound. The only non-perturbative
way to deal with the elimination of the bath degrees of freedom is to apply the path integral
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approach. The coordinate representation of (15.2) with ρ(qf , q
′
f , t) ≡ 〈qf |ρ(t)|q′f〉 follows as

ρ(qf , q
′
f , t) =

∫
dqidq

′
i d~xfd~xid~x

′
i G(qf , ~xf , t, qi, ~xi)〈qi, ~xi|W (0)|q′i, ~x ′

i〉G(q′f , ~xf , t, q
′
i, ~x

′
i)

∗

(15.3)
where the ∗ means complex conjugation and ~x collects the xα. The time dependent transition
amplitudes (propagators) on the rhs are expressed as

G(qf , ~xf , t, qi, ~xi) =

∫
D[q] D[~x] eiS[q,~x]/~ (15.4)

with the total action S = SS +SR +SI according to the three parts of the Hamiltonian (15.1).
The sum goes over all paths running in time t from q(0) = qi, ~x(0) = ~xi to q(t) = qf , ~x(t) =
~xf . To carry out all integrations over the bath degrees of freedom in (15.4) explicitly, the
initial state must be specified.

In the ordinary Feynman-Vernon theory [4] this state is assumed to be a factorizing state,
W (0) = ρS(0) exp(−βHR)/ZR (ZR is the bath partition function), so that each one, system
and equilibrated bath, lives in splendid isolation at t = 0. While this assumption may be
justified in the weak damping/high temperature limit or in certain experimental situations,
in general, it fails particularly for condensed phase systems and for moderate to strong
friction and/or lower temperatures. A more general approach is to work with correlated
initial states [5], i.e. W (0) =

∑
j Oj exp(−βH)O′

j/Z with preparation operators Oj and O′
j

acting onto the system degree of freedom only and the total partition function Z. In fact,
the corresponding classical model can be shown to reproduce the well-known generalized
Langevin equation.

To keep the formulation transparent we focus in the sequel on the case where the prepa-
ration operators depend exclusively on coordinate and refer to [3, 5] for generalizations. As
an example think about a position measurement with a Gaussian slit, in which case the
preparation operators are Gaussian weighted projection operators onto position. Hence, one
has

ρ(qi, q
′
i, t = 0) = ρβ(qi, q

′
i)λ(qi, q

′
i) , (15.5)

with the preparation function λ(q, q′) =
∑

j〈q|Oj|q〉〈q′|O′
j|q′〉 and the reduced thermal equi-

librium density ρβ = TrR{exp(−βH)}/Z. Accordingly, in (15.3) the initial state is rep-
resented as a path integral in imaginary time (Euclidian path integral), which sums over
system and bath paths connecting the respective endpoints in the time interval ~β.

Having fixed the initial state, the integrations over the bath degrees of freedom in (15.3)
can now be performed exactly. One finds

ρ(qf , q
′
f , t) =

∫
dqi dq

′
i J(qf , q

′
f , t, qi, q

′
i) λ(qi, q

′
i) , (15.6)

where the propagating function J(·) is a threefold path integral over the system degree of
freedom only

J(qf , q
′
f , t, qi, q

′
i) = Z−1

∫
D[q] D[q′] D[q̄] eiΣ0[q,q′,q̄]/~ 〈eiΣI [q,q′,q̄,~x,~x′,~̄x]/~〉R . (15.7)

The two real time paths q(s) and q′(s) connect in time t the initial points qi and q′i with



436 Chapter 15. Tunneling in open quantum systems

-

( - )

( )

( )

Re

Im

Figure 15.1: Real and imaginary time paths in the complex time plane Z = s−iτ contributing
to the propagating function (15.7).

end points qf and q′f , while the imaginary time path q̄(σ) runs from qi to q′i in the interval
~β (cf. fig. 15.1). The contribution of each path is weighted with the total bare action
Σ0 = SS[q]−SS[q′] + iS̄S[q̄] (S̄ denotes the Euclidian action) and with the expectation value
〈eiΣI/~〉R of the coupling ΣI = SI [q, ~x] − SI [q′, ~x ′] + iS̄I [q̄, ~̄x] with respect to the equilibrium

distribution of the reservoir. According to (15.1) one has e.g. SI [q, ~x] =
∫ t

0
dsq(s)ξ(s) −

µ
∫ t

0
dsq(s)2 with the bath force ξ =

∑
α cαxα and µ =

∑
α c

2
α/(mαω

2
α). Hence, 〈eiΣI/~〉R

is the generating functional of the thermal distribution of the bath. For the harmonic
model considered here, the first cumulant vanishes 〈ξ(t)〉R = 0 and one obtains the so-called
influence functional 〈eiΣI/~〉R = e−Φ/~ with

Φ[q̃] =

∫
dz

∫

z>z′
dz′ q̃(z)K(z − z′) q̃(z′) +

i

2
µ

∫
dzq̃(z)2 . (15.8)

The ordered time integration is understood along the contour (fig. 15.1): z = s for s from
t→ 0, z = −iτ for τ from 0 → ~β, z = −i~β + s for s from 0 → t with

q̃(z) =

{
q′(s) for z = s 0 ≤ s ≤ t
q̄(τ) for z = −iτ 0 ≤ τ ≤ ~β
q(s) for z = −i~β + s 0 ≤ s ≤ t

. (15.9)

The effective impact of the bath is completely controlled by the second cumulant K(z) =
〈ξ(z)ξ(0)〉R/~, i.e.,

K(z) =

∫ ∞

0

dω

π
I(ω)

cosh[ω(~β − iz)]

sinh(ω~β/2)
, (15.10)

where I(ω) = (π/2)
∑

α c
2
α/(mαωα) δ(ω−ωα) denotes the spectral density of the environment.

In particular, for real times the kernel K(s) = K ′(s) + iK ′′(s) is related to the macroscopic
damping kernel entering the classical generalized Langevin equation

γ(s) =
2

m

∫ ∞

0

dω

π

I(ω)

ω
cos(ωs) (15.11)
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via K ′′(s) = (M/2)dγ(s)/ds and K ′(s) →Mγ(s)/~β in the classical limit.

The expression (15.6) is a formally exact result for the time dependent reduced dynamics.
Its explicit evaluation, however, is very challenging particularly for processes involving quan-
tum tunneling. Namely, due to the non-local time interactions mediated by the reservoir
and captured by the influence functional, in general, a time-local evolution equation for the
reduced density matrix does not exist. In this situation, progress has been made in basically
three directions: (i) application of numerical approaches as e.g. quantum Monte Carlo tech-
niques, which in principle provide numerically exact results but are plagued by the so-called
sign problem, (ii) derivation of approximate time evolution equations from the exact path
integral expression in certain ranges of parameter space, (iii) development of semiclassical
techniques according to the WKB-machinery.

While approach (i) has been used very successfully to describe e.g. the dynamics of tight-
binding systems [3], for tunneling in continuous systems it faces two interconnected problems.
Namely, one needs to consider the dynamics on sufficiently long time scales and with high
accuracy to extract exponentially small tunneling rates. To meet these criteria simultane-
ously, is very demanding and computationally time-consuming. Practically, only very few
systems have thus been analyzed. Approach (ii) leads to various types of master equations
in the complementary domains of weak [6] and strong friction [7]. In both cases tunneling
rates have been derived. Approach (iii) sounds very appealing since path integrals offer a
natural starting point for an ~-expansion. Unfortunately, a direct semiclassical evaluation
of the time-dependent density (15.6) is not feasible. While the minimal action paths can be
determined at least numerically, the standard strategies to relate the Gaussian fluctuations
around them to the corresponding minimal action or to an equation of motion (Gelfand-
Yaglom) do not apply due to the bath induced time retardation and time irreversibility.
Moreover, a systematic ~-expansion is not straightforward since the minimal action paths do
not reproduce in the classical limit the classical Langevin equation [3]. If one keeps in mind
though that in condensed phase systems tunneling often occurs from a thermal state on the
reactant side, a very powerful semiclassical technique has been developed based purely on
the imaginary time path integral representation of the partition function. This formalism,
known as the imaginary part of the free energy method (”ImF”) [3,8,9], requires sufficiently
high energy barriers and sufficiently strong friction or low temperatures.

In the sequel, we thus proceed as follows: we first consider a case, where the complete
tunneling dynamics can be obtained, namely, a situation where tunneling is restricted to
the parabolic top of a barrier potential. This result is already non-trivial and confirms
corresponding predictions obtained in the 1980s within the ImF technique. The latter ap-
proach will be introduced in Sec. 15.3 including its recent generalization to non-Gaussian
baths. Section 15.4 deals with semiclassical type of time evolution equations applicable in
the regime of low friction and moderate temperatures, where the ImF approach fails. This
formulation can be extended to extract rates for dynamical tunneling in driven systems close
to a bistability, which have been implemented lately as highly sensitive detectors.

15.2 Barrier dynamics in real-time

We consider a quantum particle in a metastable potential subject to a thermal environment.
Initially the system is prepared in a local thermal equilibrium in the well. Then, for a
sufficiently high barrier potential Vb ≫ kBT, ~ω0 the dynamics of the reduced density will
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approach a steady state within a plateau range of time from which the escape rate can be
obtained. For sufficiently high temperatures and sufficiently strong dissipation this steady
state distribution coincides in the well region with the local thermodynamic state and de-
viates from it only in a boundary layer around the barrier top. Accordingly, the tunneling
dynamics is obtained from the time evolution in an inverted harmonic potential and from
the thermodynamic state in the harmonic well, both situations, for which the three-fold path
integral (15.6) can be solved exactly [10].

To be specific, let us consider an archetypical metastable well potential

V (q) =
mω2

0

2
q2

(
1 − 2q

3qb

)
(15.12)

with a harmonic well around q = 0 with frequency ω0 and a barrier top with energy Vb =
V (qb) located at q = qb with frequency −ω2

b ≡ −ω2
0. The initial state is a thermal state

restricted to the left of the barrier top

ρ(xi, ri) = ρβ(xi, ri) θ(qb − ri) , (15.13)

where for convenience we introduced sum and difference coordinates r = (q + q′)/2 and
x = q − q′, respectively, and θ denotes the step function. From the imaginary time path
integral one first finds the density distribution around the parabolic barrier top as

ρ
(b)
β (x, r) =

1

Z
√
ω2

0mβΛb

√
m

2π~2β

( ∞∏

n=1

ν2
n u

(b)
n

)
exp

[
−βVb −

(r − qb)
2

2Λb

− Ωb x
2

2~

]
(15.14)

with the ”variances”

Λb =
1

mβ

∞∑

n=∞

u(b)
n , Ωb =

m

β

∞∑

n=−∞
(|νn|γ̂(|νn|) − ω2

b )u(b)
n (15.15)

which contain the Matsubara frequencies νn = 2πn/~β and u
(b)
n = 1/[ν2

n − ω2
b + |νn|γ̂(|νn|)].

Friction enters through the Laplace transform γ̂(z) of the classical damping kernel γ(t)
(15.11). As a function of temperature Λb displays a non-trivial behavior, which can already be

read off from its non-dissipative limit Λ
(0)
b = −(~/m) coth(ωb~β). Apparently, with lowering

temperature Λ
(0)
b vanishes for the first time at a critical temperature T

(0)
c = ~ωb/(πkB) which

is twice the non-dissipative crossover temperature T0 introduced below. The effect of friction

is to push the critical temperature towards lower temperatures Tc < T
(0)
c . Physically, at Tc

the local harmonic approximation for the equilibrium distribution (15.13) breaks down even
in the close vicinity of the barrier top and the global shape of the potential (15.12) must be
taken into account.

Now, starting with this initial state the density matrix ρ(xf , rf , t) reaches for longer times
a quasi-stationary state , the so-called flux state, which can be cast into the form

ρfl(xf , rf ) = ρβ(xf , rf ) gfl(xf , rf ) , (15.16)

where

gfl(x, r) =
1

2
erfc

[
(−r + qb + ix~|Λb|ωR/m)/

√
2|Λb|

]
(15.17)
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Figure 15.2: Distribution g(x, r) describing deviations from thermal equilibrium in (15.16).
Shown is the diagonal part gfl(0, q) for various temperatures ωb~β =0.1 (dashed), 1 (dotted-

dashed), and 2 (solid) for ohmic friction with γ/ωb = 1. Position is scaled with
√

~/mωb.

describes deviations from the equilibrium state around q = qb on the length scale lfl =
√

2|Λb|
(see fig. 15.2). This state is approached on time scales large compared to the inverse of the
Grote-Hynes frequency ωR, which is the largest positive root of ω2

R + ωRγ̂(ωR)− ω2
b = 0 and

captures the local real-time dynamics around the barrier top. Accordingly, the steady state
reduces to the thermal state to the left of the barrier top but within the parabolic range
of the potential if lst is sufficiently smaller than the anharmonicity length scale qb. This in
turn provides the range of validity of calculations based on local harmonic properties (see
the ImF method discussed in the next Section). Roughly speaking, for a given temperature
above the critical temperature Tc friction must be sufficiently strong. Then, deep inside the

well around q = 0 one reaches the thermal state of a harmonic oscillator ρ
(0)
β (x, r) obtained

from ρ
(b)
β (x, r) upon replacing ωb → iω0 and putting qb = Vb = 0. To the right of the barrier

g → 0, thus describing an exponentially decreasing population on the product side. The
escape rate out of the well is given as the probability flux

Jfl =
1

2m
〈pδ(q − qb) + δ(q − qb)p〉fl (15.18)

with respect to the flux state and normalized to the population in the well. The latter one
follows from identifying the normalization Z in (15.14) with the harmonic partition function
in the well. This way, the escape rate is found to read Γ = Γcl fq with the classical rate
Γcl = (ω0ωR/2πωb) exp(−βVb) and the quantum factor

fq =
∞∏

n=1

u
(b)
n

u
(0)
n

=
∞∏

n=1

ν2
n + ω2

0 + νnγ̂(νn)

ν2
n − ω2

b + νnγ̂(νn)
(15.19)

describing the impact of quantum fluctuations. For high temperatures one has fq → 1 and the
barrier escape is purely due to thermal activation over the barrier. For lower temperatures
fq > 1 so that barrier escape is enhanced partially due to zero point fluctuations in the
well, partially due to tunneling through the top of the barrier. At the so-called crossover
temperature T0, however, where ν2

1 − ω2
b + ν1γ̂(ν1) = 0, the rate expression (15.19) breaks
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down. For instance, for ohmic friction γ̂(z) = γ one derives from the positive solution to

λ2
0−ω2

b +λ0γ = 0 that T0 = ~λ0/2πkB. For vanishing friction this leads to T
(0)
0 = ~ωb/2πkB =

T
(0)
c /2. Interestingly, while for temperatures below the critical temperature Tc the steady

state distribution is determined by global properties of the potential, the escape process
is dominated by tunneling only below the crossover temperature T0 < Tc [11, 12]. Both
temperatures are lowered with increasing friction corresponding to the fact that dissipation
tends to drive a quantum system back towards the classical regime even though the reservoir
is quantum mechanical in nature as well.

To calculate tunneling rates within a dynamical calculation for temperatures below the
crossover temperature is a challenging and yet unsolved problem. The crucial point is that
even for non-dissipative systems a semiclassical expression for the time evolution operator
(15.4) in the long time limit where deep tunneling occurs, is not known. Some progress has
been made by analyzing the phase space dynamics of minimal action paths in the complex
plane [7, 11,12] or by using initial value representations for the quantum propagator [13].

15.3 Thermodynamical approach

Physically, a full dynamical treatment is not always necessary. It seems intuitively clear that
this is the case if the state from which tunneling occurs remains close to a local thermal
equilibrium. The most prominent of such a thermodynamic approach is the imaginary part
of the free energy method (”ImF”) [3,8,9], which applies over the whole temperatures range
and is based upon a semiclassical treatment of imaginary time path integrals. In the range
where it applies, it provides an extremely elegant and powerful formulation.

15.3.1 General formulation and Gaussian heat baths

The underlying idea of the ImF method is this: Inside a metastable well quasi-energy levels
ǫn = En − i~Γn/2 exist the finite life-time of which are related to imaginary parts Γn with
En ≫ ~Γn. Equivalently, in a scattering experiment such states appear as resonances with
finite widths. Hence, the partition function of the unstable system is (formally) calculated
as

Z =
∞∑

n=0

e−βǫn ≈
∞∑

n=0

e−βEn − i
~β

2

∑

n=0

Γne−βEn .

Here, for energies near and above the barrier, the sum is taken as an integral. Obviously,
the imaginary part in Z is proportional to the thermally averaged decay rate. In the non-
dissipative case a careful WKB treatment proves [8] that

Γ = −2

~
µ(T ) ImF (15.20)

with the free energy F = − lnZ/β and a temperature dependent prefactor µ(T ) with µ(T ≥
T0) = T0/T above and µ(T < T0) = 1 below the crossover temperature T0 = ~ωb/2πkB. It
is not a priori clear that the relation (15.20) also applies to finite dissipation (with T0 taken
as the crossover temperature for finite friction) and, in fact, a rigorous proof has not been
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given yet. Qualitatively, one can at least formulate a necessary condition: a thermodynamic
approach is supposed to be valid when a thermal state is preserved in the well region over
periods of time long compared to intrawell relaxations. For temperatures above Tc the ImF
produces results identical to those derived in the previous Section within the full dynamical
calculation. It is thus applicable if friction is sufficiently strong, but certainly fails for weak
dissipation where the steady state broadens in position space to cover the entire well domain.
For temperatures far below T0 the population is confined to the ground state in the potential
well so that even for weaker dissipation the method applies. All experimental results obtained
so far are in complete agreement with its theoretical predictions which indicates that the
ImF approach provides at least an extremely accurate approximation to a full dynamical
theory.

The starting point is the representation of the partition function of the composite system
in terms of Euclidian path integrals. Upon eliminating the reservoir degrees of freedom along
the lines described in Sec. 15.1 one has

Z =

∮
D[q̄] e−S̄S [q̄]/~ 〈e−SI [q̄,~̄x]/~〉R , (15.21)

where the integral sums over all periodic paths in the interval ~β. As above, the expectation
value 〈e−SI [q̄,~̄x]/~〉R can explicitly be evaluated for a Gaussian bath distribution, i.e. for
reservoirs consisting of harmonic modes. In this case one obtains the influence functional
(15.8) for z = iτ, τ ∈ [0, ~β] and 〈e−SI [q̄,~̄x]/~〉R = exp(−Φ̄[q̄]/~). The remaining integral over
the system paths with the effective action Σ̄ = S̄S + Φ̄ is then evaluated in a semiclassical
fashion. In contrast to the conventional recipe, however, exponentially small imaginary
parts must be retained against dominating real parts since the imaginary parts determine
the escape rate. The fact that the partition function carries an imaginary contribution is
a consequence of the instability of the system and follows from a proper steepest descent
evaluation of the fluctuation path integral around the minimal action paths. For T > T0

the system supports only the trivial minimal action paths q0(τ) = 0 with Σ̄[0] = 0 and
qb(τ) = qb with Σ̄[qb] = ~βVb. Certain fluctuations around the latter path are unstable and
must be treated via an analytical continuation procedure [9]. Eventually, this reproduces
the result (15.19) that diverges at T0. The fact that the full dynamical approach discussed
in the previous Section is strongly influenced by anharmonic quantum fluctuations already
at the higher temperature Tc, while this temperature does not explicitly appear in the final
rate expression (15.19), indicates that the ImF calculation and the dynamical calculation
deviate in the temperature range between Tc and T0. These discrepancies are small and
vanish for temperatures below T0 [12], where the path integral (15.21) is dominated by the
contribution of a newly emerging periodic orbit in the inverted barrier potential, the so-
called bounce q̄B(τ) [9]. Its explicit trajectory must be calculated numerically as well as its
corresponding minimal action SB ≡ Σ̄[q̄B] ≪ ~βVb. It can be shown that the bounce is again
an unstable orbit giving rise to an imaginary contribution to the partition function. Hence,
one arrives at

Γ =

√
SB

2π~

√
det[L0]

det ′[LB]
e−SB/~ . (15.22)

Here, the first factor accounts for a zero-mode of the bounce orbit related to its invariance
against phase shifts q̄B(τ) → q̄B(τ + τ0). The operators L0 and LB correspond to the second
order variational operator of the effective action Σ̄[q] around the trivial periodic orbit at the
well bottom and the bounce orbit, respectively. The prime indicates that the zero mode has
to be omitted. While explicit results can only be obtained numerically, see for instance [9],
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Figure 15.3: Quantum tunneling rate vs. inverse temperature for the potential (15.12)) and
various ohmic friction strengths γ/ω0 = 0 (top), 1 (middle), 2 (bottom). Barrier height is
Vb/~ω0 = 5 and the thick straight line depicts the classical result.

approximate ones can be given for weak dissipation and for vanishing temperature. In this
case one has Γ = Γ0 Y2 with the WKB tunneling rate for vanishing dissipation Γ0 and a
dissipative factor stemming from the influence functional evaluated along the zero-friction

bounce path q̄
(0)
B , i.e.,

Y2 = exp

[
−1

2

∫ ∞

−∞
dτ

∫ ∞

−∞
dσq̄

(0)
B (τ)k(τ − σ) q̄

(0)
B (σ)

]
. (15.23)

The imaginary time kernel is related to the second cumulant K(iτ) of the bath distribution
(15.10) via k(τ) = µ : δ(τ) : −K(iτ) with the static contribution µ = 2 lim~β→0K(0) and the
periodically continued δ function : δ(τ) :=

∑
n δ(τ − n~β). This dissipative factor thus adds

to the exponential of the bare tunneling rate which contains the bare bounce action S̄S[q̄
(0)
B ].

It can be shown that the exponential in (15.23) is always positive so that dissipation due to
position-position coupling always suppresses tunneling. In case of the metastable potential
(15.12) and for ohmic friction the explicit evaluation gives

Γ0 ∝ e−36Vb/(5~ω) , Y2 = e−162ζ(3)Vbγ/(π3ω2
0) . (15.24)

A typical Arrhenius-plot [ln(Γ) vs. inverse temperature] is shown in fig. 15.3. The changeover
from classical thermal escape to quantum tunneling appears for stronger friction at lower tem-
peratures and is also smeared out. At the same time friction suppresses tunneling substan-
tially according to the explicit dependence of the bounce action on dissipation [cf. (15.24)].

These and further predictions have been verified experimentally in Josephson junction (JJ)
devices [14]. We also note that alternative formulations, e.g. multi-dimensional transition
state theory, are completely equivalent to the ImF method and provide identical results.
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V
Ib G

CJ,EJ

Figure 15.4: Electrical circuit with a mesoscopic conductor G in parallel to a JJ with capac-
itance CJ and coupling energy EJ biased by an external current Ib.

15.3.2 Extension to reservoirs with non-Gaussian fluctuations

The results discussed so far assume a heat bath environment which obeys Gaussian statistics.
As already pointed out, for a large majority of experimentally relevant situations this is
indeed an accurate description. In the last years, however, reservoirs with non-Gaussian
characteristics have attracted substantial interest in the context of current noise generated
by mesoscopic conductors (typically voltage biased) [15] such as tunnel contacts, atomic
point contacts, and ballistic wires, to name but a few. In fact, it has been shown that higher
than second order current cumulants carry information about the transport process that
cannot be gained from usual current-voltage measurements (IV-curves). The granularity of
the elementary charge carriers gives rise to non-Gaussian deviations from the mean current,
e.g. in the simplest case of a tunnel junction corresponding to Poissonian noise statistics.
While this concept of ”full counting statistics” is fascinating and has also interesting relations
to photon counting in quantum optics, the detection of higher order current cumulants is
very challenging due to small signals and strict filtering demands. As we have seen above for
Gaussian noise, escape rates depend very sensitively on noise produced by the surrounding,
particularly in the quantum regime. Hence, the switching out of the zero-voltage state in JJs
has been proposed as detection process. Indeed, very recently the third cumulant produced
by a tunnel junction has been retrieved from the asymmetry of the switching rate with the
JJ being operated in the classical regime of over-the-barrier-activation. The extension to the
tunneling regime, however, is not easy since the second order cumulant of current noise gives
rise to additional heating. One proposal to overcome this difficulty has been discussed in [16]
(the corresponding circuitry is sketched in fig. 15.4): the noise generating element is placed
in parallel to the JJ so that only equilibrium current fluctuations reach the junction. No net
current flows through the conductor and due to time reversibility all odd order cumulants
vanish so that direct access to higher order even cumulants is obtained.

The tunneling rate at zero temperature is determined by the ImF -recipe with the repre-
sentation of the partition function as specified in (15.21). The reservoir distribution is given
by the current distribution in equilibrium and the coupling between the detector degree of
freedom and the current noise is assumed to be weak. This way, the tunneling rate is formally
given by

Γ = Γ0 〈e−SI [θ
(0)
B

/2,I/e]/~〉G (15.25)

with the non-dissipative bounce orbit θ
(0)
B and the current operator I of the conductor G.

Note that the factor 1/2 appears in SI since according to the second Josephson relation
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VJ = (~/e)θ̇/2 (phase across the JJ is θ), the voltage across the junction equals that across the
conductor VJ = VG ≡ (~/e)ϕ̇. (phase across the conductor is ϕ). The correction to the bare
rate is again given by the generating functional of the reservoir, i.e. the conductor. This is a
formidable task, but in some cases explicit analytical expressions are available. For instance,
in case of a tunnel junction with dimensionless conductance gT = ~/(2e2RT ) = π

∑
i Ti

(tunneling resistance RT and transmissions Ti) one derives

ST [ϕ] ≡ Φ[ϕ] = −4gT

∫

C

dz

∫

C

dz′α(z − z′) sin2

[
ϕ(z) − ϕ(z′)

2

]
(15.26)

with the kernel α(z) = π/[2(~β)2sinh2(πz/~β)]. C denotes the integration contour introduced
in (15.9) consisting of two segments in real and one segment in imaginary time. For the ImF
calculation only the contribution along this latter branch z = −iτ is relevant. By expanding
the sin-function in a power series of the phase difference, the impact of higher order cumulants
on the tunneling process can be studied. Thereby the k-th power corresponds to the k-th
cumulant. Approximating a single well-barrier segment of the tilted washboard potential

of a JJ by (15.12) and switching from q → θ, one finds for the bounce orbit θ
(0)
B (τ) =

3θb/[2cosh2(ω0τ/2)]. This way, in lowest order (second order) we have Γ(2) = Γ0Y2 with
Y2 = exp[−gT 54ζ(3)θ2

b/(4π
3)] so that the known suppression of tunneling due to the second

cumulant of the reservoir is regained. In next order (fourth order) one finds Γ(4) = Γ(2) Y4

with

Y4 = exp

[
gT A4

(4π)3
(9 θb)

4

]
(15.27)

and a numerical constant A4 = 66.3547.... Apparently, the fourth order contribution en-
hances the tunneling rate. Moreover, it displays a characteristic dependence on the tilt (the
applied bias current) of the washboard potential different from that of the Gaussian contri-
bution Y2. This in turn allows for the experimental detection of the fourth order cumulant
of the current noise distribution.

Theoretically, the above scheme extends the standard ImF approach to reservoirs with
non-Gaussian statistics still, however, residing in equilibrium. The calculation of tunneling
rates in situations when a finite bias voltage is applied across the conductor so that its current
distribution is stationary but out of equilibrium, has not been solved yet. It is related to the
open problem of how to obtain deep tunneling rates within a real-time approach.

15.4 Tunneling rates from equations of motion

In the regime of weak friction and for temperatures above the crossover temperature, the
ImF approach is not applicable since then the steady state covers in position space even
the well region and does not reduce to a thermal equilibrium. Accordingly, the flux state
distribution from which tunneling occurs is not known a priori. In the classical limit this
situation refers to the energy-diffusive regime of Kramers’ theory [17]. To analyze the impact
of quantum fluctuations in this domain, one starts by deriving from the exact path integral
expression (15.3) an approximate time evolution equation for the reduced density. Namely,
in the domain γ~β ≪ 1 the time scale on which relaxation occurs, i.e. 1/γ, by far exceeds
the retardation time scale ~β of the reservoir so that on a coarse grained time scale a
time local equation of motion for the density does exist. This leads to master type of
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equations corresponding to second order perturbation theory in the system-bath coupling
(Born-Markov approximation). Explicit expressions are most conveniently obtained in the
eigenstate representation of the bare system Hamiltonian HS.

15.4.1 Escape over a potential barrier

Let us first illustrate the general concept for a standard situation, namely, a particle initially
confined in a metastable potential (15.12). We first assume a high barrier Vb ≫ kBT, ~ω0 so
that for weak damping the well supports a ladder of quasi-stationary discrete energy levels
which reach the continuum for energies above the barrier top. Second, we consider higher
temperatures kBT which sufficiently exceed ~ω0 so that the energy ladder is smeared out by
thermal fluctuations. This is a typical semiclassical situation not only in the sense of barrier
tunneling but also with respect to the dynamics inside the well. The crucial question is then:
What are the dominating quantum effects that influence the escape rate?

For this purpose, it is convenient to introduce the occupation probability of a well state
with energy E via

P (E, t) =
N∑

n=0

δ(E − En)pn(t) , (15.28)

where N is the number of states in the well. Here pn is the occupation probability of
a well eigenstate |En〉 with quasi-energy En. It is thus identical to the diagonal part of
the reduced density (15.2) matrix in the energy representation pn(t) = 〈En|ρ(t)|En〉. The
explicit construction of these eigenstates follows from a type of WKB-recipe as shown below.
Starting with a set of master equations for the populations pn, the corresponding time
evolution equation for the occupation probability is found [18] to read

Ṗ (E, t) =

∫
dE ′

[
WE,E′

R(E ′)P (E ′, t)

n(E ′)
−WE′,E

R(E)P (E, t)

n(E)

]
− T (E)

ω(E)

2π
P (E, t)(15.29)

with ω(E) being the frequency of a classical oscillation at energy E. This diffusion equation
captures the incoming probability flux to and outgoing probability flux from the state with
energy E according to intrawell transition rates [19]

WE,E′ =
1

~2

∫ ∞

−∞
dtTrR{〈E|HI(t)|E ′〉〈E ′|HI |E〉ρβ,R} , (15.30)

reflection probabilities R(E) from the barrier and transmission probabilities T (E) = 1−R(E)
through the barrier. In the transition rates the system-reservoir coupling appears in the
interaction picture HI(t) = ei(HS+HR)t/~HIe

−i(HS+HR)t/~ with ρβ,R = e−βHR/ZR being the
equilibrium bath density matrix. Further, n(E) in (15.29) denotes the density of states.

The transition rate (15.30) can be evaluated explicitly in case of the bilinear system-bath
coupling as in (15.1). One arrives at the golden rule type of formula

WE,E′ =
1

~2
|Qqm(E ′, E)|2D(E − E ′) (15.31)
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with Qqm(E ′, E) ≡ 〈E ′|q|E〉 and the bath absorption/emission rate captured by

D(E) = ~

∫ ∞

−∞
dtK(t)eitE/~ = ~I(E/~)n̄(E) (15.32)

with the Bose-Einstein distribution n̄(E) = 1/[exp(βE) − 1]. In accordance with an effec-
tively Markovian dynamics we consider a purely ohmic environment with I(ω) = mγω. In
order to calculate (15.31) semiclassically, we have to construct the energy dependent wave
functions inside the well. In the energy range close to the barrier top, however, classical
turning points to the left and to the right of the barrier are not sufficiently separated so
that the standard WKB approximation is not applicable. In this situation, one exploits
(as done already above) that any sufficiently smooth barrier potential can be approximated
by a parabolic barrier with barrier frequency ωb for which the Schrödinger equation can
be solved exactly. The proper eigenfunctions are then matched asymptotically (sufficiently
away from the barrier top in the well region) onto WKB wave functions to determine phases
and amplitudes of the latter ones. This leads us to

〈E|q〉 =
1

2

[
〈E|q〉− + r(E)〈E|q〉+

]
(15.33)

with matrix elements

〈E|q〉± =
N(E)√

∂H(q, p)/∂p
e±

i
h

S0(E,q)∓ iπ
4 , (15.34)

where S0(E, q) =
∫ q

q1
p(E, q′)dq′ is the action of an orbit starting at a turning point q1

and running in time t towards q with momentum p(E, q′) at energy E. The complex valued
reflection amplitudes r(E) of a parabolic barrier [20] are related to the reflection probabilities
R(E) = |r(E)|2 and the normalization is determined from 〈E|E ′〉 = δ(E − E ′) to read

N(E) = 2

√
1

~π[R(E) + 1]
. (15.35)

These results match for lower energies onto the standard semiclassical ones. In particular,
transmission and reflection coefficients over the full energy range are given by the uniform
semiclassical expressions

T (E) = |t(E)|2 =
1

1 + exp[−S̄(E)/~]

R(E) = |r(E)|2 =
exp[−S̄(E)/~]

1 + exp[−S̄(E)/~]
, (15.36)

where S̄(E) denotes the Euclidian action of a periodic orbit with energy E oscillating in the
inverted barrier potential −V (q). With the semiclassical wave function at hand and using
the restricted interference approximation [21] one can now calculate the transition matrix
elements which enter the transition rates in (15.31).

Upon inserting these transition rates into the time evolution equation (15.29), an expan-
sion in powers of ~ can be performed, where one has to keep in mind, however, that for
energies near the barrier top reflection and transmission probabilities are of order 1, par-
ticularly with T (E = Vb) = R(E = Vb) = 1/2. This way, we arrive at the semiclassical
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expression for the energy diffusion equation (15.29) in the metastable well

Ṗ (E, t) =

{
∂

∂E
C(E) γS0(E)

[
1 +

1

β

∂

∂E

]
R(E) − T (E)

}
ω(E)

2π
P (E, t) , (15.37)

with

C(E) = 2
1 +R(E)2

[1 +R(E)]2
, (15.38)

and S0(E) the action of a periodic orbit in the well with energy E. Note that for vanishing
transmission (R = 1, T = 0) one recovers from the above expression the classical Kramers
equation [17]. Corrections to the diffusion equation (15.37) are at most of order ~

2.

The escape rate follows again from a quasi-stationary nonequilibrium state, this time from
the quasi-stationary energy distribution Pst(E) corresponding to (15.37), i.e.,

Γscl =

∫ ∞

0

dE n(E)T (E)Pst(E) (15.39)

with the semiclassical density of states n(E) = 1/[~ω(E)]. Taking into account (15.37) one
finds

Γscl =
sinh(ω0~β/2)

(ω0~β/2)
|B| Γcl , (15.40)

where the classical escape rate is

Γcl =
ω0γ S0(Vb)β

2π
e−βVb (15.41)

and the coefficients read

B = − 1

4θ

2F1

[
1
2
− θ

2
− a, 1

2
− θ

2
+ a, 1 − θ,−4

9

]

2F1

[
1
2

+ θ
2
− a, 1

2
+ θ

2
+ a, 1 + θ,−4

9

] , a =

√
βγS0(Vb)(1 − θ)2 + 36θ2

4βγS0(Vb)
(15.42)

with the abbreviation θ = ωb~β. In (15.40) quantum fluctuations are captured by two factors:
the first one describes zero-point fluctuations in the well, while the second one describes the
impact of finite barrier transmission close to the top. Interestingly, for weak friction the latter
one can actually prevail and lead to a reduction of the escape rate compared to the classical
situation due to a finite reflection from the barrier also for energies E ≥ Vb (fig. 15.5).

15.4.2 Quantum fluctuations in escape processes over dynamical barriers

The situation discussed in the previous Section where escape happens to occur over a static
energy barrier is now generalized to a situation, where two stable basins in phase space
are separated by a dynamical barrier. Specifically, we consider a system with a weakly
anharmonic potential driven by an external time-periodic force (Duffing oscillator), namely,

HS =
p2

2m
+
m

2
ω2

0q
2 − Γ

4
q4 + Fq cos(ωF t) . (15.43)
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Figure 15.5: Escape rate normalized to the classical rate as a function of the inverse tem-
perature θ for various values of the dimensionless friction strength: γ/ω0 = 0.01 (solid),
γ/ω0 = 0.005 (dashed) and γ/ω0 = 0.0015 (dotted) and barrier hight Vbβ = 10.

Accordingly, for the anharmonic coefficient we assume Γ/m ≪ ω2
0/〈q2〉 so that driving is

almost resonant for δω = ωF − ω0 ≪ ωF . Classically, when damping is taken into account
two stable oscillations with different amplitudes and phases appear beyond a bifurcation
threshold. The latter one depends on external parameters such as driving amplitude F and
frequency mismatch δω. In phase space, these two stable states correspond to stable basins
of attraction which are separated by an unstable domain. Thermal fluctuations, however,
can induce switchings between the stable basins leading again to a rate process [22]. In fact,
the sensitivity of this rate with respect to e.g. the curvature of the potential surface in (15.43)
has recently been exploited as working principle in a very sensitive detection device. In the
so-called Josephson Bifurcation Amplifier (JBA) [23, 24] a superconducting tunnel contact
(Josephson junction) is placed in parallel to a Cooper-pair box implementing a two level
system (qubit) and is driven by microwave fields. In the operational regime of the junction,
the device can be described by the Hamiltonian (15.43), where the two qubit states lead to
slightly different curvatures ω0. Measurements of the switching of the JBA gives thus direct
access to the state of the qubit.

Theoretically, the difficulty for a rate description in this kind of system is twofold: first,
the Hamiltonian of the isolated system HS is time-dependent and therefore energy is not con-
served, and second, there is no static energy barrier. Due to the coupling to the environment,
however, the system approaches, as already discussed for the classical case above, a steady
state situation such that the reduced density matrix takes the form ρ(t) ∼ ρ̄(t) cos(ωF t)
with an only weakly time-dependent density ρ̄. Hence, it is convenient to move to a rotating
frame described by the unitary operator [25]

U(t) ≡ US(t)UB(t) = e−iâ†âωF t−i
PN

n b̂†nb̂nωF t , (15.44)

where â and b̂n are annihilation operators for harmonic oscillators in the system and in the
bath, respectively. In the rotating frame the total Hamiltonian reads

H̃ = U †
[
H − i~

∂

∂t

]
U = H̃S + H̃R + H̃I (15.45)

with H as specified in (15.1) and HS as in (15.43). The system part follows upon discarding
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Figure 15.6: The Hamiltonian function (from 15.46) in the rotating frame, for α = 1/27. The
energy is scaled with C2ωFmδω. The minimum (b) and the maximum (c) in H̃S correspond
in the laboratory frame to the stable states with low and high amplitude, respectively,
separated by a marginal state (a).

fast oscillating terms exp(±ikωF t) with |k| ≥ 1 as a time-independent Hamiltonian [26] of
the form

H̃S = mωF δω C
2

[
−1

4

(
Q2

C2
+

P 2

(CωFm)2
− 1

)2

+

√
α

C
Q

]
(15.46)

with C =
√

8ωF δωm
3Γ

and α = 3F 2Γ
32(ω0δωm)3

. This latter quantity plays the role of a bifurcation

parameter: For 0 < α < 4/27 the Hamiltonian (15.46) has three extrema, where the two
stable ones correspond in the laboratory frame to oscillations with low and high amplitude,
respectively. They are separated by a phase-space barrier associated with an unstable ex-
tremum [see fig. 15.6]. The remaining parts of the composite system (15.45) are written
as [27]

H̃R =
N∑

n=1

(
p2

n

2m̃n

+
m̃n

2
ω̃2

nx
2
n

)

H̃I = −
N∑

n=1

c̃n

(
xnQ+

pn

ω̃nm̃n

P

ωFm

)
+

[
Q2 +

P 2

(ωFm)2

] N∑

n=1

c2n
4mnω2

n

, (15.47)

with new bath parameters

m̃n =
mn

1 − ωF/ωn

, ω̃n = ωn − ωF , c̃n =
cn
2
. (15.48)

These parameters determine an effective spectral density and an effective damping kernel
(see (15.10)) in the rotating frame [27].

We now calculate the probability for a system prepared initially in one of the stable states,
say the low amplitude state, to switch to the other one, say the high amplitude state. Since
in the rotating frame the Hamiltonian takes a time-independent form, we can apply the
approach presented in the first part of this Section to determine this rate from an equation
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Figure 15.7: Escape rate normalized to the classical rate as a function of the bifurcation
parameter α for ~ωFβ/(2π) = 0.01 (solid), ~ωFβ/(2π) = 0.05 (dashed) and ~ωFβ/(2π) = 0.1
(dotted). For all the three lines is β(mωF δω)2/Γ = 20, δω/ω0 = 0.1 and the dimensionless
friction constant βγ̃mD2δω = 0.001.

of motion. The difference here is that the system Hamiltonian is not of standard form and
that the system-reservoir coupling carries an additional momentum-momentum interaction.
Hence, the transition rates (15.30) appearing in the master equation (15.29) read

WE,E′ =
DQQ(E − E ′)

~2

[
|Qqm(E ′, E)|2 +

1

ω2
Fm

2
|Pqm(E ′, E)|2

]

+
DQP (E − E ′)

~2ωFm
2i Im{Qqm(E ′, E)∗Pqm(E ′, E)}, (15.49)

with Pqm(E ′, E) ≡ 〈E ′|P |E〉. Here, the bath functions DXY are defined according to (15.32)
with correlations KXY (t) = 〈ξX(t)ξY (0)〉/~ containing those bath forces ξX , ξY that couple
to system operators X,Y in (15.47). For the escape process near the bifurcation threshold
the energy level spacings of the well states in (15.46) are small compared to ωF and one
arrives at [27]

DQQ(E) = γ̃{nβ(EF + E)(EF + E) + [nβ(EF − E) + 1](EF − E)}
DQP (E) = iγ̃{−nβ(EF + E)(EF + E) + [nβ(EF − E) + 1)(EF − E)} , (15.50)

where EF = ~ωF and γ̃ = γ/4 is the effective friction constant in the rotating frame. Notably,
the above expressions display that physically two channels of bath modes are accessible for
emission or absorption of quanta, namely, one with energy EF + E and one with energy
EF − E [27].

Now, semiclassical wave functions in the well are constructed as discussed above in (15.34).
With their help, transition rates are evaluated and one arrives at the semiclassical energy
diffusion equation

Ṗ (E, t) =

[
∂

∂E
γ̃

(
∆̄(E) + κ̄(E)

∂

∂E

)
R(E) − T (E)

]
ω(E)

2π
P (E, t) (15.51)
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with

∆̄(E) = ∆(E)C(E) − 2~ ν∆(1)(E) (15.52)

κ̄(E) = ∆(E)C(E)
κ

2
+ ~ωF ∆(1)(E) . (15.53)

Here, the coefficient κ = ~ωF coth(~ωFβ/2) results from the expansion of DQQ in (15.50)
and the coefficient ~ν = [~βωF − sinh(~ωFβ)]/[cosh(~ωFβ) − 1] from DQP in (15.50). The
factor C(E) is again due to the finite barrier transmission. Further, ∆ can be interpreted
as a generalized action and originates from the first term in (15.49), while ∆(1) is related to
the ”unconventional” term Im{Qqm(E ′, E)∗Pqm(E ′, E)} in the transition rate (15.49). These
two functions are given by

∆(E) = m

∮
dQ Q̇+

1

mω2
F

∮
dP Ṗ (15.54)

∆(1)(E) =
ω

πωF

lim
ǫ→0+

∫ 2π/ω

0

dt dt′Q̇(t)Ṗ (t′)
sin[ω(t− t′)]

1 + e−2ǫ − 2e−ǫ cos[ω(t− t′)]
. (15.55)

Corrections to (15.51) are of the same order as in (15.37), namely, of order ~
2 or smaller.

This way, the escape rate gains leading order quantum corrections in the form

Γscl = Γcl

[
1 +

~ωF

κπ

(
−b1

ωb

ωF

+ b2

)]
. (15.56)

The classical rate Γcl can directly be inferred from (15.41) by replacing

S0 → ∆ , γ → γ̃ , β → 2/κ , (15.57)

with the barrier height Vb = Ea−Eb, where the energies Ea and Eb refer to the unstable point
(a) and the stable point (b) in fig. 15.6, respectively, and the well frequency ω0 determined
by (15.46). The quantum factor contains the coefficient b1 ≃ 1.04 originating from a finite
barrier transmission/reflection and the bath-induced coefficient

b2 =
4π

ωFκ
(νκ+ ωF )

∫ Eb

Ea

dE
∆(1)(E)

∆(E)
, (15.58)

originating from the position-momentum contribution in the transition rates (15.49). The
range of validity of this rate expression is given by those values of α which are sufficiently
larger than 0 (where the motion near the barrier top is overdamped) and sufficiently smaller
than α = 4/27 (where the barrier height tends to zero). Explicit results for the rate (15.56)
are depicted in fig. 15.7 for various values of temperature. Interestingly, the two types of
quantum fluctuations have opposite effects on the rate expression: while a finite reflection for
energies above the barrier top leads to a suppression of the escape probability, bath induced
fluctuations produce an increase. In contrast to the situation of a static energy barrier
discussed in the previous Section (see fig. 15.5), this latter corrections always prevails in the
relevant range of parameters. The corresponding rate enhancement is substantial and grows
with decreasing temperature.
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