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The dissipative quantum dynamics of a two-level system interacting with a structured reservoir
consisting of a damped harmonic mode is investigated by means of the numerically exact path
integral quantum Monte Carlo method. This approach provides benchmark results in a broad
range of parameter space, in particular in those domains which are not accessible by approximate
methods and alternative numerical schemes, i.e. strong coupling between system and harmonic mode
and from low to high temperatures. For low temperatures the numerical data are quantitatively in
agreement with the non-interacting blip approximation only in the regimes of very weak and very
strong coupling. It turns out that the entangled dynamics of the two-level system and the harmonic
mode is relatively robust so that its signatures are observable up to relatively strong friction and high
temperatures. Non-equilibrium initial preparations of the reservoir with respect to the initial state
of the system give for strong interaction rise to a stepwise decay of the population, thus displaying
coherent wave-packet like dynamics of the bath. The impact of an additional ohmic bath coupled
directly to the two-level system is studied as well including the case where both reservoirs carry
different temperatures.

PACS numbers: 03.65.Yz,72.70.+m,03.65.Ud,85.85.+j

I. INTRODUCTION

The last decade has seen tremendous progress in imple-
menting and manipulating designed quantum systems in
solid state devices. In contrast to quantum optical situ-
ations, the challenge here is the embedding in condensed
phase environments which in turn have much stronger
impact on the system dynamics. The understanding of
the complex interaction between the relevant system and
the large number of surrounding degrees of freedom has
thus triggered a substantial amount of research activities.

In this context, two-level systems (TLS) have gained
a central role as artificial atoms to study fundamental
quantum phenomena such as entanglement and coher-
ence and to implement them as quantum bits for quan-
tum information processing. While a natural assump-
tion is that the environment of the TLS consists of a
broad distribution of modes [1, 2], in many realizations,
however, this is not the case. Examples comprise the
solid state flux qubit embedded in a circuit containing
a SQUID [3] and a Cooper pair box coupled to a trans-
mission line acting as a cavity [4–6]. Seen from the TLS
these reservoirs exhibit a prominent harmonic mode that
itself interacts with a broad background. Moreover TLS
have been exploited as very sensitive devices to detect
quantum properties of nanomechanical oscillators, where
strongly entangled dynamics between the TLS and the
harmonic mode has recently been observed [7–10]. A
completely different class of systems comprises molecu-
lar aggregates that exhibit charge or energy transfer [11].
In this case prominent residual modes in the molecular
backbone may have strong impact on the dynamics of
polarizations or excitons.

The archetypical set-up of a TLS interacting with
a harmonic degree of freedom is well-known in atomic

physics in form of single atoms in high fidelity cavities
(see e.g. [12]). There the coupling between the TLS and
the cavity mode is very weak and decoherence processes
are basically absent. The most common theoretical frame
is based on the Jaynes-Cummings model [12–14], which
describes the cavity as a single harmonic degree of free-
dom. In condensed phase, however, and particularly for
solid state devices, the interaction between TLS and har-
monic mode can be strong and a realistic description has
also to take into account the damping of this mode [4, 6].
This places the reduced quantum dynamics of a TLS into
the context of dissipative quantum mechanics, the gen-
eral theory of which starts from system+reservoir models
[1, 14]. It is well-known that a quantitative understand-
ing of dissipation is a formidable task, since quantum
fluctuations in the surrounding heat baths may give rise
to non-Markovian retardation effects in the relevant sys-
tem dynamics. Consequently, simple equations of motion
for the reduced density matrix of the TLS do in general
not exist anymore. A formally exact solution to the prob-
lem is provided by the path integral formalism [1] that
has been also the starting point for approximate treat-
ments in various ranges of parameter space. For this
purpose, one typically considers a heat bath that covers
a broad range of frequencies (ohmic bath). Exploiting
a Born-Markov approximation then leads to the famous
Redfield or master equations for weak friction [14] or to
the quantum Smoluchowski equation for strong dissipa-
tion [15, 16]. In the particular case of a symmetric dis-
sipative TLS, the so-called non-interacting blip approxi-
mation (NIBA) is a powerful treatment that covers broad
domains of parameter space [1, 17].

The situation becomes, however, much more challeng-
ing for structured environments, since then typical time
scale separations on which approximate descriptions are
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based do no longer apply. To better understand the prob-
lems encountered here, it is instructive to consider rele-
vant energy scales of the setting, namely, a TLS coupled
with strength λHO to a harmonic degree of freedom of
frequency ω0 which itself interacts with strength Γ with
a broad heat bath (also called secondary bath) at inverse
temperature β = 1/kBT . Seen from the TLS such a reser-
voir appears as structured provided the damping of the
harmonic mode is weak Γ/ω0 ≪ 1 and TLS and harmonic
mode live on similar frequency scales. For the Redfield
approximation to be applicable one thus incorporates the
harmonic mode into the system and treats the secondary
bath as perturbation [18, 19]. Conceptually, the Red-
field equation can then be used for Γ~β ≪ 1 (Markov
approximation for the secondary bath) and practically
for weak to moderate coupling λHO, since with increas-
ing λHO the relevant dimensionality of the Hilbert space
consisting of TLS+harmonic mode increases [20]. The
same is true for a recently developed approach based on
a van Vleck perturbation theory for the TLS+harmonic
mode system and a Born-Markov treatment for the sec-
ondary bath [21]. The range of validity of the NIBA [22]
is not so straightforward to specify, but our numerical re-
sults confirm the expectation that for low temperatures
it can only be used in the extreme cases of very weak and
very strong coupling.

Apart from these approximate frameworks, direct nu-
merical methods have been pushed forward as well, for
instance, the quasi-adiabatic propagator path integral
approach (QUAPI) [23], the numerical renormalization
group (NRG) (see e.g. [24]), and path integral Monte
Carlo (PIMC) techniques [25, 26]. Each of these meth-
ods has its strengths and each has its limitations. The
QUAPI lives from sufficiently short memory times in the
bath and must thus also incorporate the harmonic mode
into the system [27–29]. It provides numerically exact
results as long as the coupling λHO remains moderate
for the same reason as above for the Redfield approxi-
mation. The bosonic NRG has been successfully used to
analyze critical phenomena at very low temperatures (see
e.g. [24]), but its applicability for strongly structured en-
vironments and for intermediate temperatures is doubt-
ful. In contrast, the PIMC is formulated for the reduced
density matrix of the TLS, so that the dimensionality
of the relevant Hilbert space does not cause any prob-
lem. It provides numerically exact data in all domains of
parameter space and for a variety of spectral bath den-
sities, but the range of time over which simulations can
be performed is restricted due to the so-called dynamical
sign problem reflecting the interference properties of the
quantum mechanical time evolution. Exploiting symme-
tries of the system-bath coupling, however, substantial
progress has been achieved in the last years [26, 30] so
that in many cases even the full equilibration process
could be monitored. Hence, the PIMC is ideally suited
to explore the non-perturbative regimes of the present
model, particularly the domains of strong coupling λHO

and very low to high temperatures. Moreover, the path

integral formulation allows for a simple inclusion of non-
equilibrium initial preparations of the reservoir with re-
spect to the initial state of the TLS [31]. In this work
also a generalized scenario is studied with a TLS interact-
ing in addition to the harmonic mode also directly with
a broad ohmic background according to the actual ex-
perimental situation. The two ohmic-like backgrounds,
the one for the TLS and that for the harmonic mode, do
not need to have identical temperatures, which leads to
a heat flow through the TLS, a process that may be of
relevance for nanomechanical oscillators.

The paper is organized as follows: In Sec. II we in-
troduce the model and the basic formulation in terms of
path integrals. The spectral densities relevant for this
work are then introduced in Sec. III, before in Sec. IV
a reservoir consisting of a damped harmonic mode is in-
vestigated for both the resonant and the off-resonant sit-
uation. Generalizations to an additional ohmic bath for
the TLS and to non-equilibrium initial preparations of
the reservoir are analyzed in Secs. V and VI. The main
results are collected in the Conclusions.

II. DISSIPATIVE DYNAMICS

We follow the conventional approach for the inclusion
of dissipation into a quantum mechanical system [1, 14]
and start from a system + reservoir model

H = HS +HI +HB (1)

with a TLS as the system

HS = −~∆

2
σx +

~ǫ

2
σz , (2)

which interacts bilinearly with a harmonic mode reser-
voir, i.e.,

HI +HB = −σz

2

∑

α

~λα(bα + b†α) +
∑

α

~ωα b
†
αbα (3)

Note that there is no need to add the usual counter term
in the system-bath coupling since σ2

z = 1. The reduced
density operator is obtained upon eliminating the bath
degrees of freedom as

ρ(t) = TrB

{

e−iHt/~W (0)eiHt/~

}

. (4)

Here, the initial state of the composite system is assumed
to be of the form

W (0) = ρS(0) e−β(HB−σ̄ξ)/ZB (5)

with an initial density ρS(0) = |−1〉 〈−1| of the system,
the bath force ξ =

∑

α ~λα(bα + b†α), and the partition

function of the isolated bath ZB = Tr
{

e−β(HB−σ̄ξ)
}

.
The above initial state of the bath differs from the bare
bath equilibrium by the ξ-dependent term which de-
scribes states of the reservoir equilibrated according to
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a fixed external position parameter σ̄ [1, 31]. For in-
stance, in case of σ̄ = −1 the bath is thermalized to
the system prepared in |−1〉. Therefore we call this set-
ting an equilibrium bath preparation, while preparations
with σ̄ 6= −1 are referred to as non-equilibrium prepara-
tions. Since the bath force is harmonic with zero mean its
statistics is completely determined by the second order
correlation L(t) = 〈ξ(t) ξ(0)〉β/~2 with

L(t) =

∫ ∞

0

dω

π
J(ω)

[

coth

(

ω~β

2

)

cos(ωt)

−i sin(ωt)
]

, (6)

where the mode distribution of a quasi-continuous reser-
voir is determined by the spectral density

J(ω) = π
∑

α

λ2
αδ(ω − ωα) . (7)

Now, the explicit elimination of the bath modes is most
conveniently done within the path integral representa-
tion. Important observables are the time dependent pop-
ulations

P±1(t) = Tr
{

eiHt/~ |±1〉〈±1|e−iHt/~W (0)
}

, (8)

which obey P+1 + P−1 = 1. The corresponding path
integral expression then reads

P±1(t) =
1

Z

∮

Dσ̃ δσ̃(t),±1 exp

{

i

~
SS [σ̃] − Φ[σ̃]

}

. (9)

Here, Z denotes a proper normalization and the integral
sums over closed paths σ̃(t̃) connecting σ̃(0) = −1 with
σ̃(t) = ±1 along the real-time contour t̃ ∈ {0 → t → 0}
combining forward and backward paths σ(t′) and σ′(t′),
respectively. The contribution of each path is weighted
by its bare action SS [σ̃] and the influence functional
Φ = Φ0 + Φσ̄, which captures the effective impact of
the reservoir. The latter one consists of the conventional
Feynman-Vernon part given by

Φ0[σ, σ
′] =

1

4

∫ t

0

dt′
∫ t′

0

dt′′[σ(t′) − σ′(t′)]

× [L(t′ − t′′)σ(t′′) − L∗(t′ − t′′)σ′(t′′)](10)

and a part which describes the specific form of the initial
state in (5), namely,

Φσ̄[σ, σ′] = −i σ̄
4

∫ t

0

dt′[σ(t′) − σ′(t′)] γ(t′) . (11)

with γ(t) being the dimensionless classical friction ker-
nel appearing in the Langevin equation. It is related to
the imaginary part of the correlation function Q(t) =
Q′(t) + iQ′′(t) introduced below [see (13)] by γ(t)/2 =
dQ′′(t)/dt. Hence, a non-equilibrium initial preparation
of the bath with respect to the initial state of the TLS

appears in the reduced description as an effective time
dependent force ∼ σ̄γ(t) [31]. For purely ohmic damping
with γ(t) ∼ δ(t) the impact of this force is absent since
we assume the system initially to be prepared in a diag-
onal state, where σ(0) − σ′(0) = 0. For reservoirs with
finite memory time, however, this effective ”driving” of
the TLS is significant, particularly for strong coupling as
we will see below.

While analytical treatments of (9) are in general not
feasible, path integral Monte Carlo simulations (PIMC)
have been shown to be very powerful means to pro-
vide numerically exact data in all ranges of parameter
space. The method starts with a proper discretization
prescription of the real-time axis, a procedure which has
been described in the literature [25, 26]. It turns out
that along the discretized time axis bath correlations are
described by the twice-integrated bath autocorrelation
function Q(t) defined by Q̈(t) = L(t) with Q(0) = 0 and

Q̇(0) = iΛcl, where the classical reorganization energy is
given by

Λcl =
1

2
lim

~β→0
~β L(0)

=
1

π

∫ ∞

0

dω
J(ω)

ω
. (12)

Its explicit form is gained from Eq. (6) to read

Q(t) =

∫ ∞

0

dω

π

J(ω)

ω2

{

coth

(

~βω

2

)

[1 − cos(ωt)]

+i sin(ωt)
}

. (13)

For an extensive discussion of the PIMC method we re-
fer e.g. to [25, 26]. We only note here that the dynam-
ical sign problem, a major nuisance in stochastic real-
time methods, can be significantly reduced by exploiting
symmetries of the influence functional. This allows to
perform stable simulations over relatively long periods of
time and even in ranges where coherences are strong, par-
ticularly at vanishing temperature. In the sequel we are
interested in the time evolution of the TLS in presence of
a structured environment, which leads to entanglement
associated with rather complex dynamical behavior. To
keep this analysis sufficiently transparent we thus restrict
ourselves to the symmetric case ǫ = 0. Within the PIMC
technique the extension to finite energy gaps even includ-
ing external time dependence is straightforward (see e.g.
[26, 32]).

III. SPECTRAL DENSITIES

The relevant information about the bath modes is en-
coded in the spectral density (7). A common form used in
a broad variety of application is an ohmic density with
an exponential cut-off [1, 14]. This broad distribution
allows for sufficiently large cut-off frequencies ωc even
for perturbative treatments of the dynamics. Prominent
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FIG. 1: Spectral densities of a damped harmonic mode (solid)
and an ohmic environment with cut-off frequency ωc (dashed)
as used in this study.

approaches include various types of master equations
[14] and the non-interacting blip approximation (NIBA)
[1, 17]. In particular, the latter one provides in case of
a degenerate TLS a very powerful and accurate descrip-
tion in wide ranges of parameter space. As already noted
above, for strongly structured bath distributions the sit-
uation is much less developed. In this section we recall
some results for ohmic damping for later purposes and in-
troduce a structured density which effectively describes
the interaction of the TLS with a damped harmonic de-
gree of freedom.

A. Ohmic background

An ohmic type of spectral density is given by

JO(ω) = 2παωe−ω/ωc (14)

with a large cut-off frequency ωc. The reorganization
energy is readily obtained as Λcl

O = 2αωc and the bath
correlation relevant for the PIMC simulations is given by

QO(t) = 2α

[

ln(1+iωct)−ln
Γ(Ω + it/~β)Γ(Ω − it/~β)

Γ2(Ω)

]

(15)
with Ω = 1 + 1/(~βωc) and the Gamma function Γ(z).

B. Damped harmonic degree of freedom

In case that the TLS interacts with a prominent har-
monic mode which itself is embedded in a broad back-
ground (also termed secondary bath), the correlation
function of the stochastic force ξ is proportional to the
position-position correlation of a damped harmonic oscil-
lator. Denoting the corresponding position with q (also
termed reaction coordinate [33]) one finds [34]

〈q(t) q〉 =
~

π

∫ ∞

0

dωχ̃′′(ω)
[

coth

(

ω~β

2

)

cos(ωt)

−i sin(ωt)
]

, (16)

with the imaginary part of the dynamical susceptibility
χ̃ = χ̃′ + iχ̃′′, i.e.,

χ̃(ω) =
1

M

1

ω2
0 − ω2 − iωγ̃(ω)

. (17)

Here, M is the mass, ω0 the frequency of the mode and
γ̃ the Fourier transform of the classical damping ker-
nel. Upon comparing (16) with (6) it is obvious that
the structured environment considered here corresponds
to a spectral density of the form J(ω) = Mω3

0 χ̃
′′(ω). For

an ohmic secondary bath [33] as described above with in-
finite cut-off frequency such that γ̃(ω) = γ a convenient
parametrization is then given by [35]

JHO(ω) =
π

2

p ω

[(ω + Ω)2 + Γ2][(ω − Ω)2 + Γ2]
. (18)

Here, the parameters p,Ω,Γ tune amplitude, resonance
frequency, and width, respectively, independently. There
are simple rules to translate these parameters to the ones
used in (17), namely,

p→ 2ω3
0γ

π
, Γ → γ

2
, Ω2 → ω2

0 − γ2

4
. (19)

The latter relation shows that Ω is the actual damp-
ing dependent resonance frequency of the oscillator.
In the limit of vanishing coupling to the secondary
bath Γ → 0, the spectral density approaches JHO →
π [ limΓ→0 λ

2
HO] δ(ω − Ω) where λHO =

√

πp/8ΓΩ is the
actual coupling strength between TLS and single har-
monic mode.

All relevant quantities which include the spectral den-
sity (18) can be calculated analytically. Explicitly, one
obtains for the reorganization energy (12)

Λcl
HO =

π

8

p

Γ(Γ2 + Ω2)
, (20)

while the lengthy results for the correlation QHO(t) are
given in the Appendix. We remark that a superposi-
tion of spectral densities of the above form has been
used previously [35] to accurately fit spectral densities
for which analytical calculations of time-dependent cor-
relation functions are not feasible. Qualitatively, at suffi-
ciently elevated temperatures the real part of QHO(t) =
Q′

HO(t) + iQ′′
HO(t) contains a part that decays exponen-

tially on the time scale 1/Γ and a temperature dependent
part that grows linearly on the time scale ~β. For vanish-
ing temperature the Matsubara frequencies contained in
this latter part sum up to produce Q′

HO(t) ∝ ln(t) lead-
ing to L′(t) ∝ 1/t2 which is the well-known long time tail
associated with strong non-Markovian dynamics. The
imaginary part Q′′

HO(t) is temperature independent and
saturates asymptotically.
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FIG. 2: Population dynamics for the resonant case Ω = ∆
with Γ/∆ = 0.0625, coupling strength α = 0.3 (p/∆4 =
3α/4), and various temperatures kBT/(~∆) = 0, 0.5, 1, 2, 10
(from bottom to top). In all figures the error bars representing
the statistical errors are smaller than the symbols used.

IV. ENVIRONMENT I: DAMPED OSCILLATOR

The first situation we analyze in this section is a TLS
interacting with a damped single harmonic degree of free-
dom, the spectral density of which has been introduced in
(18) and is depicted in fig. 1. The only assumption about
the harmonic mode is that initially it lives in a thermal
equilibrium state, while the coupling with the TLS may
induce an entangled dynamics far from equilibrium dur-
ing the time evolution. The initial state for this reservoir
is assumed to be equilibrated to the initial state of the
TLS meaning that σ̄ = −1 in (5) for a TLS starting from
|−1〉. The more general situation of an equilibrium bath
displaced with respect to the initial state of the TLS is
the subject of Sec. VI.

In the ideal case, where the harmonic mode is not sub-
ject to a secondary bath, the spectral density (18) reduces
to a δ-peak. The corresponding model, TLS+bosonic
mode, is an archetypical example of a two-level atom in
a cavity and has thus been investigated in quantum op-
tical contexts for decades. The reduction in form of the
Jaynes-Cummings model (JC) [13, 14] neglects the so-
called counter-rotating terms in the Hamiltonian and is
assumed to describe the physics fairly accurately in the
resonant situation, where ∆ = Ω. At least in this latter
case the JC may be used to qualitatively understand the
full dissipative dynamics for sufficiently weak friction.

More involved approximate approaches that take into
account the presence of a secondary bath have been
developed as discussed above, most of them, how-
ever, are limited to the weak coupling regime between
TLS/oscillator and oscillator/secondary bath as well as
to sufficiently elevated temperatures (Markov approxi-
mation). For spectral densities with a broad distribution
of modes the NIBA formalism applies also to low tem-
peratures and stronger coupling [1], but in the present
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FIG. 3: Same as in fig. 2, but for fixed temperature T = 0
and various couplings α = 0.1, 0.3, 0.5, 1.0 (from bottom to
top).

case it is not a reliable description as we will show. Since
so far in the domain of stronger friction and/or low tem-
peratures quantitative analytical treatments are elusive,
PIMC simulations set benchmarks and particularly re-
veal to what extent quantum coherences may survive un-
der such unpleasant conditions.

A. Resonant situation

The population dynamics P−1(t) for various tempera-
tures and an intermediate value for the coupling is shown
in fig. 2. For convenience we scale all frequencies with
∆ and write the coupling strength in (18) in the form
p/∆4 = 3α/4 with the dimensionless damping param-
eter α that is also used below for an additional ohmic
bath [see also (14)]. As expected, a monotonous decay
appears only for very high temperatures kBT/(~∆) = 10,
while already for kBT/(~∆) = 1 a characteristic oscilla-
tory behavior appears. At lower temperatures the cen-
tral harmonic mode starts initially from its ground state
and is driven out of equilibrium by the dynamics of the
TLS. The corresponding oscillation period of the compos-
ite system is substantially smaller than the TLSs’ bare
period 2π/∆.

To analyze these properties in more detail and to
make contact with the JC-model we focus on the do-
main T = 0. Data for various coupling strengths α are
shown in fig. 3. Following the discussion in Sec. III B,
the coupling constant λHO between TLS and harmonic
mode varies for the chosen parameters between λHO/∆ ∼
√

3πα/2 ∼ 0.3 . . . 3, which is the strong coupling regime
(in units of the coupling to the secondary bath Γ we have
λHO/Γ ∼ 5 . . . 50). For weak friction a superposition of
oscillations with different periods are observed in P−1(t)
that qualitatively can be understood from the JC-model.

Let us briefly recall its basic ingredients and rele-
vant results for the present scenario. Taking in (3)
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only one harmonic mode with frequency Ω into account,
diagonalizing the TLS-part and applying the rotating
wave approximation one arrives at the well-known JC-
Hamiltonian

HJC =
~∆

2
τz + ~Ω(b†b+ 1/2)− ~λ(τ+b+ τ−b

†) , (21)

where we added the ground state energy of the oscilla-
tor for convenience and introduced new Pauli matrices τi
for the eigenbasis representation of the bare TLS given
by |±〉 = (|−1〉 ± |+1〉)/

√
2. The coupling constant is

λ = λHO/2. Now, within the basis set {|±〉 |n〉}, where
|n〉, n = 0, 1, 2, . . . denotes the eigenstates of the bare os-
cillator, the interaction in HJC couples for fixed n only
the subspaces spanned by {|+, n− 1〉, |−, n〉}, i.e.,

HJC,n = ~

(

∆
2 + Ω(n− 1

2 ) −√
nλ

−√
nλ −∆

2 + Ω(n+ 1
2 )

)

. (22)

Hence, diagonalization in each subspace provides

Ω0 = −∆−Ω
2

Ω±,n = nΩ ± 1
2

√

(∆ − Ω)2 + 4nλ2 (23)

with corresponding eigenvectors

|ψ0〉 = |−〉|0〉
|ψ+,n〉 = − sin(θn/2)|+〉|n− 1〉 + cos(θn/2)|−〉|n〉
|ψ−,n〉 = cos(θn/2)|+〉|n− 1〉 + sin(θn/2)|−〉|n〉 ,(24)

where tan(θn) = 2
√
nλ/(Ω − ∆) and θn ∈ [0, π). At

T = 0 the PIMC simulations start with an initial state
|ψ(t = 0)〉 = |−1〉 |n = 0〉 for which the non-dissipative
dynamics can now simply be evaluated. In the resonant
case Ω = ∆, one thus gets for the population

P−1(t) =
1

2
+

1

4
cos[(Ω + λ)t] +

1

4
cos[(Ω − λ)t] . (25)

This behavior is displayed for weak coupling α = 0.1 in
fig. 3, where a low amplitude oscillation in P−1 is followed
by an almost complete revival to the initial state. This
behavior is qualitatively reproduced with (25) for a cou-
pling constant λ/∆ ∼ 0.3 which agrees with the actual
coupling according to the parameters used in the simula-
tions λHO/(2∆) ∼ 0.34. Deviations appear particularly
for the maxima which are damped compared to those of
the JC-model. As expected, with increasing coupling be-
tween the TLS and the damped oscillator the JC-model
fails to capture even qualitatively the dissipative dynam-
ics. While it predicts an increasing oscillation frequency,
as also seen in the simulations, the destruction of coher-
ences and the thermalization of the composite system is
not described. Signatures of the entangled time evolution
of TLS and damped oscillator can be seen in the simu-
lations up to relatively strong couplings and over long
periods of time.

Dissipation is included in the non-interacting blip ap-
proximation (NIBA) [22]. As an illustration, in fig. 4
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FIG. 4: Population dynamics in the resonant case accord-
ing to the NIBA (dashed) and the numerically exact PIMC
(solid) for T = 0 and α = 0.05, 0.2, 0.5 (bottom to top); other
parameters are as in fig. 2.

the PIMC data are compared with predictions from the
NIBA theory. The discrepancies are substantial already
for moderate coupling strengths, which shows that the
NIBA is not a reliable approach for structured environ-
ments apart from the domains of very weak (α ≤ 0.01)
and very strong friction (α > 1). In a way, this is
consistent with the reduction of the influence functional
applied in the NIBA, where all long-range correlations
(so-called interblip interactions) between off-diagonal el-
ements of the reduced density matrix are dropped. Reser-
voirs with pronounced modes, however, support correla-
tions between these coherences. The fact that the NIBA
does not follow the exact data even in the range of inter-
mediate and strong couplings displays the robustness of
long-ranged quantum correlations induced by the bath in
this domain.

B. Off-resonant situation

In the situation where Ω 6= ∆ the population dynamics
at T = 0 are shown in figs. 5, 6. For comparison with the
resonant case we keep the reorganization energy Λcl

HO in
(20) fixed by adjusting p since this is the relevant quan-
tity which determines the transfer in the TLS system in
presence of environmental modes. Namely, each posi-
tion of the TLS is associated with diabatic surfaces for
the bath modes the crossing of which defines the so-called
Landau-Zener range. The classical activation over as well
as the tunneling of the environmental mode through the
Landau-Zener range depend on the energy gap between
the crossing and the minima of the diabatic surfaces that
is proportional to Λcl

HO.
For a qualitative understanding in the weak coupling

regime we return to the JC-model. We find

P−1(t) =
1

2

{

1 + sin2(θ1/2) cos[(Ω+ − Ω0)t]
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FIG. 5: Population dynamics for the off-resonant case Ω =
0.5∆ with Γ/∆ = 0.0625, T = 0, and α = 0.1, 0.3, 0.5, 1.0
(from bottom to top).
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FIG. 6: Same as in fig. 5 but for Ω = 1.5∆.

+ cos2(θ1/2) cos[(Ω− − Ω0)t]
}

(26)

with Ω±,Ω0 as in (23). The angle θ1 is determined as de-
scribed above such that θ1 → 0 for Ω ≫ ∆. Accordingly,
for blue-detuning Ω > ∆, one has Ω+ − Ω0 > Ω− − Ω0

with sin2(θ1) < cos2(θ1) so that the contribution in (26)
carrying Ω− dominates against the high frequency con-
tribution with Ω+. The population dynamics has thus
the tendency to develop slower oscillations compared to
the resonant case. For red-detuning Ω < ∆ the same
relation between the frequencies holds, but now with
sin2(θ1) > cos2(θ1) meaning that P−1(t) shows faster os-
cillations. This picture is at least qualitatively in agree-
ment with the simulations (cf. figs. 5, 6) and has been
also confirmed by perturbative results that include dissi-
pation [21]. Notably, in both cases entangled motion of
TLS and oscillator appears and, as already seen for the
resonant case, survives even for strong coupling and long
times. This applies also for α = 1, where the dynamics
of the TLS is basically frozen for Ω < ∆, while a strong
decay is observed for Ω > ∆. Note that with increasing
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FIG. 7: Population dynamics for the resonant (middle), the
blue-detuned Ω = 1.5∆ (bottom), and the red-detuned Ω =
0.5∆ (top) case for weak coupling α = 0.1; other parameters
are as in fig. 5.
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FIG. 8: Same as in fig. 7 but for strong coupling α = 0.5.

coupling not only the interaction between TLS and har-
monic mode grows, but also that between the harmonic
mode and the secondary bath. Direct comparisons be-
tween resonant and off-resonant situations are depicted
in figs. 7, 8 for different values of α to explicitly show
to what extent quantum coherences are maintained for
strong coupling. Upon comparing the heights/depths of
subsequent maxima/minima one observes that the de-
struction of coherences is suppressed in the off-resonant
situations.

V. ENVIRONMENT II: DAMPED OSCILLATOR

AND ADDITIONAL OHMIC BATH

In actual realizations it seems natural to assume that
not only the harmonic mode is embedded in a broad
background (what we called secondary bath), but also
the TLS itself. The temperature of this reservoir which
interacts directly with the TLS does not need to be iden-
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tical with that of the harmonic mode. Here, we analyze
the influence of such an additional environment with a
spectral density of the form (14) characterized by a finite
cut-off frequency ωc/∆ = 5 (cf. fig. 1). We recall that the
damping of the harmonic mode is due to its coupling to
an ohmic bath with infinite cut-off frequency. In a first
step we assume that both reservoirs carry identical tem-
peratures, a situation that is generalized later on, where
a temperature gradient drives the TLS dynamics.

A. Homogeneous temperature

Let us first look how the incoherent decay emerges from
the coherent dynamics with increasing temperature for
weak and larger coupling of the TLS to its surround-
ing. The coupling strength to the additional bath is con-
trolled by the parameter α introduced in (14), which also
parametrizes the coupling between TLS and harmonic
mode via p/∆4 = 3α/4. Hence, varying α affects the
interaction strengths to both reservoirs.

As shown in fig. 9 for weak coupling, the additional
ohmic reservoir washes out the first minimum in P−1(t)
at T = 0 and reduces the size of the next maximum.
Within the JC-dynamics this can be understood quali-
tatively as a stronger damping of the higher frequency
oscillation Ω + λ in (25) as compared to the lower fre-
quency one. A simple argument to explain this behavior
goes as follows. The additional ohmic bath couples to
the TLS according to (3), i.e. ∝ σz , which translates in
the eigenbasis representation of the TLS [see (21)] into a
coupling ∝ τx, which is off-diagonal with respect to the
TLS-states but diagonal with respect to the harmonic
mode states. Hence, within the JC-model an additional
ohmic bath induces only transitions between different
subspaces HJC,n−1 ↔ HJC,n ↔ HJC,n+1, but no tran-
sitions within a certain HJC,n. Now, in our situation
we start at T = 0 with a state |ψ(t = 0)〉 = |−1〉 |0〉,
where the harmonic mode resides in its ground state. To
the time evolution of this state |ψ(t)〉 only the eigen-
states |ψ±,1〉, |ψ0〉 introduced in (24) contribute mean-
ing that the additional bath leads to relaxation pro-
cesses |ψ±,1〉 → |ψ0〉 with golden rule transition rates
Γ(±,1)→0 ∝ (Ω±λ)α [14]. At T = 0 excitations are com-
pletely suppressed. Due to Γ(+,1)→0 > Γ(−,1)→0 the con-
tribution to P−1(t) with larger frequency decays faster
than that with lower frequency, thus giving rise to the
observed phenomenon. Consequently, the stronger the
coupling between TLS and harmonic mode, the stronger
is the time scale separation. This leads to the interest-
ing conclusion that the additional broad reservoir tends
to selectively remove states from the entangled system-
structured bath dynamics.

With increasing temperature excitation processes be-
come possible as well so that coherences are smeared
out. Nevertheless, signatures of the coherent dynam-
ics can still be found at a relatively high temperature
kBT/(~∆) = 2. For strong coupling α = 0.3 (cf. fig. 10)
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FIG. 9: Population dynamics in presence of a damped har-
monic oscillator bath with Ω = ∆ without (open symbols) and
with (filled symbols) an additional ohmic reservoir at α = 0.1
and kBT/(~∆) = 0, 2, 10 (from bottom to top).
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FIG. 10: Same as in fig. 9 but with α = 0.3 and kBT/(~∆) =
0, 10/3 (from bottom to top).

the above argument also applies such that at T = 0 weak
lower frequency oscillations due to the TLS-harmonic
mode entanglement are superimposed on a dominant
damped coherent dynamics known from a purely TLS-
ohmic bath interaction. At sufficiently elevated tem-
peratures the latter one prevails completely leading to
monotonous decay.

B. Different temperatures

For the two reservoirs staying at different tempera-
tures, the most interesting situation appears when the
harmonic mode environment is kept at T = 0, while the
additional ohmic bath is heated up, see fig. 11. Then,
the initial decay of the population is enhanced compared
to the case with identical temperatures, but slower com-
pared to the case with a purely ohmic background (not
shown). In the low temperature range the coherent dy-
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FIG. 11: Population dynamics in presence of a damped har-
monic mode reservoir at T = 0 and an additional ohmic back-
ground at temperatures kBT/(~∆) = 0, 1, 10 (filled symbols)
with α = 0.1; the corresponding data for identical tempera-
tures are depicted with open symbols.

namics seems to be even stabilized: following the argu-
ment of the previous section, the hot ohmic bath is now
able to induce excitations from |ψ0〉 back towards |ψ±,1〉
which are related to the relaxation rates via detailed bal-
ance such that Γ0→(−,1) > Γ0→(+,1). Thus, population
is transferred preferentially back to the state generating
the low frequency oscillations in P−1(t). This is par-
ticularly seen for kBT/(~∆) = 1 in the maxima at the
end of the simulation range (cf. fig. 11), where the recur-
rence is stronger than in case of identical temperatures.
Of course, for increasing temperature in the ohmic bath
kBT/(~∆) > 1, incoherent processes tend to destroy this
picture and the incoherent decay known from a purely
ohmic reservoir is approached [1].

VI. NON-EQUILIBRIUM INITIAL BATH

PREPARATIONS

So far the initial thermal distribution of the structured
bath was assumed to be bounded to the initial state of
the TLS. In experimental situations, however, this initial
state of the TLS may be prepared by e.g. a short external
pulse, which leaves the bath basically untouched. Then,
the bath remains still in thermal equilibrium, but not
with respect to the initial state of the TLS. Such a sce-
nario can be mimicked by tuning the parameter σ̄ in (5).
In the previous sections we put σ̄ = −1 so that the reser-
voir is equilibrated to the initial state |−1〉 of the TLS.
Here, we study also the impact of a non-equilibrium ini-
tial bath preparation with σ̄ = 0 meaning that the reser-
voir, i.e. the prominent harmonic mode, is located in the
Landau-Zener region, see fig. 12. Initially the bath is thus
in an optimal arrangement for a transfer in the TLS to
occur. However, during the time evolution the harmonic
mode starts to obey an oscillatory motion on the diabatic
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FIG. 12: Population dynamics for an equilibrium initial bath
preparation (σ̄ = −1; open gray symbols) and for a non-
equilibrium preparation (σ̄ = 0; filled black symbols) at T = 0
for α = 0.1 (lower curves) and α = 0.5 (upper curves).
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FIG. 13: Same as in fig. 12 but for strong coupling α = 1
(circles) and α = 2 (diamonds).

surfaces such that the decay of the population is modu-
lated by this motion. The initial enhancement of the
transfer from |−1〉 to |+1〉 compared to the preparation
with σ̄ = −1 is then slowed down to increase again after
a full oscillation period. This behavior becomes partic-
ularly spectacular for strong friction α ≥ 1 (see fig. 13),
where the population transfer is basically frozen for in-
termediate times, when the harmonic mode is far off the
Landau-Zener range. Hence, an initial non-equilibrium
bath state giving rise to wave-packet dynamics induces a
stepwise decay in the TLS. This is in contrast to the case
of an equilibrium initial bath preparation which after a
short transient time leads to frozen dynamics of the TLS
for all times.

For a qualitative discussion of the weak coupling
regime we may resort to the JC-model again. The ini-
tial state now takes the form |ψ(0)〉 = |−1〉 |µ〉 where |µ〉
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denotes a coherent-like state

|µ〉 =
∞
∑

n=0

pn|n〉 (27)

and where we assume for simplicity that the pn are real
with

∑

n p
2
n = 1. The above calculation goes through

accordingly and leads to a rather lengthy result even in
the resonant case (∆ = Ω). Transparent expressions are
obtained when only a finite number of pn is non-zero. For
instance, for pm 6= 0 for m = 0, 1 and pm = 0 for m > 1
we have P−1(t) = [1 + ∆P (t)]/2 with

∆P (t) = cos(Ωt) cos(λt)[p2
0 + p2

1 cos(
√

2λt)]

+p0p1 sin(Ωt) sin(λt)[1 − cos(
√

2λt)] .(28)

The oscillation pattern becomes thus even more complex
with a narrower minimum in P−1(t) followed by a broader
one for weaker coupling and a decreasing oscillation pe-
riod for stronger coupling. Similar as above, however, in
the latter range the JC-predictions are far off in detail
and not in agreement with the simulations. In particu-
lar, they do not lead to a sharp stepwise decay, which in
turn is thus a true dissipative phenomenon.

VII. CONCLUSIONS

In this paper we have analyzed the dynamics of a TLS
coupled to a structured environment that consists of a
prominent harmonic mode embedded in a broad back-
ground. Special focus has been laid on the regimes in pa-
rameter space where on the one hand entangled dynam-
ics of TLS and harmonic mode is substantial, but where
on the other hand approximate methods fail or alterna-
tive numerical approaches are not applicable. By means
of numerically exact PIMC simulations we developed a
picture of the dissipative dynamics of this paradigmatic
model over the full temperature range and from weak to
strong coupling. As a generalization the situation has
been analyzed where the TLS is in addition also directly
coupled to a conventional ohmic bath even with differ-
ent temperature compared to the structured bath. The
role of non-equilibrium initial states of the reservoir with
respect to the initial state of the TLS has been investi-
gated.

Quantitatively this study provides thus benchmarks
for future approximate analytical or numerical develop-
ments. Moreover, it has revealed the complex quantum
dynamics in the strongly non-perturbative regime which
has been unexplored so far. The main results can be

summarized as follows: (i) The entangled dynamics be-
tween TLS and harmonic environmental mode as quali-
tatively captured for weak dissipation by the JC-model
turns out to be robust even at relatively high tempera-
tures and strong dissipation. Accordingly, signatures of
quantum coherences in presence of structured reservoirs
may be observable also under less pleasant conditions,
for instance, in larger molecular aggregates in solution.
In this context, we note that recent theoretical work for
biological systems has basically been restricted to the
ideal situation of very low temperatures close to T = 0
and very weak dissipation. (ii) The simple JC-model and
also more elaborate perturbative approaches capture the
essential dynamical features in the regime of very weak
coupling and low temperatures. (iii) The NIBA approx-
imation which accurately describes the dissipative TLS-
dynamics for degenerate states and ohmic baths in broad
ranges of parameter space, fails apart from the domains
of very weak or very strong coupling. It seems not to be
a reliable approximation for structured reservoirs. (iv)
An additional ohmic bath directly interacting with the
TLS leads to a selective damping of states in the com-
bined TLS-harmonic mode Hilbert space. Consequently,
certain states drop out, while others maintain coherent
motion leading to a modified oscillation pattern in the
reduced dynamics of the TLS as compared to the case
without ohmic bath. (v) A finite temperature gradient
between additional ohmic bath and structured environ-
ment with the latter one residing in a low temperature
state, may for weak coupling even stabilize coherences in
the TLS-harmonic mode subsystem. (vi) A structured
reservoir which is initially prepared in a non-equilibrium
state with respect to the initial state of the TLS gives for
strong coupling rise to a pronounced stepwise decay in
the TLS populations, which on intermediate time scales
leads to an almost frozen TLS decay. This trapping of the
TLS is a direct consequence of the coherent wave-packet
like dynamics of the reservoir.
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Appendix

Here we collect the explicit expressions for the two-times integrated bath correlation function Q(t) of the damped
harmonic oscillator. These results are simply obtained by contour integration. Accordingly, for the real part one finds

Q′
HO(t) =

π

8

p

ΓΩ

1

(Γ2 + Ω2)2
1

cosh(~βΩ) − cos(~βΓ)
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×
{

sinh(~βΩ)
[

−2ΓΩ e−Γt sin(Ωt) + (Γ2 − Ω2)(e−Γt cos(Ωt) − 1)
]

+ sin(~βΓ)
[

2ΓΩ(e−Γt cos(Ωt) − 1) + (Γ2 − Ω2) e−Γt sin(Ωt)
]

}

+
t

~β

π

2

p

(Γ2 + Ω2)2
+

2i

~β

∞
∑

j=1

JHO(iνj)

ν2
j

(

e−νjt − 1
)

. (A.1)

For high temperatures the part containing the Matsubara frequencies νj = 2πj/~β decays on the short time scale ~β,
on which the second last term grows linearly. With lowering temperatures the Matsubara frequencies tend to become
relevant on ever longer time scales and for T = 0 they sum up to give

lim
T→0

Q′
HO(t) =

π

8

p

ΓΩ

1

(Γ2 + Ω2)2
{

−2ΓΩ e−Γt sin(Ωt) + (Γ2 − Ω2)(e−Γt cos(Ωt) − 1)
}

+
p

2

∫ ∞

0

dω
1 − e−ωt

ω [(ω2 − Ω2 − Γ2)2 + 4ω2Ω2]
. (A.2)

In the long time limit the last integral leads to an increase Q′
HO ∝ ln(t). The imaginary part is independent of

temperature and reads

Q′′
HO(t) = −π

8

p

ΓΩ

1

(Γ2 + Ω2)2
{

2ΓΩ(e−Γt cos(Ωt) − 1) + (Γ2 − Ω2) e−Γt sin(Ωt)
}

(A.3)

t→∞−→ π

4

p

(Γ2 + Ω2)2
. (A.4)
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