Module

Near-Field Optics and Plasmonics

<table>
<thead>
<tr>
<th>Code</th>
<th>71422</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction language</td>
<td>English</td>
</tr>
<tr>
<td>ECTS credits</td>
<td>3</td>
</tr>
<tr>
<td>Credit hours</td>
<td>3</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>Each winter semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Othmar Marti</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Manuel Rodrigues Gonçalves</td>
</tr>
</tbody>
</table>

Allocation to study programs
- Advanced Materials M.Sc., elective module, 3rd Semester
- Physics M.Sc., elective module, 1st or 2nd Semester

| **Formal prerequisites** | None |

| **Recommended prerequisites** | Knowledge of geometrical wave optics, Maxwell’s equations and electromagnetism, fundamentals of algebra and mathematical analysis. |

Learning objectives
- Students who successfully passed this module
 - understand the mathematical description of electromagnetic waves in near- and far-field
 - know the physical basis of surface plasmons and the preparation of plasmonic nanostructures
 - can operate optical scanning near-field microscopes
 - can simulate optical properties of nanoparticles

Syllabus
- Concepts of near-fields and far-fields
- Principles of confocal and SNOM microscopy
- SNOM probes and near-fields probing methods
- Fresnel formulas
- Light scattering, absorption and extinction of isolated nanoparticles
- Mie theory
- Plasmons in films and nanoparticles
- Fabrication techniques of noble metal nanostructures
- Simulation of optical properties of plasmonic particles
- Surfaces-enhanced Raman scattering
- Near-field enhancement and fluorescence
- Optical forces and thermal effects of plasmons
- Quantum plasmonics

Lab experiments:
- Fabrication of plasmonic nanostructures
- Confocal microscopy: reflection and transmission modes
- SNOM in illumination/transmission mode
- Angle-resolved spectroscopy
- Light scattering and surface-plasmon resonance
- Surface enhanced Raman scattering

Literature
- Nanoplasmonics, V. Klimov, Pan Stanford Publishing 2014
- Modern Introduction to Surface Plasmons, D. Sarid and W. Challener, Cambridge 2010
- Journal papers and lectures script

Teaching and learning methods
Lecture with practical course (2 hour per week)

Workload
30 hours lab and exercise (attendance time)
60 hours self-study and examination preparation
Total: 90 hours

Assessment
Written examination and lab work.

Examination
- 11981 Near-Field Optics and Plasmonics (AMS, FSPO 2012)
- 11516 Surface Plasmon Photonics (PHYS, FSPO 2014)

Grading procedure
The module grade is the examination grade.

Basis for
Research in Nanosciences