Announcement

Computational Quantum Physics
PD Dr. Simone Montangero

Description
The course aims to provide the students with the basics and advanced knowledge needed to perform numerical analysis for physicists, with a particular focus on methods developed to study many-body quantum systems.

Learning Outcomes
Numerical methods, Programming skills, many-body quantum physics.

Content
Tentative program:
1. Computers for physicists
 - Fundamentals
 - Architectures
2. Software for physicists
 - Programming good practices
 - Automatizing repetitive work
 - Debugging
3. Presenting results
 - Latex environment
 - Plotting and fitting
4. Basic concepts
 - Solution of linear equations
 - Eigenvalue problem
 - Sampling theorem
 - Fast Fourier Transform
5. Differential equations and integrals
 - Differential equations
 - Schrödinger Equation
 - Integration
6. Wave-function approximations
 - Mean field
 - Hartree-Fock methods
7. Renormalization methods
 - Quantum Phase Transitions
 - Renormalization group
 - DMRG
 - Tensor network methods
8. Parallel processing

- Grids and clusters
- MPI
- OpenMP
- GPU

Prerequisites
Quantum mechanics

Literature

- Various review papers published in the major international scientific journals
- Writing scientific software, S. Oliveira & D. Stewart, Cambridge University Press.

Additional Information
The seminars consist in programming exercises and weekly reports. The exam is based on a final project. The course will be held in English.

6 ECTS credits

Lecturer
PD Dr. Simone Montangero, Institute of Quantum Information Processing