

Fakultät für Naturwissenschaften, Fachbereich Physik

Announcement

Computational Quantum Physics

apl. Prof. Simone Montangero

Description

The course aims to provide the students with the basics and advanced knowledge needed to perform numerical analysis for physicists, with a particular focus on methods developed to study many-body quantum systems.

Learning Outcomes

Numerical methods, Programming skills, many-body quantum physics.

Content

Tentative program:

- 1. Computers for physicists
 - Fundamentals
 - Architectures
- 2. Software for physicists
 - Programming good practices
 - Automatizing repetitive work
 - Debugging
- 3. Presenting results
 - Latex environment
 - Plotting and fitting
- 4. Basic concepts
 - Solution of linear equations
 - Eigenvalue problem
 - Sampling theorem
 - Fast Fourier Transform
- 5. Differential equations and integrals
 - Differential equations
 - Schrödinger Equation
 - Integration
- 6. Wave-function approximations
 - Mean field
 - Hartree-Fock methods
- 7. Renormalization methods
 - Quantum Phase Transitions
 - Renormalization group
 - DMRG
 - Tensor network methods

8. Parallel processing

- Grids and clusters
- MPI
- OpenMP
- GPU

Prerequisites

Quantum mechanics

Literature

- Various review papers published in the major international scientific journals
- Computation in Modern physics, W. R. Gibbs, World Scientific.
- Writing scientific software, S. Oliveira & D. Stewart, Cambridge University Press.

Additional Information

The seminars consist in programming exercises and weekly reports. The exam is based on a final project. The course will be held in English.

6 ECTS credits

Lecturer

apl. Prof. Simone Montangero, Institute of Complex Quantum Systems