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Types of Geometry
Introduction

Encyclopædia Britannica Eleventh Edition, vol. 1, p. 940

Outer body shape

Gray H., Anatomy of the Human Body, 1918

Individual organs

(Blood) vessels, cavities

radiopaedia.org

Micro-structure

boneresearchsociety.org



Physical Measurements in vivo

Introduction

Outer body proportions:
length, height, width ... 

Kinematics (motion capturing)



Physical Measurements in vivo

Introduction

Outer body proportions:
length, height, width ... 

Kinematics (motion capturing)

MPI for Intelligent Systems (ps-old.is.tue.mpg.de)

Visible Human Project



Physical Measurements ex vivo, in vitro

Introduction

boneresearchsociety.org

Scanning EM



Imaging Techniques
• Plethora of techniques: X-ray, EOS, CT, MRI, PET, SPECT, EIT, PAT, fPAM, fMRI, DW-MRI, 

thermography, endoscopy, … 

• Invasive vs. non-invasive

• Anatomical vs. functional

• Projectional vs. tomographical

• Visible light vs. ionizing radiation vs. radio waves vs. sound waves vs. …

• Hard vs. soft tissue imaging

• Cheap vs. expensive



Non-Invasive Anatomical Imaging Techniques
Imaging Techniques

(X-ray) computed 
tomography (CT)

• Ionizing X-ray photons

• Excellent hard-tissue 
imaging

Magnetic resonance 
imaging

• Nuclear magnetic 
resonance, spin echo

• Excellent soft tissue 
imaging

Ultrasonography

• Ultrasonic/-sound waves 
(mechanical waves)

• Lower overall image 
quality, but „hazard-free“, 
real-time & inexpensive

Most widely used for comp. biomech. applications:



X-Ray Physics Recap: Discovery
Imaging Techniques | Computed Tomography

Wilhelm Conrad Röntgen (* 1845, † 1923)
Engineer & physicist

© Time Inc.

“Hand mit Ringen” (by W.C. Röntgen, 1895)

Morton & Hammer: The X-ray (1896)



Spectrum, Frequency & Energy
• High-energy photons: Ionizing, 

little absorption or scattering by 
soft tissue

• Planck-Einstein relation:        
� = �� = � �

�
• �: photon frequency

• �: Planck constant

• �: speed of light (vacuum)

• 	: photon wave length

• eV (“electronvolt”): kinetic 
energy of an elementary charge 
after passing 1 V of electric 
potential difference
• ≈ 1.6 ⋅ 10��� J

Imaging Techniques | Computed Tomography | X-Ray Physics

wikimedia.org



Interaction With Matter
Imaging Techniques | Computed Tomography | X-Ray Physics

Photoelectric effect

• X-ray photon transfers all 
its energy to an electron, 
ionizing the atom

• Outer electron fills gap, 
emits “characteristic 
photon” (~ orbital energy 
difference)*

• Dominant effect for bones

Compton scattering

• X-ray photon transfers 
fraction of its energy to 
outer or free electron

• Photon scattered in 
random direction, 
frequency reduced

• Dominant effect for soft 
tissues

Pair production

• X-ray photon near atomic 
nucleus converted to 
electron-positron pair

• Only relevant at very high 
energies (> 1.022 MeV = 
2����, i.e. gamma ray 
region)

*or an “Auger electron”

+ Rayleigh scattering
+ Photodisintegration
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Bulk Attenuation
Imaging Techniques | Computed Tomography | X-Ray Physics

yields Lambert-Beer law: Φ = Φ�����

Φ: radiant flux (in W)
�: path traveled inside material (in m)
�: particle density (in 1/m³)
�: particle mass (in kg)
 : mass density (in kg/m³)
!: attenuation cross-section (in m²)

Attenuation coefficient: " ∝  $%
�& =  $%

�� &

Mass attenuation coefficient: "' = "
 = �!

�� = !
�

e.g. for � = 40 keV:
"',-./01 ≈ 0.27 cm�/g
 -./01 = 0.99 g/cm&

"',89:0 ≈ 0.67 cm�/g
 89:0 = 1.85 g/cm&

→ Tune energy for contrast

⇒ "-./01 ≈ 0.27/cm

⇒ "89:0 ≈ 1.2/cm
http://www.nist.gov/pml/data/xraycoef/index.cfm

Φ �� = Φ����> �>��?

Φ �� = Φ �� ���@ �@��>
⋮Φ �B = Φ �B�� ���C �C��CD>

⇒ Φ �B = Φ� E ���FG�F
B

HI�
= Φ��� ∑ �FG�FCFK>

With Δ�H ≔ �H − �H��

Let Δ�H → 0
⇒ Φ �B = Φ��� P � � Q�RC?

Non-constant ":
(piece-wise)

Solving
SΦ
S� = −�!Φ = −"Φ = − ". + "U Φ

(1D radiative transfer, attenuation only)

": linear attenuation coefficient (in 1/m)
".: absorption coefficient (in 1/m)
"U: scattering coefficient (in 1/m)

"': mass attenuation coefficient (in m²/kg)

$: atomic number
�: X-ray energy

�

"

"�

��

Δ��

"�

��

Δ��

"&

�&

Δ�&

Δ�%"%



Generating X-Rays
• X-ray sources:

• Astrophysical

• Radioactive decay (V decay)

• X-ray vacuum tube

• X-ray laser

• Cyclic particle accelerators

• X-ray vacuum tube:
• Hot cathode releases electrons

• Acceleration by high-voltage electric field

• Collision with metal anode → X-rays (1 %) 
+ heat (99 %)
• Characteristic X-ray radiation (spikes)

• Bremsstrahlung (continuous)

• Filter for beam hardening

• Detection: Scintillator + photo diode

Imaging Techniques | Computed Tomography | X-Ray Physics

X-ray filter
(e.g. aluminum)

Collimator
(e.g. gadolinium & air)

Hardened,
narrowed beam
(~ 0.1 %)

wikimedia.org

Water-cooled X-ray tube

Metal anode
(e.g. tungsten-
-copper compound)

Hot cathode
(electron source)

High-voltage for
accelerating electrons

W. = 50 kV ⇒ �X.Y = 50 keV



X-Ray CT Basics
• Process:

• X-ray source rotates around subject

• Detector on opposite side

• After complete rotation, move subject axially

• Repeat

• Properties:
• Tomographical

• High contrast

• Sub-mm resolution

• High radiation dosage (100 – 1000× proj. X-ray)

• Requires contrast agent for soft-tissue imaging

• Output: raw data (projections) must be post-
processed, yielding a stack of 2D slices

• Modern devices: spiral/helical CT, multi-slice CTs
• Reduced scan times

• Reduced motion artefacts

Imaging Techniques | Computed Tomography

© analogic



Projection
Imaging Techniques | Computed Tomography

X-ray source

For some ray �, [ the X-ray detector receives

Φ �′, [ = Φ� exp _ " �, ` S`′
ab

�b
with

� = �′ cos [ − `′ sin [
` = �′ sin [ + `′ cos [

Note that

ℛh " �′ = _ " �, ` S`′
ab

�b
= −ln Φ �′, [

Φ�

is the Radon transform of ".

y

x
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X-ray source
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Projection
Imaging Techniques | Computed Tomography

For some ray �, [ the X-ray detector receives

Φ �′, [ = Φ� exp _ " �, ` S`′
ab

�b
with

� = �′ cos [ − `′ sin [
` = �′ sin [ + `′ cos [

Note that

ℛh " �′ = _ " �, ` S`′
ab

�b
= −ln Φ �′, [

Φ�

is the Radon transform of ".

Repeat for [0°, 180°) → sinogram:



Back-Projection
Imaging Techniques | Computed Tomography

Reconstruct " by inverting the Radon transform

" �, ` = 1
j _ ℛh " � sin [ + ` cos [ S[

k

�

Back-Projection: “smear” line integral values along 
projection paths, averaging contribution of 
different angles per pixel

But: That actually constructs

"l �, ` = 1
m ∗ " �, `

Δ[ = 180°Δ[ = 90°Δ[ = 45°Δ[ = 22.5°Δ[ = 1.0°
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Fourier Reconstruction
Imaging Techniques | Computed Tomography

Fourier slice theorem

ℱ�ℛh " ≡ rhℱ� "
- Fourier transform of projection along [ = slice 

under [ through 2D frequency space

- Fourier reconstruction: Reconstruct ℱ� " from 
1D Fourier-transformed projections

- Apply inverse Fourier transform to reconstruct 
image

x‘

y‘

[

ℛh
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Fourier Reconstruction
Imaging Techniques | Computed Tomography

Fourier slice theorem

ℱ�ℛh " ≡ rhℱ� "
- Fourier transform of projection along [ = slice 

under [ through 2D frequency space

- Fourier reconstruction: Reconstruct ℱ� " from 
1D Fourier-transformed projections

- Apply inverse Fourier transform to reconstruct 
image

x‘

y‘

[

ℱ�

ℱ���

ℛh

ℱ�

s�t

sut

[
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rh��



Filtered Back-Projection
Imaging Techniques | Computed Tomography

Δ[ = 1.0°

+ Hamming-windowed Ram-Lak filter

• Filtered Back-Projection: back-project high-pass 
filtered sonogram (→ cf. Fourier slice theorem)

• Naïve high-pass also amplifies noise

• Alternatives: Iterative techniques (e.g. Algebraic 

Reconstruction Technique, ART et al.)

• Statistical noise models (MBIR), EM algorithms …

• Fan- and cone-beam geometry requires special 

treatment

" �, ` ≈ 1
j _ ℱ��� s�t  ℱ�ℛh " � sin [ + ` cos [ S[

k

�

ℛhF " �H′ = v wHx" �H , `H
y

x
z = {| ⇒ | = {�}z



Hounsfield Scale
• Radiodensity depends on scan parameters

• Normalize measured attenuation to attenuation rate 
of water and air

• Hounsfield units ~W " ≔ 1000 ��������
�����������

• ~W "�H� = −1000, ~W "-./01 = 0
• A.k.a. “CT numbers”

• Every tissue type has a specific HU range

• Windowing: compress full high-dynamic range 
signal to displayable range

• QCT (quantitative CT): calibrated with phantom to 
map HU to BMD (bone mineral density)

Imaging Techniques | Computed Tomography

"

~W

".�1 "-./01
0

-1000

pQCT phantoms



Example
Imaging Techniques | Computed Tomography



Example
Imaging Techniques | Computed Tomography



Computed Micro-Tomography (µCT)
• High-resolution CT (< 10 µm)

• Typically …

• In vitro only (long scan times, high 
radiation doses, lethal for small 
animals)

• Cone-beam (2D sensor) instead of 
fan-beam

• Specimen is rotated

• Small samples only

Imaging Techniques | Computed Tomography

Sheep, CT Mouse, µCT



Non-Invasive Anatomical Imaging Techniques
Imaging Techniques

(X-ray) computed 
tomography (CT)

• Ionizing X-ray photons

• Excellent hard-tissue 
imaging

Magnetic resonance 
imaging

• Nuclear magnetic 
resonance, spin echo

• Excellent soft tissue 
imaging

Ultrasonography

• Ultrasonic/-sound waves 
(mechanical waves)

• Lower overall image 
quality, but „hazard-free“, 
real-time & inexpensive

Most widely used for comp. biomech. applications:



Magnetic Resonance Imaging (MRI)
• Basic receipe:

1. Put subject into strong magnetic field

2. Wait

3. Transmit short radio pulse (~ 30 ms)

4. Receive radio waves from subject (10 – 100 ms)

5. Repeat 3. and 4. a number of times

6. Use inverse Fourier transform to reconstruct image

• Strong, static field (primary field, ��)
• Typically 1.5 – 3 T, up to 7 T

• Superconducting magnets, liquid helium-cooled

• HF field/pulse (�� perpendicular to ��)
• Radio frequency (RF, MHz-range)

• Gradient fields (vary spatially and/or temporally)

Imaging Techniques

wikimedia.org
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Imaging Techniques

wikimedia.org

wikimedia.org radiopedia.org



Discovery of NMR & Invention of MRI
• Based on nuclear magnetic resonance (NMR)

• Nuclei in a magnetic field absorb an re-emit RF energy, verified 
in the 50s, 1952 Nobel Prize in physics

• NMR in condensed matter discovered independently by Edward 
Purcell et al. and Felix Bloch et al. (1946)

• Preliminary work: Zeeman 1896, Planck 1899/1900, Einstein 1905, 
Sommerfeld 1916, Stern & Gerlach 1922, Rabi 1936

• 1960s: NMR spectroscopy

• Raymond Damadian 1971: Cancer cells have different NMR 
properties than normal tissue (patent filed 1972)

• 1971: MRI imaging via field-gradient NMR invented by Paul 
Lauterbur & Peter Mansfield (Nobel Prize in Medicine 2003)

• 1977: First clinical images (Lauterbur, Mannsfield, Damadian)

Imaging Techniques | Magnetic Resonance Imaging

Raymond Damadian (left) with assistant Larry Minkoff (right)



Early Milestones
Imaging Techniques | Magnetic Resonance Imaging

First scan of live human being (chest)
Scan time: ~ 5 hours (“field-focused MRI”)
(Damadian, 1977)

Projectional NMR tomography
(Lauterbur 1973)

Scan of a human finger via
gradient-field slice selection
(Mansfield & Maudsley 1977)



Polarization (Magnetization)
Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI

Proton

Angular momentum

Without external field:
“degenerate”, no net
magnetization

With external field:
spin-up : spin-down > 1*

N

S

Magnetic moment
� = V� ⇒ � = � × ��

Larmor frequency �� = �
�k ��

Gyromagnetic ratio V = 42.58 MHz/T
Potential energy due to alignment in B-field:

� = − � ⋅ �� ≡ −�� V
2j �� = −����

⇒ � = 1 2⁄ is lower energy state (“parallel” to ��)
⇒ Energy difference between eigenstates Δ� = ���

*well, actually each spin is a linear combination
of spin-up/-down (superposition)…



Excitation
Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI

Spin state after polarization 
of some volume S�
� = S��/S�: net (macroscopic) 
magnetization
Excess „up“ states: ~ 9 ppm @ 1.5 T

Phase coherence
(“synchronized precession”, actually an 
asymmetry of transverse components of angular 
momentum)

→ increased transversal magnetization

Some nuclei switch energy levels
→ decreased longitudinal magnetization

k
� pulse @ ��

�} ⊥ ��



Relaxation
• Longitudinal relaxation (“spin-lattice relaxation”):

• Nuclei return to low energy states (thermal 
equilibrium distribution) 

• Energy (heat) transferred to surroundings (lattice)

• ��: time to recover 63 % of longitudinal 
magnetization (~1 s for soft tissues)

• Transversal relaxation (“spin-spin relaxation”):
• Phase decoherence over short time

• Caused by inhomogeneities of the local 
magnetic fields

• ��: time for transversal magnetization to decay 
to 37 % (~ 10 … 50 ms for soft tissues)

• �� < ��
• Net magnetization “spirals”, induces current in 

receiver coil → Free Induction Decay (FID)

Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI

Bloch equations:

�� � � = V ⋅ � � × �� � − �� �
��

�� u � = V ⋅ � � × �� u − �u �
��

�� � � = V ⋅ � � × �� � − �� � − ��
��

Evolution of net magnetization

Longitudinal
remagnetization

Transversal
demagnetization



Relaxation Times @ 1.5 T 
Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI

Tissue type Approximate �� value in ms Approximate �� value in ms

Adipose tissues 240 – 250 60 – 80

Whole blood (deoxygenated) 1350 50

Whole blood (oxygenated) 1350 200

Cerebrospinal fluid (similar to 
pure water)

4200 – 4500 2100 – 2300

Gray matter of cerebrum 920 100

White matter of cerebrum 780 90

Liver 490 40

Kidneys 650 60 – 75

Muscles 860 – 900 50

https://en.wikipedia.org/wiki/Relaxation_%28NMR%29



Projection Reconstruction
Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI

Objects with different
para-magnetic properties

Gradient field

Received FID signal
(mixture of frequencies)

Fourier transform of FID

2D, 3D: Multiple angles & filtered back-projection à la CT



Spatial Encoding and Reconstruction in k-Space
• Slice selection

• Enable longitudinal gradient field  � during RF pulse

• Excite only selected slice

• Frequency encoding gradient
• Enable gradient field  � perpendicular to  � after RF pulse

• Precession frequency varies in x direction (e. g. “column”)

• Phase encoding gradient
• For a short period after the RF pulse, enable a gradient field  u

perpendicular to both  � and  �
• Precession phase shift in y direction (e. g. “row”)

• Signal ¡ generated by precessing spins (Ljunggren 1983, Twieg 1983)

• ¡ ¢� , ¢u = ∬ ��u �, ` �H ¤R�a¤¥u S� S`y
¦ — Fourier transform!

• With ¢� ≔ V �� and ¢u ≔ V�Δ u§
• iFFT for reconstruction (or more sophisticated techniques …)

Imaging Techniques | Magnetic Resonance Imaging | Basic Concepts of MRI



Pros and Cons
• No ionizing radiation, no (known) long-term effects

• Excellent soft-tissue imaging

• Spatial resolution: ~ 1 mm (clinical; micro MRI: < 20 µm)

• Real-time capable (~ 20-30 ms temporal, 1.5-3.0 mm spatial resolution)

• More expensive than CT

• More time consuming than CT

• “Projectile risk”

• RF fields heat tissue & interfere with pace makers, cochlear implants

• Peripheral nerve stimulation (PNS)

• Acoustic noise (up to 120 dB(A))

• “Quenches”

• Claustrophobia, discomfort

Imaging Techniques | Magnetic Resonance Imaging



Imaging Techniques | Magnetic Resonance Imaging | MRI Safety 

http://simplyphysics.com/flying_objects/MRI_2.html

http://simplyphysics.com/flying_objects/FloorPolisher.JPG

https://imgur.com/NdWO4s9



“Quenches”
Imaging Techniques | Magnetic Resonance Imaging | MRI Safety

https://www.youtube.com/watch?v=9SOUJP5dFEg



Clinical MRT
Imaging Techniques | Magnetic Resonance Imaging | Examples

Clinical MRT @ 3 T
T2-weighted
Lumbar spine

Thanks to Niki Berger-Roscher!



Clinical MRT
Imaging Techniques | Magnetic Resonance Imaging | Examples

Clinical MRT @ 3 T
“Special sequence”
Long scan-time (~ 30 Min)
500 µm
Motion artifacts

Thanks to Niki Berger-Roscher!



Micro MRT
Imaging Techniques | Magnetic Resonance Imaging | Examples

Micro MRT @ 11.7 T
70 µm
Bovine tail

Thanks to Niki Berger-Roscher!



Non-Invasive Anatomical Imaging Techniques
Imaging Techniques

(X-ray) computed 
tomography (CT)

• Ionizing X-ray photons

• Excellent hard-tissue 
imaging

Magnetic resonance 
imaging

• Nuclear magnetic 
resonance, spin echo

• Excellent soft tissue 
imaging

Ultrasonography

• Ultrasonic/-sound waves 
(mechanical waves)

• Lower overall image 
quality, but „hazard-free“, 
real-time & inexpensive

Most widely used for comp. biomech. applications:



Ultrasonography
• Basic principle:

• Emit ultrasound (US) pulse

• Measure round-trip time(s) and intensity of echo(s)

• Repeat for each scan-line

• Reconstruct 2D image (slice) by estimating 
location/depth of US reflections

• Transducer generates US pulses and picks up 
echos

• HF ultrasound (1 … 20 MHz range)

• Generated by piezo-electric elements

• Echos create electric field in turn

• Multiple “scan-lines”

• 2D-array transducers for 3D real-time imaging

Imaging Techniques

© GE Healthcare

wikimedia.org



(Specular) Reflection on Tissue Boundaries
Imaging Techniques | Ultrasonography | Ultrasound-Tissue Interactions

Transducer

Gel

�

W

�̈

$� $�

Acoustic impedance $ =  � in Pa s m⁄ = rayl (Rayleigh)

Reflected energy 1̈ = �̈­ cos [
Reflection coefficient ­ = $� − $� � $� + $� �⁄

Muscle ↔ fat: 6.7 %
Muscle ↔ bone: 56 %
Muscle ↔ air: 98 %

Air: 400 rayl
Water: 1.5 ⋅ 10® rayl
Muscle: 1.7 ⋅ 10® rayl
Bone: 7.8 ⋅ 10® rayl

Transmission coefficient � = 1 − ­ = 4$�$� $� + $� �⁄

$&

Δ�� = Δ����

1̈,� = 60 % ⋅ �̈

/̈,� = 40 % ⋅ Ḧ

/̈,& = 40 % ⋅ 1̈,�
1̈,� = 10 % ⋅ /̈,�

�� = 2Δ��

1̈,�

/̈,& = 1.6 % ⋅ �̈

�� = 2 Δ�� + Δ��

Δ�� = Δ����



Scattering (Diffuse Reflection) & Interference
Imaging Techniques | Ultrasonography | Ultrasound-Tissue Interactions

• Reflections on small (~ wave length) 
“scatterers”, material “impurities”, rough 
surfaces

• Scatters incident US in all directions 
(diffuse reflection)

• Interference of scattered US

• In-phase: constructive

• Out-of-phase: destructive

• Results in “speckle” noise

• May provide useful diagnostic 
information

wikimedia.org

http://mi.eng.cam.ac.uk/~rwp/proj2004/proj4_04.html



Refraction & Diffraction
Imaging Techniques | Ultrasonography | Ultrasound-Tissue Interactions

• Refraction:

• Direction of propagation changes at interfaces 
of media with different sound velocities

• Snell’s law sin [� sin [/⁄ = �� ��⁄
• Typically rather weak effect in tissues with 

similar longitudinal sound velocities

• Diffraction:

• Figuratively: wave “bends around corner”

• Huygens-Fresnel principle: Every point on the 
wave front is origin of an “elementary wave”

• Superposition (& interference) of elementary 
waves → new wave front

• Weak for HF sound waves

Tissue 1 with ��

Tissue 2 with ��

[� [1

[/

wikimedia.org



Acoustic Attenuation
Imaging Techniques | Ultrasonography | Ultrasound-Tissue Interactions

• Reduction in amplitude with the traveled distance due to 

• Absorption (viscoelasticity!) and 

• Scattering & destructive inference

¨ ° = ¨���±²³

´: attenuation coefficient in 1/(cm MHz)

Conversion from dB/(cm MHz): ´ = µ: ��
�� ´¶·

Water: 0.002 dB/(cm MHz)
Blood: 0.2 dB/(cm MHz)
Muscle: 1.1 dB/(cm MHz)
Cortical bone: 6.9 dB/(cm MHz)
Trabecular bone: 9.9 dB/(cm MHz)
Cranial bone: 15 dB/(cm MHz)
Lung: 40 dB/(cm MHz)

�: frequency of US
°: distance travelled in medium

�

¨

Energy of transmitted wave

Received echos

´� ´�



Resolution-Penetration Trade-Offs
Imaging Techniques | Ultrasonography

• US pulses: multiple of wave length 
	 = � �⁄ = ��

• Echo separation: Δ� > ��
• Depth resolution: Δ� > �	
• Higher frequency implies …

• … shorter pulse length → increased 
resolution

• … quicker attenuation → decreased 
penetration depth

• Repetition period limits temporal 
resolution

M Maldovan Nature 503, 209-217 (2013) doi:10.1038/nature12608

��,U = ��
�

��,0 = ��,³ + ��

��,U = �� + Δ�
�



Post-Processing & Image Reconstruction
Imaging Techniques | Ultrasonography

• Compensate attenuation (gain)

• Dynamic range compression

• Demodulation (rectification + low-pass filter)

• Image reconstruction (per scan-line)

• Artifacts, e.g.

Speed-displacement artefact Shadowing

radiopedia.org

Comet-tail

�

Gain

�

U

Rectified & demodulated



• No ionizing radiation, no (known) long-term effects (aside from heating @ high power)

• Real-time capable (up to 1000 fps)

• Inexpensive

• Portable

• Optional 3D imaging

• Direct depth information (no projection)

• Speed measurements (Doppler effect)

• Excellent resolution possible (3 – 5 µm resolution @ 15 … 80 MHz)

• Limited penetration depth (in particular at high frequencies)

• Shadowing by bone, gas (almost impenetrable)

• Slices can be hard to interpret

• Good images require high level of skill

Pros & Cons
Imaging Techniques | Ultrasonography


