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System equations:

@ mass conservation

© energy conservation

B
poe =P Q+V (kVT)+V- (2

@ equation of state (e.g. ideal gas equation)

3~ (7
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Incompressible fluid / flow assumption:

Incompressible flow: Incompressible fluid:
dp dp
0 = — t o = =
o (x,1t) B (x,t) =Vp(x,t) =0
0
= ap(xa t) + vp(X7 t) -
o Continuity equation: 0, flow ass.
0 0
Piv.-(pi)= L + Vp- i +pV-G=pV-i=0
ot ot ——
0.fluid ass.  Ofuid ass.
_ ———— ey
o It follows: V-d =0 /Q?‘h-

==
(divergency free velocity field) '_t.l/
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Incompressible flow /fluid + isothermal assumption:

From T = const. with %p = 0 follows:
Q Pressure is given with p ~ p (equation of state)

Q Energy is a function of p and 7
= the energy conservation contains no extra information

For a newtonian fluid we get the Navier-Stokes equations as

Navier-Stokes equations

V-ui=0
ou - 1
8—;'+(J-V) G=F = Vp 0¥ 1
Note: often, the kinematic viscosity v := % is used
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Dimensionless Navier-Stokes:
Navier-Stokes momentum equation

ry o,
VL

ot
Define characteristic time T, length L and velocity U with L =U - T:

ai .1
Y @-v)a="F G

[

t o -
i AT

Dimensionless representation of the momentum equation

<u

ov L~ 1 1
TV V= —f — — L y.z
o TV V=t Ve Y L

L (look for Froude number)

o dimensionless forcedensity & :
@ pressure rescaling p := p—fﬂ (NOTE: only for inc. fluid)
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Diffusion term & Reynolds number:
ov
or

Definition of the Reynolds number:

Y (7-V) V=R —Vp +ﬁv.

|12

inertia fc UL
Re . nertia forces _ p

viscous forces I

. 3.
o inertia force: Fj, = # (momentum transfer)

o viscous force: Fis = pl? - % ( “velocity diffusion”)
Dimensionless Navier-Stokes equations

V-v=0 (3)
ov L, .1
E—I—(V-V) V=K —Vp +R—eV-

|12
—~~
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Pressure equation:

%Hv-w V=R —Vp +

<
I~

Divergency free velocity field implies

V-<g:+(\7-V) v) :v(@ V4LV,

Re

with %V -V =0, we get the Poissin-Pressure equation:

1
As—v. (7 — (i R
p=V (/4; (V-V) vV + Rev 7')

[
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Turbulent flow:

o If Re << 1, the diffusion time scale is much smaller as the
time scale for momentum transportation

o velocity field perturbations smooth out quickly
o velocity field tends to be laminar

o If Re >> 1, momentum transportation is the main effect for
the fluid flow description

o velocity field perturbations increase quickly
o velocity field tends to be turbulent

Example: (flow in pipe)

@ Reynolds number: Re = ”‘Z—VZ

Q.

@ Observation: Julius Rotta (at 1950)

[ g — ‘77 , p
Reyit. = 2300 ' Z !
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Energy cascade:

@ energy injection range (small viscous effects)
Q inertial subrange
@ dissipation range (large viscous effects)

log(e)

log(k)

visualization after the model of Lewis Fry Richardson
e := energy, k := wave number
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Kolmogorov scales:

The smallest scales that influences the turbulent flow by
dissipation effects.

Note:
To retain energy conservation at the numerical domain, one have
to resolve also the dissipative scales in the Navier-Stokes equation!

The scales are given as: (e is the average dissipation rate)

1 1
3\ 2 3
length: n = <,u3> vel : u, = <M e) time : T, = <,u>
€p P pe

with

g _

Re, =
T p
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy ~ U? _ U3
time T L

€ ~

Therefore we get the relation:

1
L 3\ — 3 .3\ 2
n o ep’ Ly

Example: (L =~ 0m,v~1m p~13m3, ~ 17.1 pPa-s)

IS

Re ~7.5-10°
n~4-10"°m
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Resolution problem:
Approximation of the dissipation rate (from large scales):

kinetic energy ~ U? _ U3
time T L

€ ~

Therefore we get the relation:
1 1
L 3\ "2 3 3\ 2
g ~ L. U p — Re
7 ep L3

Example: (L~103m, v~ 0.1 =, p =~ 1060 %, p~ 3 mPa-s)

Hlw

Re =~ 35
n~7-10°m
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Simulation approaches:

o Direct numerical simulation (DNS):
Assumption that the flow inside of a volume element is purely
laminar and no dissipation effect occurs. (Note: If this is not
true, the energy conservation results in a different flow field.)

o Eddy dissipation modelling on small scales:

o Reynolds-Averaged Navier Stokes (RANS)
o Large-Eddy Simulation

o ...
v=(v)+v' —and p=(p)+p

with the mean value (-) of - and the fluctuating part -’
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RANS:

@ Special cases: temporal or spatial averaging

N
o In general: (f(X,t)) = Nlim >f(X,t)
—00

o Fluctuating part: (') =0

Reynolds equations:

RV (B - ((V-Vv) V)

ot Re = ————
correlation property
(vevi)  (vevy) (vevz)
VA7) =V (v (v (mv)
(vovi) (vivy) (vivi)
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RANS models:

o Zero equation models v1 = £2 |9) (v)| (mixing length &)

@ One equation models (example: Spalart and Allmaras)

ovr

S+ Vor =V (Z; vuT> +S,

e Two equation models (k — ¢, k — w, SST)
o k= tr (V'v') (mean of the fluctuating kinetic energy)
o dissipation rate €

o eddy frequency w

Q k — € good on free flow fields with no walls
@ k — w: near wall approximation is good
© SST brings the advantage of booth together
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Large-Eddy simulations (LES):
spatial averaging method

V(% 1)) ::/ U2, 1) G(R.7, D) dV/
|4
with

Q step-function

c._ A, X=X <A)2
o 0, else

Q gauss-filter

G := A(A) exp {M}

A2
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Large-Eddy simulations (LES):
LES equation:
V(7)) =0

29 (@ V) @ =F - V(o) + oV (F) -V

with 7° := (VV) — (V) (V). Detailed look:

<

75 = (V) (7)) — (V) (V) + (V) 7) = (7 () + (V'7)

L Cc 7SR

o Leonard-strain: creation of small eddys through large eddys
o Cross-stress: interaction of the different scales

@ Subgrid-scale Reynolds stress tensor



