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Finite Element Methode 
= 

 Numerical Method   
to solve partial differential  

equations (PDEs) approximately  

FE Explanation in one sentence 
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Fields 

Statics, Elasticity 
• Stresses, Strains 

Nonlinearities: 

• Contact, Friction 

• Plasticity, Hardening 

• Fatigue, Fracture mechanics  

• Shape optimization 

Dynamics 
• Implicit: Modal analysis 

• Explicit: transient time dependent (crash) 

Electromagnetic fields 

Heat Transfer, Diffusion 
Fluid flow 
• Air planes 

• Weather prediction 

Accustics 

 

 

FEM 

 



Statics, Elasticity 

Frauenkirche, Dresden 



Heat Transfer and Diffusion 

Pasta 

Chip 

Cheese 



Accustics 

Fluid Flow 



Electromagnetic Fields 

Solution: streamlines of magnetic flow  Model: electric motor 



Shape optimization 

Initially: solid plate Finally: Spokes 



High Speed Dynamics 

• An explicit FE solver is needed 

• to solve initial value instead of 

boundary value problem 

• Application: crash, fast impact, ... 



Working Steps of a FEA 
1. Preprocessor 
• Geometry 

• Mesh, Discretization 

• Material properties 

• Load / Boundary Conditions 

2. Solution 
• Computer is working 

3. Postprocessor 
• Verification,Validation 

• Presenting results 



Step 1:  Preprocessor 

1.1  Geometry 
 

• Generate by CAD procedures 
o Primitives, 2D Sketches 

o Boolean operations 

o For simple Geometries 

 

• Import Geometry from CAD 
o Primitives, 2D Sketches 

o Boolean operations 

o For simple Geometries 

 

• Bottom-up Method 
o Points  Lines  Areas  Volumes 

o For simple geometries 

o Maximum control 

o Should be scripted (e.g. APDL) 

 

• Direct generation of Elements: 
o E.g. Voxel Models out of CT data 

o Robust , automatic generation 

o For very complex geometries 

o No smooth surfaces  not good for contact 

 

Volumes 

Elements 

Area 

Lines 

Points 



1.2  Meshing 
 

• Tetraeheadrons: Better for complex geometry 

• Hexaheadrons: Better mechanical properties 

• Convergence: Better results with increasing number of elements. 

 Finer mesh at higher solution gradients. 

 Check dependency of your results on mesh size! 

  (see Lab 2) 



1.3  Material laws and properties 
 

• Simplest: Linear elastic, isotropic: Young’s modulus E  

  and Poisson’s ratio  

• More complex:  Non-linear, non-elastic (= plastic), hardening, fatigue, cracks 

• Anisotropic:  Transverse isotropic (wood), Orthotropic, ...  

   more than 2 parameters 

• Biphasic: Porous media 

 

 

 

1.4  Load and Boundary Conditions (BC) 
 

• Loads: Forces, pressures, displacements, accelerations, temperatures, … 

• BC: fixations, supports, zero-displacements, symmetries, constraints, … 

• Model should be supported by BC in order to prevent any rigid body 

movements! 

• Ansys Workbench:  Load & BC are applied to geometric items (areas, lines, 

…) and than transferred to the underlying nodes automatically. 



Step 2:  Solution 

• The computer is doing the work 

• Solver for linear systems:  Direct solver or iterative solver 

• Solver for non-linear systems:  Iterativ, Newton-Raphson 

Step 3:  Post-Processor 

• Verification (check code, convergence, plausibility, ...) 

• Validation (compare with experiments) 

• Presenting the results (important message) 

• Displacements (try always true scale and high scale) 

• Strains, stresses 

• Interpretation 

 



Theory of the 

Finite Element Method 
using a ‘super simple’ example 



Example: Tensile Rod 

Given: 

Rod with … 

• Length L 

• Cross-section A (constant) 

• E-modulus E (constant) 

• Force F (axial) 

• Upper end fixed 
 

To determine: 

Deformation of the loaded rod: 

Displacement function u(x) 

x 

Unloaded 
(Reference state) 

EA, L 

F 

u(x) 

Loaded 

 



 ODE:   (EA u‘)‘ = 0 

Generate the Differential Equation 

1. Kinematics:   = u‘ 

2. Material:   = E     N = EAu‘ 

3. Equilibrium: N‘ = 0 

N(x) 

N(x+dx) 

x 

x+dx 

Differential 

Element 

(infinitesimale 

heigth dx) 

A) Classical Solution (Method of „infinite“ Elements) 

u‘‘ = 0 

If  EA = const  then 

x 

EA, L 

F 

u(x) 

Unloaded 
(Reference state) 

Loaded 

 



Solve the Differential Equation 

 u‘‘(x) = 0 

Integrate 2 times: u‘(x)  = C1 

 u(x)   = C1*x + C2   (General Solution) 

 

Adjust to Boundary Conditions 

Top (fixation): u(0) = 0   C2 = 0 

Bottom (open, force): N(L) = F   u‘(L) = F/(EA) 

    C1 = F/EA 

Adjusted Solution 

 u(x)   = (F/EA)*x 

A) Classical Solution (Method of „infinite“ Elements) 

F 

u(x) 

u 

x 

u(L) = (F/EA)*L 



B) Solution with FEM 

F 

Element A 

L1 , EA 

Node 1 

Node 2 

Node 3 

Element B 

L2 , EA 

uA(xA) 

uB(xB) 

Unloaded: 
(Reference condition) 

Loaded: 

 

Ansatz functions (linear)  

for the unknown  

displacements u 

uA(xA) 

uB(xB) 

xA 

xB 

u1 

u2 

u3 

Discretization:  We divide the rod into (only) two finite (= not infinitesimal small) 

Elements.  The Elements are connected at their nodes. 
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The unknown displacement function of the entire rod is described with a series of simple (linear) ansatz 

functions (see figure).  This is the basic concept of FEM. 

The remaining unknowns are the three “nodal displacements” û1, û2, û3 and a no longer a whole function 

u(x).  Now we introduce the so-called “virtual displacements (VD)“.   These are additional, virtual, 

small, arbitrarydisplacements δû1, δû2, δû3, consistent with BC.   Basically: we “waggle” the nodes a bit. 

Now the Principle of Virtual Displacements (PVD) applies:  A mechanical system is in equilibrium 

when the total work (i.e. elastic minus external work) due to the virtual displacements consequently 

disappears. 
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F 

Element A 

L1 , EA 

Node 1 

Node 2 

Node 3 

Element B 

L2 , EA 

uA(xA) 

uB(xB) 

Unloaded: 
(Reference condition) 

Loaded: 

 

Ansatz functions (linear)  

for the unknown  

displacements u 

xA 

xB 

u2 

u3 

δu1 

δu2 

δu3 

Virtual displacements 

at all nodal displace- 

ments 
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With this principle we unfortunately have only one equation for the three unknown displacements  û1, 

û2, û3 .  What a shame!  However, there is a trick… 

For  our simple example we can apply: 

Virt. elastic work =   normal force N  times VD 

Virt. external work  =   external force F  times VD 

The normal force N can be replaced by the expression EA/L times the element elongation.  Element 

elongation again can be expressed by a difference of the nodal displacements: 
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The virtual  displacements can be chosen independently of one another.  For 

instance all except one can be zero.  Then the term within the bracket next to this not zero VD 

has to be zero, in order to fulfill the equation.  However, as we can chose the VD we want and 

also  another VD could be chosen as the only non-zero value, consequently all three brackets 

must individually be zero. We get three equations. Juhu! 
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Abbreviated we write: 

… which we can also write down in matrix form: 
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Or in short: 

This is the classical fundamental equation of a structural mechanics, linear FE-analysis.  A 

linear system of equations for the unknown nodal displacements 

K -  Stiffness matrix 

û -  Vector of the unknown nodal displacement 

F -  Vector of the nodal forces 

0ˆ
1 u

Because the virtual displacements also have to fulfill the boundary conditions we have  δû1 = 0.  

Therefore we need to eliminate the first line in the system of equations, as this equation does 

no longer need to be fulfilled.  The first column of the matrix can also be removed, as these 

elements are in any case multiplied by zero.  So it becomes … 
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We still have to account for the boundary conditions.  The rod is fixed at the top end.  As a 

consequence node 1 cannot be displaced: 
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We solve the system of equations and obtain the nodal displacements 

F
EA

LL
uF

EA

L
u BAA 

 32
ˆundˆ

Here the FE-solution corresponds exactly with the (existing) analytical solution.  In a more 

complex example this would not be the case.   

Generally, it applies that the convergence of the numerical solution with the exact solution 

continually improves with an increasing number of finite elements.  For extremely 

complicated problems there is no longer an analytical solution; for such cases one needs 

FEM! 

From the nodal displacements one can also determine strains and stresses in a 

subsequent calculation.  In our example strains and stresses stay constant within the 

elements. 
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u(x)   = (F/EA)*x 
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The essential steps and ideas of FEM are thus: 

• Discretization: Division of the spatial domain into finite elements 

• Choose simple Ansatz functions (polynomials) for the unknown variables within the 

elements.  This reduces the problem to a finite number of unknowns. 

• Write up a mechanical principle (e.g. PVD, the mathematician says “weak formulation” of 

the PDE) and 

• From this derive a system of equations for the unknown nodal variables 

• Solve the system of equations 

Summary 

Many of these steps will no longer be apparent when using a commercial FE program.  With 

the selection of an analysis and an element type the underlying PDE and the Ansatz functions 

are implicitly already chosen.  The mechanical principle was only being used during the 

development of the program code in order to determine the template structure of the stiffness 

matrix.  During the solution run the program first creates the(big) linear system of equations 

based on that known template structure and than solves the system in terms of nodal 

displacements.  



General Hints and Warnings 

 

• FEA is a tool, not an solution 

 

• Take care about nice pictures („GiGo“) 

 

• Parameter 

     needs experiments 

• Verification 

 

• FE models are case (question) specific 

 



Literature and Links reg. FEM 

Books: 

 

• Zienkiewicz, O.C.: „Methode der finiten Elemente“; Hanser 1975 (engl. 2000).  

The bible of FEM (German and English) 

 

• Bathe, K.-J.: „Finite-Elemente-Methoden“; erw. 2. Aufl.; Springer 2001   

Textbook (theory) 

 

• Dankert, H. and Dankert, J.: „Technische Mechanik“; Statik, Festigkeitslehre, 

Kinematik/Kinetik, mit Programmen; 2. Aufl.; Teubner, 1995.  

German mechanics textbook incl. FEM, with nice homepage 

http://www.dankertdankert.de/ 

 

• Müller, G. and Groth, C.: „FEM für Praktiker, Band 1: Grundlagen“, mit 

ANSYS/ED-Testversion (CD). (Band 2: Strukturdynamik; Band 3: 

Temperaturfelder)  

ANSYS Intro with examples (German) 

 

• Smith, I.M. and Griffiths, D.V.: „Programming the Finite Element Method“  

From engineering introduction down to programming details (English) 

 

• Young, W.C. and Budynas, G.B: „Roark’s Formulas for Stress and Strain “  

Solutions for many simplified cases of structural mechanics (English) 

 

Links: 

 

• Z88  Free FE-Software:  http://z88.uni-bayreuth.de/ 

http://www.dankertdankert.de/
http://z88.uni-bayreuth.de/
http://z88.uni-bayreuth.de/
http://z88.uni-bayreuth.de/


Modeling Trabecular Bone 

https://www.researchgate.net/publication/22580090_The_Compressive_Behavior_of_Bone_as_Two_Phase_Porous_Structure 

Carter&Hayes, 1977: 


