Computational Biomechanics 2017

Lecture 2:

Basic Mechanics 2

Ulli Simon, Martin Pietsch, Lucas Engelhardt

Scientific Computing Centre Ulm, UZWR
Ulm University
Contents

<table>
<thead>
<tr>
<th>SW</th>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mo</td>
<td>17 Apr</td>
<td>- Holiday -</td>
<td>-</td>
</tr>
<tr>
<td>02</td>
<td>Mo</td>
<td>24 Apr</td>
<td>L01: Intro to Biomechanics; Mech 1: Statics</td>
<td>Ulli</td>
</tr>
<tr>
<td>03</td>
<td>Mo</td>
<td>01 May</td>
<td>- Holiday -</td>
<td>-</td>
</tr>
<tr>
<td>04</td>
<td>Mo</td>
<td>08 May</td>
<td>L02: Mech 2: Elastostatics; Mat. Props. Biol. Tissues</td>
<td>Ulli</td>
</tr>
</tbody>
</table>
Mechanical Basics
1.3 Variables, Dimensions and Units

Standard: ISO 31, DIN 1313

Variable = Number \cdot Unit
Length L = 2 \cdot m = 2 m

\{Variable\} = Number
[Variable] = Unit

Three mechanical SI-Units:
\begin{itemize}
 \item m (Meter)
 \item kg (Kilogram)
 \item s (Seconds)
\end{itemize}
2.1 Force

- We all believe to know what a force is.
- But, force is an invention not a discovery!
- ... it can not be measured directly.

Newton’s 2nd Law [Axiom]:

\[\text{Force} = \text{Mass times Acceleration} \quad \text{or} \quad F = m \cdot a \]

Note to Remember:

„A force is the cause of acceleration or deformation of a body“
Representation of Forces

... with arrows

Forces are Vectors with
- Magnitude
- Direction
- Sense of Direction

5 N
Line of action
Screw
Units of Force

Newton

\[N = \text{kg} \cdot \text{m/s}^2 \]

\[F_G = m \cdot g = 0,1 \text{ kg} \cdot 9,81 \text{ m/s}^2 \]

\[= 0,981 \text{ kg m/s}^2 \]

\[\approx 1 \text{ N} \]

Note to Remember:

1 Newton \approx \text{Weight of a bar of chocolate (100 g)}
2.2 Method of Sections (Euler) [Schnittprinzip]

Free-Body Diagramm (FBD) [Freikörper-Bild]

Note to Remember:
First, cut the system, then include forces and moments.
Free-body diagram = completely isolated part.
2.2 Method of Sections

Cut through joint (2D)

Cut through bone (2D)
2.2 Method of Sections

Cut through bone (2D) \equiv Cut through joint (2D)
2.3 Combining and Decomposing Forces

Summation of Magnitudes

\[5 \text{ N} + 3 \text{ N} = 8 \text{ N} \]

Subtraction of Magnitudes

\[5 \text{ N} - 3 \text{ N} = 2 \text{ N} \]

Vector Addition

\[F_1 = 5 \text{ N}, \quad F_2 = 3 \text{ N} \]

\[F_R \approx 7 \text{ N} \]

Decomposition into Components

\[F_{\text{axial}} \]

\[F_{\text{transverse}} \]
2.4 The Moment [Das Moment]

Note to remember:
The moment $M = F \cdot a$ is equivalent to a force couple (F, a).
A moment is the cause for angular acceleration or angular deformation (Torsion, Bending) of a body.
Units for Moment

Newton-Meter

\[N \cdot m = \text{kg} \cdot \text{m}^2/\text{s}^2 \]

Representation of Moments

... with rotation arrows or double arrows

Moments are Vectors with ...

- Magnitude
- Direction
- Sense of Direction

Rechte-Hand-Regel:
2.5 Moment of a Force about a Point

[\text{Versetzungsmoment}]

Note to Remember:

\text{Moment} = \text{Force times lever-arm}
2.7 Static Equilibrium

Important:
Free-body diagram (FBD) first, then equilibrium!

For 2D Problems max. 3 equations for each FBD:

The sum of all forces in x-direction equals zero: \(F_{1,x} + F_{2,x} + \ldots = 0 \)

The sum of all forces in y-direction equals zero: \(F_{1,y} + F_{2,y} + \ldots = 0 \)

The sum of Moments with respect to P equals zero: \(M_{1,z}^P + M_{2,z}^P + \ldots = 0 \)

(For 3D Problems max. 6 equations for each FBD)
2.7 Static Equilibrium

Important:
Free-body diagram (FBD) first, then equilibrium!

3 equations of equilibrium for each FBD in 2D:

- Sum of all forces in x-direction: \(F_{1,x} + F_{2,x} + \ldots = 0 \),
- Sum of all forces in y-direction: \(F_{1,y} + F_{2,y} + \ldots = 0 \),
- Sum of all moments w.r.t. to P: \(M_{1,z}^P + M_{2,z}^P + \ldots = 0 \).

- Force EEs can be substituted by moment EEs
- 3 moment reference points should not lie on one line
6 equilibrium equations for one FBD in 3D:

Summe aller Kräfte in x - Richtung : \(\sum F_{ix} = 0, \)

Summe aller Kräfte in y - Richtung : \(\sum F_{iy} = 0, \)

Summe aller Kräfte in z - Richtung : \(\sum F_{iz} = 0, \)

Summe aller Momenteum x - Achse bezüglich Punkt P : \(\sum M_{ix}^P = 0. \)

Summe aller Momenteum y - Achse bezüglich Punkt Q : \(\sum M_{iy}^Q = 0. \)

Summe aller Momenteum z - Achse bezüglich Punkt R : \(\sum M_{iz}^R = 0. \)

- Force EEs can be substituted by moment EEs
- Max. 2 moment axis parallel to each other
- Determinant of coef. matrix not zero
2.8 Recipe for Solving Problems in Statics

Step 1: Model building. Generate a simplified replacement model (diagram with geometry, forces, constraints).

Step 2: Cutting, Free-body diagram. Cut system and develop free-body diagrams. Include forces and moments at cut, as well as weight.

Step 3: Equilibrium equations. Write the force- and moment equilibrium equations (only for free-body diagrams).

Step 4: Solve the equations. One can only solve for as many unknowns as equations, at most.

Step 5: Display results, explain, confirm with experimental comparisons. Are the results reasonable?
2.9 Classical Example: „Biceps Force“

From:
„De Motu Animalium“
G.A. BORELLI
(1608-1679)
Step 1: Model building

Rope (fixed length) 10 kg Beam (rigid, massless) Joint (frictionless)
Schritt 2: Schneiden und Freikörperbilder

10 kg

100 N
More to Step 2: Cutting and Free-Body Diagrams

![Free-Body Diagrams](image)

Step 3 and 4: Equilibrium and Solving the Equations

<table>
<thead>
<tr>
<th>Sum of all forces in vertical direction = 0</th>
<th>Sum of all forces in “rope” direction = 0</th>
<th>Sum of all moments with respect to Point G = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 N + (−S₁) = 0</td>
<td>S₂ + (−S₃) = 0</td>
<td>−S₁ \cdot h₁ + S₂ \cdot h₂ = 0</td>
</tr>
<tr>
<td>⇒ S₁ = 100 N</td>
<td>⇒ S₃ = S₂</td>
<td>−100 N \cdot 35 \text{cm} + S₂ \cdot 5 \text{cm} = 0</td>
</tr>
</tbody>
</table>

⇒ S₂ = 100 N \cdot \frac{35 \text{cm}}{5 \text{cm}} = 700 N
3.1 Stresses

... to account for the loading of the material!

500 N

Fotos: Lutz Dürselen
Note to Remember:
Stress = „smeared“ force
Stress = Force per Area or $\sigma = \frac{F}{A}$
(Analogy: „Nutella bread teast“)
Units of Stress

Pascal: \(1 \text{ Pa} = 1 \text{ N/m}^2 \)
Mega-Pascal: \(1 \text{ MPa} = 1 \text{ N/mm}^2 \)

3.2 Example:

"Tensile stress in Muscle:

\[
\sigma_1 = \frac{F}{A_1} = \frac{700 \text{ N}}{7000 \text{ mm}^2} = 0,1 \frac{\text{N}}{\text{mm}^2} = 0,1 \text{ MPa}
\]
\[
\sigma_2 = \frac{F}{A_2} = \frac{700 \text{ N}}{70 \text{ mm}^2} = 10 \frac{\text{N}}{\text{mm}^2} = 10 \text{ MPa}
\]
3.3 Normal and Shear Stresses

Tensile bar

Cut 1:
- Normal stress σ_1

Cut 2:
- Normal stress σ_2
- Shear stress τ_2
Note to Remember:

First, you must choose a point and a cut through the point, then you can specify (type of) stresses at this point in the body.

Normal stresses (tensile and compressive stress) are oriented perpendicular to the cut-surface.

Shear stresses lie tangential to the cut-surface.
General (3D) Stress State: Stress Tensor

... in one point of the body: How much numbers do we need?

- 3 stress components in one cut (normal str., 2x shear str.)

 times

- 3 cuts (e.g. frontal, sagittal, transversal)

 results in

- 9 stress components for the full stress state in the point.

- But **only 6** components are linear independent („equality of shear stresses“)

\[
\begin{pmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{pmatrix}
\]

„Stress Tensor“
Symmetry of the Stress Tensor

Boltzmann Continua: Only volume forces (f_x und f_y), no volume moments assumed → “Equality of corresponding shear stresses”

\[
\sigma = \begin{bmatrix}
\sigma_{xx} & \tau_{xy} & \tau_{xz} \\
\cdot & \sigma_{yy} & \tau_{yz} \\
sym & \cdot & \sigma_{zz}
\end{bmatrix}
\]

\[
\sum M^{(c)} = 2 \cdot \tau_{xy} \Delta y \Delta z \cdot \frac{1}{2} \Delta x - 2 \cdot \tau_{yx} \Delta x \Delta z \cdot \frac{1}{2} \Delta y = 0.
\]
General 3D Stress State

6 Components → 6 Pictures
Problem:
- How to produce nice Pictures?
- Which component should I use?
- Do I need 6 pictures at the same time?

So called „Invariants“ are „smart mixtures“ of the components

\[
\sigma_{\text{Mises}} = \sqrt{\sigma_{xx}^2 + \sigma_{yy}^2 + \sigma_{zz}^2 - \sigma_{xx} \sigma_{yy} - \sigma_{xx} \sigma_{zz} - \sigma_{yy} \sigma_{zz} + 3 \tau_{xy}^2 + 3 \tau_{xz}^2 + 3 \tau_{yz}^2}
\]
3.4 Strains

• Global, (external) strains

\[\varepsilon := \frac{\text{Change in length}}{\text{Original length}} = \frac{\Delta L}{L_0} \]

• Local, (internal) strains

Units of Strain

without a unit

1

1/100 = %

1/1,000,000 = \(\mu \varepsilon \) (micro strain)

= 0,1 %
3D Local Strain State: Strain Tensor

\[\mathbf{\Delta}x^+ + \delta \phi_{xy} \]

Displacements [Verschiebungen]
3D Local Strain State: Strain Tensor

Definition:

\[\varepsilon_{xx} = \lim_{x_0 \to 0} \frac{\Delta x}{x_0}, \quad \varepsilon_{yy} = \lim_{y_0 \to 0} \frac{\Delta y}{y_0}, \quad \varepsilon_{zz} = \lim_{z_0 \to 0} \frac{\Delta z}{z_0} \]

\[\varepsilon_{xy} = \frac{1}{2} \cdot \Delta \gamma, \quad \varepsilon_{xz} = \frac{1}{2} \cdot \Delta \beta, \quad \varepsilon_{yz} = \frac{1}{2} \cdot \Delta \alpha \]

Universal Strain Definition:

\[\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right), \quad i, j = \{x, y, z\} \]

\[\varepsilon \equiv \begin{pmatrix}
\varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{yz} \\
\varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz}
\end{pmatrix} \]

Note to Remember:
Strain is relative change in length (and shape)
Displacement vs. Strain

Displacement u_x

Strain, ϵ_{xx}
Material Laws for Biological Tissues
Characterizing Mechanical Properties

Structural Properties
(Organ Properties)

3-Point Bending
of a bone specimen

Material Properties
(Tissue Properties)

Tensile Test
of a standardized Specimen
Mechanical Properties

<table>
<thead>
<tr>
<th></th>
<th>Organ Properties</th>
<th>Tissue Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>Different stiffnesses: load/deformation</td>
<td>Young's Modulus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poisson's Ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shear Modulus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compressive Modulus</td>
</tr>
<tr>
<td>Ultimate</td>
<td>Ultimate forces, moments, displacements: tension, compression, bending, torsion</td>
<td>Ultimate stresses, strains: tensile, compressive, shear at fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at end of elastic region, at start of yielding</td>
</tr>
</tbody>
</table>
Example: Fracture Callus

- Haematoma
- Granulation tissue
- Fibrous tissue
- Cartilage
- Woven bone
- Cortical bone

0.01 ... 3 MPa

0.4 ... 500 MPa

400 ... 6000 MPa

10 ... 20 GPa
Overview

Simplest Material Law:
- Linear-elastic, isotropic (Hook’s Law)

More complex Laws:
- Nonlinear
- Hyperelastic (nonlinear elastic + large deformations)
- Viscoelastic
- Non-elastic, plastic, yielding, hardening
- Anisotropic
- Fatigue, recovery
- Remodeling, healing
In principal:

Biological Tissues know all of these bad things.
They often combine the bad things
Stress-strain curve

- σ_B: Ultimate stress
- σ_S: Yield point
- ε_B: Ultimate strain
- ε_S: Strain at yield point
- E: Young’s modulus
Linear Elastic Law

Linear stress-strain relation

\[\sigma = E \cdot \varepsilon \]

\[\sigma = \frac{E}{\varepsilon} \]

\[\sigma_{ij} = E_{ijkl} \cdot \varepsilon_{kl} \quad (81) \]

- Equality of shear stresses (Boltzmann Continua) and strains \((36) \)
- Reciprocity Theorem from Maxwell* \(\rightarrow \) fully anisotropic \((21) \)
- Orthotropic \((9) \)
- Transverse Isotropic \((5) \)
- Isotropy \((2) \)

*) also known as Betti’s theorem or Maxwell-Betti reciprocal work theorem
Linear Elastic Law

\[\sigma = \frac{E}{1 + \nu} \cdot \varepsilon \]

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{zx}
\end{bmatrix}
= \frac{E}{(1 + \nu) \cdot (1 - 2\nu)}
\begin{bmatrix}
(1 - \nu) & \nu & \nu & 0 & 0 & 0 \\
(1 - \nu) & \nu & 0 & 0 & 0 & 0 \\
(1 - \nu) & 0 & 0 & 0 & 0 & 0 \\
(1 - 2\nu) & 0 & 0 & 0 & 0 & 0 \\
(1 - 2\nu) & 0 & 0 & 0 & 0 & 0 \\
(1 - 2\nu) & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz} \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{zx}
\end{bmatrix}
\]

\[E \] - Young's modulus
\[\nu \] - Poisson's ratio \((0 \ldots 0.5) \)
\[G \] - Shear modulus
\[K \] - Bulk modulus
\[\mu, \lambda \] - Lame Constants

\[\leftarrow 2 \text{ of these} \]
Bone tissue

Anisotropic Properties

<table>
<thead>
<tr>
<th>Bone Type</th>
<th>Anisotropic Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticale bone</td>
<td>Transverse isotropic (5)</td>
<td>Like Wood</td>
</tr>
<tr>
<td>Trabecular bone</td>
<td>Orthotropic (9)</td>
<td>3D Grid</td>
</tr>
</tbody>
</table>
Anisotropic Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>E Moduli in MPa</th>
<th>Strength in MPa</th>
<th>Fracture strain in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spongy bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebra</td>
<td>60 (male)</td>
<td>4,6 (male)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>35 (female)</td>
<td>2,7 (female)</td>
<td></td>
</tr>
<tr>
<td>prox. Femur</td>
<td>240</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Tibia</td>
<td>450</td>
<td>5...10</td>
<td>2</td>
</tr>
<tr>
<td>Bovine</td>
<td>200...2000</td>
<td>10</td>
<td>1,7...3,8</td>
</tr>
<tr>
<td>Ovine</td>
<td>400...1500</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cortical bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>17000</td>
<td>200</td>
<td>2,5</td>
</tr>
<tr>
<td>Transversal</td>
<td>11500</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
Nonlinear Elastic and Hyperelastic Law

→ soft, fibrous tissues

Hyperelastic Laws: Nonlinear + large deformations
SED-stress relation, (Mooney-Rivlin, Neo-Hookean, ...)

Stress σ

progressive

linear

degressive

Strain ε
Properties for Ligaments

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>20 – 50 MPa</td>
</tr>
<tr>
<td>Shear strength</td>
<td>1 kPa (fast loading 0.04mm/h)</td>
</tr>
<tr>
<td></td>
<td>740 kPa (slow loading 420mm/h)</td>
</tr>
<tr>
<td>Rupture strain</td>
<td>2 m/m (Shear)</td>
</tr>
<tr>
<td></td>
<td>0,1 – 0,5 m/m (Tension)</td>
</tr>
<tr>
<td>Rupture force</td>
<td>1500 N (Finger)</td>
</tr>
<tr>
<td></td>
<td>100 - 400 N (Ankle)</td>
</tr>
<tr>
<td></td>
<td>1200 N (ACL)</td>
</tr>
<tr>
<td>Stiffness</td>
<td>100 - 700 N/mm (ACL)</td>
</tr>
<tr>
<td>E Modulus, tension</td>
<td>100 – 1000 MPa</td>
</tr>
</tbody>
</table>
Non-elastic = plastic

→ Bone strength

ISO bone screw

Local Damage

Stress σ

loading

unloading

Strain ε
Viscoelastic Laws (Time Dependent)

→ Cartilage, Fibrous Tissue, Bone
Effects of Viscoelastic Materials

- Retardation (Creep):
 - Applied: Stress steps
 - Measured: Strain history

- Relaxation:
 - Applied: Strain steps
 - Measured: Stress history
Viscoelastic Laws (Time Dependent)

Typ: Inner damping

Typ: Memory effect
Poroelastic

→ Solid structure with pores: Cartilage, Fibrous Tissue, Bone

Hyaloron
Properties for Articular Cartilage

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1300 kg/m³</td>
</tr>
<tr>
<td>Water content</td>
<td>75%</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>5 MPa</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>20 MPa</td>
</tr>
<tr>
<td>E Modulus, eq.</td>
<td>0.8 MPa</td>
</tr>
<tr>
<td>E Modulus, initial</td>
<td>3 MPa</td>
</tr>
<tr>
<td>Shear Modulus</td>
<td>3.5 MPa</td>
</tr>
<tr>
<td>Friction</td>
<td>0.005</td>
</tr>
<tr>
<td>Rupture strain</td>
<td>6...8%</td>
</tr>
<tr>
<td>Permeability</td>
<td>0.8 10^{-14} m⁴/Ns</td>
</tr>
</tbody>
</table>
When is simplification allowed?

- Non linear: Small strains \rightarrow “linear"
- Plastic: Approximation: „Ideal elastic plastic“
- Viscoelastic: Quasi-static Deformations \rightarrow „elastic“
- Anisotropic: \rightarrow „Worst-case scenario“
4 Simple Load Cases
1 Tension, Compression

Tensile bar (tensional rigidity EA)

Device stiffness

$$F = \frac{EA}{L_0} \Delta L, \quad k = \frac{EA}{L_0}$$

Axial Stress

$$\sigma = \frac{F}{A}$$

Strain

$$\varepsilon = \frac{\Delta L}{L_0}$$

$$\varepsilon_q = \frac{\Delta d}{d_0} = -\nu \varepsilon$$
2 Shear

Shear bolt (shear rigidity GA)

Device stiffness

\[F = \frac{GA}{L} w, \quad k = \frac{GA}{L} \]

Shear stress

\[\tau = \frac{F}{A} \]

Shear strain

\[\varepsilon_{xy} = \frac{1}{2} \gamma \]
3 Bending (Cantilever Beam)

Beam (bending rigidity EI_a, Length L)

Cut

Cantilever formula:

$$w = \frac{L^3}{EI_a} F + \frac{L^2}{EI_a} M,$$
$$\varphi = \frac{L^2}{EI_a} F + \frac{L}{EI_a} M.$$
3 Torsion

Torsional rod (torsional rigidity G_I)

Length L, radius r

Cut

$M = \frac{G_I}{L} \phi, \quad c = \frac{G_I}{L}$

Note to Remember:
A hollow bone reaches a high stiffness and strength against bending and torsion with relatively little material.
Second Moment of Area \(I \) (SMA)
[Flächenmoment zweiten Grades]

Axial moment of area (bending)
\[
I_a = \frac{b \cdot h^3}{12} \\
I_a = \frac{\pi}{64} D^4 \\
I_a = \frac{\pi}{64} (D^4 - d^4)
\]

Polar (torsional) moment of area (torsion)
\[
I_T = I_p = \frac{\pi}{32} D^4 \\
I_T = I_p = \frac{\pi}{32} (D^4 - d^4)
\]