Computational Fluid Dynamics
Theory, Numerics, Modelling

Lucas Engelhardt

Computational Biomechanics

Summer Term 2017
Fluid phase system

State variables:

\[
\begin{align*}
\text{Density} & \quad \rho \quad \text{(1d)} \\
\text{Velocity} & \quad \vec{u} \quad \text{(3d)} \\
\text{Pressure} & \quad p \quad \text{(1d)} \\
\text{Energy} & \quad e \quad \text{(1d)} \\
\text{Temperature} & \quad T \quad \text{(1d)}
\end{align*}
\]
Fluid phase system

State variables:
- Density ρ (1d)
- Velocity \vec{u} (3d)
Fluid phase system

State variables:

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
Fluid phase system

State variables:

- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy e (1d)
- Temperature T (1d)
Fluid phase system

State variables:
- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy e (1d)
- Temperature T (1d)

Physical laws:
Fluid phase system

State variables:
- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy e (1d)
- Temperature T (1d)

Physical laws:
- Mass conservation
- Momentum conservation
- Energy conservation

Example for the equations of state:

\[p = \rho R s T \]

\[e = c \nu T \]
Fluid phase system

State variables:
- Density ρ (1d)
- Velocity \vec{u} (3d)
- Pressure p (1d)
- Energy e (1d)
- Temperature T (1d)

Physical laws:
- Mass conservation
- Momentum conservation
- Energy conservation
- Equation of state

Example for the equations of state:

$$p = \rho R_s T \quad \text{and} \quad e = c_v T$$
Reynolds transport theorem:
Reynolds transport theorem:

\[
\frac{\partial}{\partial t} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \, \vec{u}) \right\} \, d\Omega
\]
Mass conservation:

\[\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} f(x, t) \, \mathrm{d}\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \, \vec{u}) \right\} \, \mathrm{d}\Omega \]
Mass conservation:

Look at the mass \(m \) inside of an arbitrary volume \(\Omega(t) \)

\[
\frac{dm}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \, d\Omega
\]

Reynolds transport theorem:

\[
\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \, \vec{u}) \right\} \, d\Omega
\]
Mass conservation:

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{dm}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) \right\} \, d\Omega$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega$$
Mass conservation:

Look at the mass m inside of an arbitrary volume $\Omega(t)$

$$\frac{dm}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \, d\Omega \overset{\text{rtt}}{=} \int_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) \right\} \, d\Omega = 0$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega$$
Mass conservation:

Look at the mass m inside of an arbitrary volume $\Omega(t)$

\[
\frac{dm}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) \right\} \, d\Omega = 0
\]

Continuity equation:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
\]

Reynolds transport theorem:

\[
\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega
\]
Momentum conservation:

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{d\vec{p}}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \vec{u} \, d\Omega \equiv \int_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) \right\} \, d\Omega =$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega$$
Momentum conservation:

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{d\vec{p}}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \vec{u} \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) \right\} \, d\Omega = \vec{F}$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega$$
Momentum conservation:

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{d\vec{p}}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \vec{u} \ d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) \right\} d\Omega = \vec{F}$$

Force:

$$F = F_\Omega + F_{\partial \Omega}$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \ d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t}(x, t) + \nabla \cdot (f \vec{u}) \right\} d\Omega$$
Momentum conservation:

Look at the momentum \vec{p} inside of an arbitrary volume $\Omega(t)$

$$\frac{d\vec{p}}{dt} = \frac{d}{dt} \int_{\Omega(t)} \rho \vec{u} \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) \right\} \, d\Omega = \vec{F}$$

Force:

$$F = F_{\Omega} + F_{\partial \Omega} = \int_{\Omega(t)} \rho \, \vec{f} \, d\Omega + \int_{\partial \Omega(t)} \sigma \, \vec{n} \, dS$$

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega(t)} f(x, t) \, d\Omega = \int_{\Omega(t)} \left\{ \frac{\partial f}{\partial t} (x, t) + \nabla \cdot (f \vec{u}) \right\} \, d\Omega$$
Energy equation:

\[
\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} \, d\Omega
\]
Energy equation:

\[
\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} \, d\Omega = \int_{\Omega(t)} \left\{ \right\} \, d\Omega \\
+ \int_{\partial \Omega(t)} \left\{ \right\} \, dS
\]
Energy equation:

\[
\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} d\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} \right\} d\Omega
\]

\[+ \int_{\partial\Omega(t)} \left\{ (\sigma \vec{n}) \cdot \vec{u} + \kappa \nabla T \cdot \vec{n} \right\} dS
\]

According to:

- volume force: \(\int_{\Omega(t)} \rho \vec{f} \cdot \vec{u} d\Omega \)
Energy equation:

\[
\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho \lvert \vec{u} \rvert^2 + \rho e \right\} \, d\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho \, Q \right\} \, d\Omega \\
+ \int_{\partial\Omega(t)} \left\{ \right\} \, dS
\]

According to:

- volume force: \(\int_{\Omega(t)} \rho \, \vec{f} \cdot \vec{u} \, d\Omega \)
- energy source: \(\int_{\Omega(t)} \rho \, Q \, d\Omega \)
Energy equation:

\[\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} \ d\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho \ Q \right\} \ d\Omega \]

\[+ \int_{\partial \Omega(t)} \left\{ \left(\sigma \ n \right) \cdot \vec{u} \right\} \ dS \]

According to:

- volume force: \(\int_{\Omega(t)} \rho \vec{f} \cdot \vec{u} \ d\Omega \)
- energy source: \(\int_{\Omega(t)} \rho \ Q \ d\Omega \)
- surface force: \(\int_{\partial \Omega(t)} \left(\sigma \ n \right) \cdot \vec{u} \ dS \)
Energy equation:

\[
\frac{d}{dt} \int_{\Omega(t)} \left\{ \frac{1}{2} \rho |\vec{u}|^2 + \rho e \right\} \, d\Omega = \int_{\Omega(t)} \left\{ \rho \vec{f} \cdot \vec{u} + \rho Q \right\} \, d\Omega \\
+ \int_{\partial \Omega(t)} \left\{ (\sigma \cdot \vec{n}) \cdot \vec{u} + \kappa \nabla T \cdot \vec{n} \right\} \, dS
\]

According to:

- volume force: \(\int_{\Omega(t)} \rho \vec{f} \cdot \vec{u} \, d\Omega \)
- energy source: \(\int_{\Omega(t)} \rho Q \, d\Omega \)
- surface force: \(\int_{\partial \Omega(t)} (\sigma \cdot \vec{n}) \cdot \vec{u} \, dS \)
- heat flux: \(\int_{\partial \Omega(t)} \kappa \nabla T \cdot \vec{n} \, dS \)
System equations:

1. mass conservation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
\]
System equations:

1. mass conservation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
\]

2. momentum conservation

\[
\rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \sigma
\]
System equations:

1. **mass conservation**

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
\]

2. **momentum conservation**

\[
\rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \vec{\sigma}
\]

3. **energy conservation**

\[
\rho \frac{\partial e}{\partial t} = \rho Q + \nabla \cdot (\kappa \nabla T) + \nabla \cdot (\sigma \vec{u}) - (\nabla \cdot \sigma) \vec{u}
\]
System equations:

1. mass conservation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \]

2. momentum conservation

\[\rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \sigma \]

3. energy conservation

\[\rho \frac{\partial e}{\partial t} = \rho Q + \nabla \cdot (\kappa \nabla T) + \nabla \cdot (\sigma \vec{u}) - (\nabla \cdot \sigma) \vec{u} \]

4. equation of state (e.g. ideal gas equation)
The stress tensor \(\sigma \):
The stress tensor σ:

$$\sigma = -p \cdot \mathbb{1} + \tau$$

with τ is the viscous stress tensor
The stress tensor σ:

$$\sigma = -p \cdot 1 + \tau$$

with τ is the viscous stress tensor

The viscosity term:

- General viscous stress tensor:

$$\tau = F(D(t, x), t)$$
The stress tensor σ:

$$\sigma = -p \cdot 1 + \tau$$

with τ is the viscous stress tensor

The viscosity term:

1. General viscous stress tensor:

$$\tau = F(D(t, x), t)$$

2. Strain rate tensor:

$$D := \frac{\partial \epsilon}{\partial t} = \frac{1}{2} \left[(\nabla \bar{u}) + (\nabla \bar{u})^T \right]$$
Behaviour of the viscous stress tensor:

\[\tau = F(D(t, x), t) \]
Behaviour of the viscous stress tensor:

\[
\tau = F(D(t, x), t)
\]

Time-dependent

Time-independent
Behaviour of the viscous stress tensor:

\[\tau = F(D(t, x), t) \]

Time-dependent
- increase with time
 printer ink, synovial fluid

Time-independent
Behaviour of the viscous stress tensor:

\[\tau = F(D(t, x), t) \]

Time-dependent
- increase with time
 - *printer ink, synovial fluid*
- decrease with time
 - *gelatin gels, yogurt*

Time-independent
Behaviour of the viscous stress tensor:

\[\tau = F(D(t, x), t) \]

Time-dependent
- increase with time
 - printer ink, synovial fluid
- decrease with time
 - gelatin gels, yogurt

Time-independent
- shear thickening
 - corn starch in water
Behaviour of the viscous stress tensor:

\[\tau = F(D(t, x), t) \]

Time-dependent
- increase with time
 - *printer ink, synovial fluid*
- decrease with time
 - *gelatin gels, yogurt*

Time-independent
- shear thickening
 - *corn starch in water*
- shear thinning
 - *ketchup, blood*
Behaviour of the viscous stress tensor:

\[\tau = F(D(t,x), t) \]

Time-dependent
- increase with time
 - printer ink, synovial fluid
- decrease with time
 - gelatin gels, yogurt

Time-independent
- shear thickening
 - corn starch in water
- shear thinning
 - ketchup, blood
- generalized newonian fluids
 - water, blood plasma
Behaviour of the viscous stress tensor:

$$\tau = F(D(t,x), t)$$

Time-dependent
- increase with time
 - *printer ink, synovial fluid*
- decrease with time
 - *gelatin gels, yogurt*

Time-independent
- shear thickening
 - *corn starch in water*
- shear thinning
 - *ketchup, blood*
- generalized newonian fluids
 - *water, blood plasma*

Newtonian fluid:

$$\tau = \mu \cdot \left[(\nabla \vec{u}) + (\nabla \vec{u})^T \right] - \left(\frac{2}{3} \mu \nabla \cdot \vec{u} \right) \mathbb{I}$$

with the dynamic viscosity μ
Incompressible fluid assumption:
Incompressible fluid assumption:

\[0 = \frac{d\rho}{dt}(x, t) \]
Incompressible fluid assumption:

\[
0 = \frac{d\rho}{dt}(x, t) = \frac{\partial}{\partial t}\rho(x, t) + \nabla\rho(x, t) \cdot \vec{u}
\]
Incompressible fluid assumption:

\[0 = \frac{d\rho}{dt}(x, t) = \frac{\partial}{\partial t} \rho(x, t) + \nabla \rho(x, t) \cdot \vec{u} \]

- Continuity equation:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) \]
Incompressible fluid assumption:

\[0 = \frac{d\rho}{dt}(x, t) = \frac{\partial}{\partial t} \rho(x, t) + \nabla \rho(x, t) \cdot \vec{u} \]

Continuity equation:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u} \]
Incompressible fluid assumption:

\[
0 = \frac{d\rho}{dt}(x, t) = \frac{\partial}{\partial t} \rho(x, t) + \nabla \rho(x, t) \cdot \vec{u}
\]

- Continuity equation:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u} = \rho \nabla \cdot \vec{u} = 0
\]

- It follows: \(\nabla \cdot \vec{u} = 0 \) (divergency free velocity field)
Incompressible fluid assumption:

\[0 = \frac{d\rho}{dt}(x, t) = \frac{\partial}{\partial t}\rho(x, t) + \nabla \rho(x, t) \cdot \vec{u} \]

- Continuity equation:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \vec{u} + \rho \nabla \cdot \vec{u} = \rho \nabla \cdot \vec{u} = 0 \]

- It follows: \(\nabla \cdot \vec{u} = 0 \) (divergency free velocity field)

- Viscous stress tensor: (Newtonian fluid)

\[\tau = \mu \cdot \left[(\nabla \vec{u}) + (\nabla \vec{u})^T \right] - \left(\frac{2}{3} \mu \nabla \cdot \vec{u} \right) \mathbb{1} \]
Incompressible fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt}\rho = 0$ follows:
Incompressible fluid + isothermal assumption:

From \(T = \text{const.} \) with \(\frac{d}{dt} \rho = 0 \) follows:

1. Pressure is given with \(p \sim \rho \) (equation of state)
Incompressible fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt} \rho = 0$ follows:

1. Pressure is given with $p \sim \rho$ (equation of state)
2. Energy is a function of ρ and \vec{u}
 \Rightarrow the energy conservation contains no extra information
Incompressible fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt} \rho = 0$ follows:

1. Pressure is given with $p \sim \rho$ (equation of state)
2. Energy is a function of ρ and \vec{u}
 \[\Rightarrow \text{the energy conservation contains no extra information} \]

For a newtonian fluid we get the Navier-Stokes equations as

Navier-Stokes equations

\[
\nabla \cdot \vec{u} = 0 \quad (1)
\]
\[
\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} - \nabla p + \mu \nabla \cdot \tau \quad (2)
\]

Note: often, the kinematic viscosity $\nu := \frac{\mu}{\rho}$ is used if $\rho = \text{const}$
Application to biofluid systems
Application to biofluid systems

1. Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier
Application to biofluid systems

1. Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier

2. Human blood system
 - Oxygen transportation
 - Fluid-structure interaction
 - Transport of medicine
Application to biofluid systems

1 Human air system
 - Fluid-particle interaction
 - Fluid-structure interaction
 - Blood-air barrier

2 Human blood system
 - Oxygen transportation
 - Fluid-structure interaction
 - Transport of medicine

3 ...
Break

5 min
System equations:

1. mass conservation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{u}) = 0 \]
System equations:

1. mass conservation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \]

2. momentum conservation

\[\rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \sigma \]
System equations:

1. **mass conservation**
 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
 \]

2. **momentum conservation**
 \[
 \rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \mathbf{\sigma}
 \]

3. **energy conservation**
 \[
 \rho \frac{\partial e}{\partial t} = \rho Q + \nabla \cdot (\kappa \nabla T) + \nabla \cdot (\mathbf{\sigma} \vec{u}) - (\nabla \cdot \mathbf{\sigma}) \vec{u}
 \]
System equations:

1. mass conservation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0
\]

2. momentum conservation

\[
\rho \frac{\partial \vec{u}}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = \rho \vec{f} + \nabla \cdot \sigma
\]

3. energy conservation

\[
\rho \frac{\partial e}{\partial t} = \rho \, Q + \nabla \cdot (\kappa \nabla T) + \nabla \cdot (\sigma \, \vec{u}) - (\nabla \cdot \sigma) \, \vec{u}
\]

4. equation of state (e.g. ideal gas equation)
Incompressible flow/fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt} \rho = 0$ follows:
Incompressible flow/fluid + isothermal assumption:

From \(T = \text{const.} \) with \(\frac{d}{dt} \rho = 0 \) follows:

- Pressure is given with \(p \sim \rho \) (equation of state)
Incompressible flow/fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt} \rho = 0$ follows:

1. Pressure is given with $p \sim \rho$ (equation of state)
2. Energy is a function of ρ and \vec{u}
 \Rightarrow the energy conservation contains no extra information
Incompressible flow/fluid + isothermal assumption:

From $T = \text{const.}$ with $\frac{d}{dt} \rho = 0$ follows:

1. Pressure is given with $p \sim \rho$ (equation of state)
2. Energy is a function of ρ and \vec{u}
 \Rightarrow the energy conservation contains no extra information

For a newtonian fluid we get the Navier-Stokes equations as

\textbf{Navier-Stokes equations}

\begin{align*}
\nabla \cdot \vec{u} &= 0 \\
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} &= \vec{f} - \frac{1}{\rho} \nabla p + \nu \nabla \cdot \tau
\end{align*}

(3) (4)

Note: often, the kinematic viscosity $\nu := \frac{\mu}{\rho}$ is used
Dimensionless Navier-Stokes:

Navier-Stokes momentum equation

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} = \tilde{f} - \frac{1}{\rho} \nabla \tilde{p} + \frac{\mu}{\rho} \nabla \cdot \tau
\]
Dimensionless Navier-Stokes:

Navier-Stokes momentum equation

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = \vec{f} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla \cdot \tau
\]

Define characteristic time \(T \), length \(L \) and velocity \(U \) with \(L = U \cdot T \):

\[
\tau = \frac{t}{T}, \quad \vec{v} = \frac{\vec{u}}{U}, \quad \xi = \frac{\vec{x}}{L}
\]
Dimensionless Navier-Stokes:

Navier-Stokes momentum equation

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = \vec{f} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla \cdot \tau
\]

Define characteristic time \(T \), length \(L \) and velocity \(U \) with \(L = U \cdot T \):

\[
\tau = \frac{t}{T}, \quad \vec{v} = \frac{\vec{u}}{U}, \quad \xi = \frac{\vec{x}}{L}
\]

Dimensionless representation of the momentum equation:

\[
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \frac{L}{U^2} \vec{f} - \frac{1}{\rho U^2} \nabla p + \frac{\mu}{\rho UL} \nabla \cdot \tilde{\tau}
\]

dimensionless forcedensity \(\vec{\kappa} := \frac{L}{U^2} \vec{f} \) (look for Froude number)

pressure rescaling \(\tilde{p} := \frac{p}{\rho U^2} \) (NOTE: only for inc. fluid)
Dimensionless Navier-Stokes:

Navier-Stokes momentum equation

\[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = \vec{f} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla \cdot \tau \]

Define characteristic time \(T \), length \(L \) and velocity \(U \) with \(L = U \cdot T \):

\[\tau = \frac{t}{T}, \quad \vec{v} = \frac{\vec{u}}{U}, \quad \xi = \frac{\vec{x}}{L} \]

Dimensionless representation of the momentum equation:

\[\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \frac{L}{U^2} \vec{f} - \frac{1}{\rho U^2} \nabla p + \frac{\mu}{\rho U L} \nabla \cdot \vec{\tau} \]

- dimensionless forcedensity \(\vec{\kappa} := \frac{L}{U^2} \vec{f} \) (look for Froude number)
Dimensionless Navier-Stokes:

Navier-Stokes momentum equation

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = \vec{f} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla \cdot \tau
\]

Define characteristic time \(T \), length \(L \) and velocity \(U \) with \(L = U \cdot T \):

\[
\tau = \frac{t}{T} \quad \vec{v} = \frac{\vec{u}}{U} \quad \vec{\xi} = \frac{\vec{x}}{L}
\]

Dimensionless representation of the momentum equation:

\[
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \frac{L}{U^2} \vec{f} - \frac{1}{\rho U^2} \nabla p + \frac{\mu}{\rho U L} \nabla \cdot \vec{\tau}
\]

- dimensionless forcedensity \(\vec{\kappa} := \frac{L}{U^2} \vec{f} \) (look for Froude number)
- pressure rescaling \(\tilde{p} := \frac{p}{\rho U^2} \) (NOTE: only for inc. fluid)
Diffusion term & Reynolds number:

\[\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{k} - \nabla \tilde{p} + \frac{\mu}{\rho UL} \nabla \cdot \tilde{\tau} \]
Diffusion term & Reynolds number:

\[
\frac{\partial \tilde{v}}{\partial \tau} + (\tilde{v} \cdot \nabla) \tilde{v} = \tilde{k} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\tau}
\]

Definition of the Reynolds number:

\[
Re := \frac{\text{inertia forces}}{\text{viscous forces}}
\]
Diffusion term & Reynolds number:

\[
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \kappa - \nabla \tilde{p} + \frac{\mu}{\rho UL} \nabla \cdot \tilde{\tau}
\]

Definition of the Reynolds number:

\[
Re := \frac{\text{inertia forces}}{\text{viscous forces}}
\]

- inertia force: \(F_{in} = \frac{\rho L^3 \cdot U}{T} \) (momentum transfer)
Diffusion term & Reynolds number:

\[
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \vec{\kappa} - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\tau}
\]

Definition of the Reynolds number:

\[
Re := \frac{\text{inertia forces}}{\text{viscous forces}}
\]

- inertia force: \(F_{\text{in}} = \frac{\rho L^3 \cdot U}{T} \) (momentum transfer)
- viscous force: \(F_{\text{vis}} = \mu L^2 \cdot \frac{U}{L} \) ("velocity diffusion")
Diffusion term & Reynolds number:

\[
\frac{\partial \vec{\nu}}{\partial \tau} + (\vec{\nu} \cdot \nabla) \vec{\nu} = \kappa - \nabla \tilde{p} + \frac{\mu}{\rho UL} \nabla \cdot \tilde{\tau}
\]

Definition of the Reynolds number:

\[
Re := \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho UL}{\mu}
\]

- inertia force: \(F_{in} = \frac{\rho L^3 \cdot U}{T} \) (momentum transfer)
- viscous force: \(F_{vis} = \mu L^2 \cdot \frac{U}{L} \) ("velocity diffusion")
Diffusion term & Reynolds number:

\[
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \kappa - \nabla \tilde{p} + \frac{\mu}{\rho U L} \nabla \cdot \tilde{\tau}
\]

Definition of the Reynolds number:

\[Re := \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho U L}{\mu}\]

- inertia force: \(F_{in} = \frac{\rho L^3 \cdot U}{T} \) (momentum transfer)
- viscous force: \(F_{vis} = \mu L^2 \cdot \frac{U}{L} \) ("velocity diffusion")

Dimensionless Navier-Stokes equations

\[
\nabla \cdot \vec{v} = 0 \\
\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \kappa - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\tau}
\]
Pressure equation:

\[\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \bar{\kappa} - \nabla \bar{p} + \frac{1}{Re} \nabla \cdot \bar{\tau} \]

Divergency free velocity field implies

\[\nabla \cdot \left(\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} \right) = \nabla \cdot \left(\bar{\kappa} - \nabla \bar{p} + \frac{1}{Re} \nabla \cdot \bar{\tau} \right) \]
Pressure equation:

\[\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} = \kappa - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\tau} \]

Divergence free velocity field implies

\[\nabla \cdot \left(\frac{\partial \vec{v}}{\partial \tau} + (\vec{v} \cdot \nabla) \vec{v} \right) = \nabla \cdot \left(\kappa - \nabla \tilde{p} + \frac{1}{Re} \nabla \cdot \tilde{\tau} \right) \]

with \(\frac{\partial}{\partial \tau} \nabla \cdot \vec{v} = 0 \), we get the Poisson-Pressure equation:

\[\Delta \tilde{p} = \nabla \cdot \left(\kappa - (\vec{v} \cdot \nabla) \vec{v} + \frac{1}{Re} \nabla \cdot \tilde{\tau} \right) \]
Turbulent flow:

If $Re \ll 1$, the diffusion time scale is much smaller as the time scale for momentum transportation. Velocity field perturbations smooth out quickly. Velocity field tends to be laminar.

If $Re \gg 1$, momentum transportation is the main effect for the fluid flow description. Velocity field perturbations increase quickly. Velocity field tends to be turbulent.

Example: (flow in pipe)

Reynolds number: $Re = \frac{\rho d v}{\mu}$

Observation: Julius Rotta (at 1950)

$Re_{krit} \approx 2300$
Turbulent flow:

- If $Re << 1$, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field tends to be laminar

Example: (flow in pipe)

Reynolds number: $Re = \frac{\rho d v}{\mu}$

Observation: Julius Rotta (at 1950) $Re_{krit} \approx 2300$
Turbulent flow:

- If \(Re \ll 1 \), the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field tends to be laminar

- If \(Re \gg 1 \), momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent
Turbulent flow:

- If $Re << 1$, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field tends to be laminar

- If $Re >> 1$, momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent

Example: (flow in pipe)
Turbulent flow:

- If $Re << 1$, the diffusion time scale is much smaller as the time scale for momentum transportation
 - velocity field perturbations smooth out quickly
 - velocity field tends to be laminar

- If $Re >> 1$, momentum transportation is the main effect for the fluid flow description
 - velocity field perturbations increase quickly
 - velocity field tends to be turbulent

Example: (flow in pipe)

- Reynolds number: $Re = \frac{\rho d v_z}{\mu}$
- Observation: Julius Rotta (at 1950)
 $Re_{krit.} \approx 2300$
Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.
Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.

Note:

To retain energy conservation at the numerical domain, one have to resolve also the dissipative scales in the Navier-Stokes equation!
Kolmogorov scales:

The smallest scales that influences the turbulent flow by dissipation effects.

Note:
To retain energy conservation at the numerical domain, one have to resolve also the dissipative scales in the Navier-Stokes equation!

The scales are given as: (ϵ is the average dissipation rate)

length: $\eta = \left(\frac{\mu^3}{\epsilon \rho^3}\right)^{\frac{1}{4}}$

vel: $u_\eta = \left(\frac{\mu}{\rho \epsilon}\right)^{\frac{1}{4}}$

time: $\tau_\eta = \left(\frac{\mu}{\rho \epsilon}\right)^{\frac{1}{2}}$

with

$$Re_\eta = \frac{\eta u_\eta \mu}{\rho} = 1$$
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[
\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T}
\]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T} = \frac{U^3}{L} \]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\varepsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T} = \frac{U^3}{L} \]

Therefore we get the relation:

\[\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\varepsilon \rho^3} \right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \rho^3}{L \mu^3} \right)^{\frac{1}{4}} \]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T} = \frac{U^3}{L} \]

Therefore we get the relation:

\[\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \rho^3} \right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \rho^3}{L \mu^3} \right)^{\frac{1}{4}} = Re^{\frac{3}{4}} \]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T} = \frac{U^3}{L} \]

Therefore we get the relation:

\[
\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \rho^3} \right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \rho^3}{L \mu^3} \right)^{\frac{1}{4}} = \text{Re}^{\frac{3}{4}}
\]

Example: \((L \approx 10^3 \text{m}, \nu \approx 1 \frac{\text{m}}{\text{s}}, \rho \approx 1.3 \frac{\text{kg}}{\text{m}^3}, \mu \approx 17.1 \mu\text{Pa} \cdot \text{s}) \)

\[\text{Re} \approx 7.5 \cdot 10^9 \]
\[\eta \approx 4 \cdot 10^{-5} \text{m} \]
Resolution problem:

Approximation of the dissipation rate (from large scales):

\[\epsilon \sim \frac{\text{kinetic energy}}{\text{time}} \sim \frac{U^2}{T} = \frac{U^3}{L} \]

Therefore we get the relation:

\[\frac{L}{\eta} = L \cdot \left(\frac{\mu^3}{\epsilon \rho^3} \right)^{-\frac{1}{4}} \sim L \cdot \left(\frac{U^3 \rho^3}{L \mu^3} \right)^{\frac{1}{4}} = Re^\frac{3}{4} \]

Example: \(L \approx 10^{-3} \text{m} \), \(\nu \approx 0.1 \frac{\text{m}}{\text{s}} \), \(\rho \approx 1060 \frac{\text{kg}}{\text{m}^3} \), \(\mu \approx 3 \text{ mPa} \cdot \text{s} \)

\[Re \approx 35 \]

\[\eta \approx 7 \cdot 10^{-5} \text{m} \]
Simulation approaches:
Simulation approaches:

- **Direct numerical simulation (DNS):**
 Assumption that the flow inside of a volume element is purely laminar and no dissipation effect occurs. (Note: If this is not true, the energy conservation results in a different flow field.)
Simulation approaches:

- **Direct numerical simulation (DNS):**
 Assumption that the flow inside of a volume element is purely laminar and no dissipation effect occurs. (Note: If this is not true, the energy conservation results in a different flow field.)

- **Eddy dissipation modelling on small scales:**
 - Reynolds-Averaged Navier Stokes (RANS)
 - Large-Eddy Simulation
 - ...

\[v = \langle v \rangle + v' \quad \text{and} \quad p = \langle p \rangle + p' \]

with the mean value \(\langle \cdot \rangle \) of \(\cdot \) and the fluctuating part \(\cdot' \).
RANS:

- Special cases: temporal or spatial averaging
- In general: \(\langle f(\vec{x}, t) \rangle = \lim_{N \to \infty} \sum_{n}^N f(\vec{x}, t) \)
- Fluctuating part: \(\langle f' \rangle = 0 \)
RANS:

- Special cases: temporal or spatial averaging
- In general: \(\langle f(\vec{x}, t) \rangle = \lim_{N \to \infty} \sum_{n}^{N} f(\vec{x}, t) \)
- Fluctuating part: \(\langle f' \rangle = 0 \)

Reynolds equations:

\[
\nabla \cdot \langle \vec{v} \rangle = 0
\]
RANS:

- Special cases: temporal or spatial averaging
- In general: \(\langle f(\vec{x}, t) \rangle = \lim_{N \to \infty} \sum_{n} f(\vec{x}, t) \)
- Fluctuating part: \(\langle f' \rangle = 0 \)

Reynolds equations:

\[
\nabla \cdot \langle \vec{v} \rangle = 0
\]

\[
\frac{\partial \langle \vec{v} \rangle}{\partial t} + (\langle \vec{v} \rangle \cdot \nabla) \langle \vec{v} \rangle = \vec{f} - \nabla \langle p \rangle + \frac{1}{Re} \nabla \cdot \langle \vec{\tau} \rangle - \langle (\vec{v}' \cdot \nabla) \vec{v}' \rangle \text{ correlation property}
\]
RANS:

- Special cases: temporal or spatial averaging
- In general: $\langle f(\vec{x}, t) \rangle = \lim_{N \to \infty} \sum_{n}^N f(\vec{x}, t)$
- Fluctuating part: $\langle f' \rangle = 0$

Reynolds equations:

$$\nabla \cdot \langle \vec{v} \rangle = 0$$

$$\frac{\partial \langle \vec{v} \rangle}{\partial t} + (\langle \vec{v} \rangle \cdot \nabla) \langle \vec{v} \rangle = \vec{f} - \nabla \langle p \rangle + \frac{1}{Re} \nabla \cdot \langle \vec{\tau} \rangle - \left\langle \left(\vec{v}' \cdot \nabla \right) \vec{v}' \right\rangle$$

Correlation property:

$$\nabla \cdot \langle \vec{v}' \vec{v}' \rangle = \nabla \cdot \begin{pmatrix}
\langle v'_x v'_x \rangle & \langle v'_x v'_y \rangle & \langle v'_x v'_z \rangle \\
\langle v'_y v'_x \rangle & \langle v'_y v'_y \rangle & \langle v'_y v'_z \rangle \\
\langle v'_z v'_x \rangle & \langle v'_z v'_y \rangle & \langle v'_z v'_z \rangle
\end{pmatrix}$$
RANS models:

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle v \rangle|$ (mixing length ξ)
RANS models:

- Zero equation models $\nu_T = \xi^2 |\partial_\perp \langle \nu \rangle|$ (mixing length ξ)

- One equation models (example: Spalart and Allmaras)

$$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_\nu$$

- Two equation models ($k-\epsilon$, $k-\omega$, SST)

 - $k = \frac{1}{2} \text{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - Dissipation rate ϵ
 - Eddy frequency ω

 1. $k-\epsilon$: good on free flow fields with no walls
 2. $k-\omega$: near wall approximation is good
 3. SST brings the advantage of both together
RANS models:

- Zero equation models $\nu_T = \xi^2 |\partial_{\perp} \langle v \rangle|$ (mixing length ξ)

- One equation models (example: Spalart and Allmaras)
 \[
 \frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_\nu
 \]

- Two equation models ($k - \epsilon$, $k - \omega$, SST)
 - $k = \frac{1}{2} \text{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - eddy frequency ω
RANS models:

- Zero equation models $\nu_T = \xi^2 | \partial_\perp \langle \nu \rangle |$ (mixing length ξ)

- One equation models (example: Spalart and Allmaras)
 $$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_\nu$$

- Two equation models ($k - \epsilon$, $k - \omega$, SST)
 - $k = \frac{1}{2} \text{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - eddy frequency ω
 - $k - \epsilon$: good on free flow fields with no walls
RANS models:

- Zero equation models $\nu_T = \xi^2 \left| \partial_{\perp} \langle v \rangle \right|$ (mixing length ξ)

- One equation models (example: Spalart and Allmaras)
 $$\frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_{\nu}$$

- Two equation models ($k - \epsilon$, $k - \omega$, SST)
 - $k = \frac{1}{2} \text{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - eddy frequency ω

1. $k - \epsilon$: good on free flow fields with no walls
2. $k - \omega$: near wall approximation is good
RANS models:

- **Zero equation models** $\nu_T = \xi^2 |\nabla \langle \nu \rangle| \) (mixing length ξ)

- **One equation models** (example: Spalart and Allmaras)
 \[
 \frac{\partial \nu_T}{\partial t} + \langle \vec{v} \rangle \nabla \nu_T = \nabla \left(\frac{\nu_T}{\sigma_T} \nabla \nu_T \right) + S_\nu
 \]

- **Two equation models** ($k - \epsilon$, $k - \omega$, SST)
 - $k = \frac{1}{2} \text{tr} \langle \vec{v}' \vec{v}' \rangle$ (mean of the fluctuating kinetic energy)
 - dissipation rate ϵ
 - eddy frequency ω
 1. $k - \epsilon$: good on free flow fields with no walls
 2. $k - \omega$: near wall approximation is good
 3. SST brings the advantage of both together
Large-Eddy simulations (LES):

spatial averaging method

\[\langle \vec{v}(\vec{x}, t) \rangle := \int_V \vec{v}(\vec{x}', t) \cdot G(\vec{x}, \vec{x}', \Delta) \, dV' \]

with

1. step-function

\[G := \begin{cases} \frac{1}{\Delta^3}, & \text{if } |\vec{x} - \vec{x}'| < \Delta/2 \\ 0, & \text{else} \end{cases} \]

2. gauss-filter

\[G := A(\Delta) \exp \left\{ \frac{-\beta |\vec{x} - \vec{x}'|}{\Delta^2} \right\} \]

3. ...
Large-Eddy simulations (LES):

LES equation:

\[
\nabla \cdot \langle \vec{v} \rangle = 0
\]

\[
\frac{\partial \langle \vec{v} \rangle}{\partial t} + (\langle \vec{v} \rangle \cdot \nabla) \langle \vec{v} \rangle = \vec{f} - \nabla \langle p \rangle + \frac{1}{Re} \nabla \cdot \langle \tilde{\tau} \rangle - \nabla \cdot \tau^S
\]

with \(\tau^S := \langle \vec{v} \vec{v} \rangle - \langle \vec{v} \rangle \langle \vec{v} \rangle \).
Large-Eddy simulations (LES):

LES equation:

\[
\nabla \cdot \langle \vec{v} \rangle = 0 \\
\frac{\partial \langle \vec{v} \rangle}{\partial t} + (\langle \vec{v} \rangle \cdot \nabla) \langle \vec{v} \rangle = \vec{f} - \nabla \langle p \rangle + \frac{1}{Re} \nabla \cdot \langle \tilde{\tau} \rangle - \nabla \cdot \tau^S
\]

with \(\tau^S := \langle \vec{v} \vec{v} \rangle - \langle \vec{v} \rangle \langle \vec{v} \rangle \). Detailed look:

\[
\tau^S = \left[\langle \langle \vec{v} \rangle \langle \vec{v} \rangle \rangle - \langle \vec{v} \rangle \langle \vec{v} \rangle \right]_L + \left[\langle \langle \vec{v} \rangle \vec{v}' \rangle - \langle \vec{v}' \langle \vec{v} \rangle \rangle \right]_C + \left[\langle \vec{v}' \vec{v}' \rangle \right]_{\tau^{SR}}
\]

- **Leonard-strain**: creation of small eddys through large eddys
- **Cross-stress**: interaction of the different scales
- **Subgrid-scale Reynolds stress tensor**
Break

5 min
Application

Pre-processing

Geometry Design → Mesh Generation → Problem Setup → Flow Solver

Computation

Visualization → Quantitative Analysis

Post-processing
Geometry

- Not as easy
Geometry

- Not as easy
- complicated
Geometry

- Not as easy
- complicated
- often simplified
Geometry

- Not as easy
- complicated
- often simplified
Application
Mesh

Mesh quality determined by:

- area
- aspect ratio
- diagonal ratio
- edge ratio
- skewness
- orthogonal quality
- stretch
- taper
- volume
Mesh - Orthogonal Quality

\[OQ = \min_i \left\{ \frac{A_i \hat{f}_i}{|\hat{A}_i||\hat{f}_i|}, \frac{A_i \hat{c}_i}{|\hat{A}_i||\hat{c}_i|} \right\}, \quad (7) \]

- \(A_i \): face normal vector
- \(\hat{f}_i \): vector from the centroid of the cell to the centroid of that face
- \(\hat{c}_i \): vector from the centroid of the cell to the adjacent cell
Mesh - Orthogonal Quality

$$OQ = \min_i \left\{ \frac{A_i \hat{f}_i}{|A_i||\vec{f}_i|}, \frac{A_i \hat{c}_i}{|A_i||\vec{c}_i|} \right\},$$

(7)

A_i face normal vector

f_i vector from the centroid of the cell to the centroid of that face

c_i vector from the centroid of the cell to the adjacent cell
Mesh

Boundary layer mesh for flows with high Reynold’s number, strong gradients exist within the boundary layer close to a solid wall (with a no-slip boundary condition)
Mesh

Boundary layer mesh for flows with high Reynold’s number, strong gradients exist within the boundary layer close to a solid wall (with a no-slip boundary condition)
Mesh

Inflation layer examples:
Mesh

Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri / tet elements for complex geometries
Mesh

Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri / tet elements for complex geometries

- minimize number of mesh elements
 - do not use too many (or too few) elements
 - use quad / hex elements when appropriate (e.g. boundary layers, long pipes)
Mesh

Hints for mesh generation

- minimize mesh complexity
 - use structured mesh when appropriate
 - use quad / hex elements when appropriate
 - use tri /tet elements for complex geometries

- minimize number of mesh elements
 - do not use too many (or too few) elements
 - use quad / hex elements when appropriate (e.g. boundary layers, long pipes)

- maximize solution accuracy
 - concentrate mesh elements in critical regions (e.g. boundary layers, wakes, shocks)
 - align quad / hex meshes with flow direction
 - avoid poor quality elements (e.g. twisted, skewed)
Application
Problem Definition - Boundary conditions

Choosing appropriate boundary conditions:
- nature of flow – incompressible / compressible ...
- physical models – turbulence, species transport ...
- position of boundary
- what is known
- convergence of solution may (strongly) depend on choice of boundary conditions
Problem Definition - Numerical solver

two basic solver approaches:

- pressure-based solver
 - originally developed for low-speed flows
 - pressure determined from pressure or pressure-correction equation (obtained from manipulating continuity and momentum equations)

- density-based solver
 - originally developed for high-speed flows
 - density determined from continuity equation
 - pressure determined from equation of state

similar discretization method is used for both pressure-based and density-based solvers.
linearization and solving of the discrete equations is different for two approaches.
Application
Calculation - Convergence of the iterative numerical scheme

at convergence:
- all discretized conservation equations are satisfied in all cells to a specified tolerance
- solution no longer changes significantly with more iterations
- overall mass, momentum, energy and scalar balances are obtained
Calculation - Convergence of the iterative numerical scheme

- at convergence:
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained

- monitoring convergence with residuals
 - generally decrease in residuals by 10^{-3} indicates basic global convergence - major flow features have been established
 - scaled energy residual must decrease by 10^{-6} for segregated solver
 - scaled species residual may need to decrease by 10^{-5} to achieve species balance
Calculation - Convergence of the iterative numerical scheme

- at convergence:
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained

- monitoring convergence with residuals
 - generally decrease in residuals by 10^{-3} indicates basic global convergence - major flow features have been established
 - scaled energy residual must decrease by 10^{-6} for segregated solver
 - scaled species residual may need to decrease by 10^{-5} to achieve species balance

- monitoring convergence with physical quantities
 - important surface quantities should exhibit convergence
Calculation - Convergence of the iterative numerical scheme

- at convergence:
 - all discretized conservation equations are satisfied in all cells to a specified tolerance
 - solution no longer changes significantly with more iterations
 - overall mass, momentum, energy and scalar balances are obtained

- monitoring convergence with residuals
 - generally decrease in residuals by 10^{-3} indicates basic global convergence - major flow features have been established
 - scaled energy residual must decrease by 10^{-6} for segregated solver
 - scaled species residual may need to decrease by 10^{-5} to achieve species balance

- monitoring convergence with physical quantities
 - important surface quantities should exhibit convergence

- checking for property conservation
 - overall heat and mass balances should be within 0.1% of net flux through domain
Convergence difficulties

- numerical instabilities can arise due to:
 - ill-posed problem (no physical solution)
 - poor quality mesh
 - inappropriate boundary conditions
 - inappropriate solver settings
 - inappropriate initial conditions
Convergence difficulties

- numerical instabilities can arise due to:
 - ill-posed problem (no physical solution)
 - poor quality mesh
 - inappropriate boundary conditions
 - inappropriate solver settings
 - inappropriate initial conditions

- trouble-shooting
 - ensure problem is physically realizable
 - compute an initial solution with a first-order discretization scheme
 - decrease under-relaxation for equations having convergence problems (segregated)
 - reduce CFL number (unsteady flow)
 - re-mesh or refine mesh regions with high aspect ratio or highly skewed cells
Application
Post Processing

- qualitative analysis (visualization):
 - displaying the mesh
 - contours of flow fields (e.g. pressure, velocity, temperature, concentrations ...)
 - contours of derived field quantities
 - velocity vectors
 - animation (using keyframes or frame-by-frame)

- quantitative analysis:
 - XY plots (e.g. pressure, velocity, temperature vs position)
 - forces and moments on surfaces
 - surface and volume integrals
 - Flow solvers may contain a complete post-processing environment
 - generally not necessary to use external post-processing software
Verification & Validation

- Model:
 A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.
Verification & Validation

- **Model:**
 A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

- **Code:**
 A code is a set of computer instructions and data inputs and definitions.
Verification & Validation

- **Model:**
 A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

- **Code:**
 A code is a set of computer instructions and data inputs and definitions.

- **Simulation:**
 The exercise or use of a model.
Verification & Validation

- **Model:**
 A representation of a physical system or process intended to enhance our ability to understand, predict, or control its behaviour.

- **Code:**
 A code is a set of computer instructions and data inputs and definitions.

- **Simulation:**
 The exercise or use of a model.

Essentially, one implements a model into a computer code and then uses the code to perform a CFD simulation which yields values used in the engineering analysis.
Verification & Validation - Level 1
Verification & Validation - Level 2