Aufgabe 4: Plastizität

Ziel der Übung

- Kennenlernen von Abaqus CAE und Erstellen eines einfachen Modells
- Betrachtung von elasto-plastischen Materialeigenschaften
- Durchführung von Simulationen mit mehreren Lastschritten
- Berechnung von Strain/Work-Hardening am Kragbalken (Kaltumformung und Verfestigung)

Aufgabenstellung

Wir betrachten einen einfachen Kragbalken mit elasto-plastischen Materialeigenschaften und einer veränderlichen Last *F*:

Abbildung 1: Kragbalken mit aufgebrachter Last

Gegeben:

Tabelle 1: Geometrie- und Materialparameter

l	1000 mm	Balkenlänge
h	60 mm	Balkenhöhe
t	40 mm	Balkendicke
F_1	22000 N	Kraft für Lastschritt 1
F_2	-25000 N	Kraft für Lastschritt 2
F_3	0 N	Kraft für Lastschritt 3
Ε	73100 MPa	E-Modul (Aluminium)
ν	0,33	Querkontraktionszahl
E_{τ}	7310 MPa	Tangentenmodul
$\sigma_{ m yield}$	414 MPa	Fließgrenze

Die folgenden Seiten führen Dich Schritt für Schritt in die Bedienung von Abaqus CAE ein und erklären, wie Du mit diesem FE-Paket ein Modell von der oben beschriebenen Situation erstellen kannst, so daß Du am Ende in der Lage bist, mit Hilfe der Simulationsergebnisse einige Fragen zu beantworten. Los geht's!

Anlegen des Modells und Erstellen der Geometrie

Starte Abaqus CAE und wähle im **Start Session** Dialog die Option **Create Model Databa**se \rightarrow **With Standard/Explicit Model**. Wähle im Modellbaum (vgl. Abbildung 2) den Knoten **Model-1** und gib Deinem Modell einen aussagekräftigen Namen (Abbildung 3).

Aktiviere das **Part**-Modul (standardmäßig aktiv) und erzeuge ein neues Bauteil (**Create Part** in der Part-Toolbox oder **Rechtsklick auf Parts im Modellbaum** \rightarrow **Create**). Wähle als Part-Typ **Deformable** und **Solid** als **Shape-Option**; lege außerdem eine ungefähre Größe von 60 mm fest (Abbildung 4).

Verwende nun die entsprechenden Werkzeuge des **Sketchers**, um ein Rechteck mit den Abmessungen des Balkenquerschnitts zu erzeugen. Dabei ist es sinnvoll, das Zentrum des Rechtecks in den Koordinatenursprung zu legen. Klicke dann zum Beenden des Sketchers und Akzeptieren der Zeichnung auf den **Done**-Button unterhalb des Viewports (Abbildung 5).

Abbildung 2: Aufbau der Abaqus CAE GUI

Model Resu	lts
Search Model Data	base 🔽 🗘 🔁 🇞 🍟
 ■ Models (Model-1 Pa № M № M № M № Ca № Se ■ № As ⊕ oጫ St 	(1) Rename Model × Rename Model-1 to: PlasticBeam OK Cancel
📔 🔤 🚰 Fie	eld Output Requests

Abbildung 3: Benennen des Modells

\$	Create	Part ×				
Name: Balken						
Modeling Sp	ace					
● 3D ○ 2	D Planar	○ Axisymmetric				
Туре		Options				
 Deforma Discrete Analytica Eulerian 	ble rigid Il rigid	None available				
Base Feature	-					
Shape	Туре					
Solid	Extrus	ion				
⊖ Shell	Sweep	>				
O Wire						
OPoint						
Approximate size: 60						
Continue		Cancel				

Abbildung 4: Erstellen der Balkengeometrie

Abbildung 5: Sketch-Tool

Gib im nun erscheinenden Extrusion-Dialog die gewünschte Länge des Balkens ein (Abbildung 6). Nun sollte die 3D-Balkengeometrie im Viewport zu sehen sein.

🜩 Edit Bas	se Extru	ision ×				
End Condition						
Type: Blind						
Depth: 100 0	Depth: 100 0					
Options						
Note: Twist and draft of	Note: Twist and draft cannot be specified together.					
Include twist, pitch:	0	(Dist/Rev)				
Include draft, angle:	0	(Degrees)				
ОК		Cancel				

Abbildung 6: Extrusionsoptionen

Definition von Materialeigenschaften und "Sections"

Erzeuge ein neues Material (Rechtsklick auf **Materials** im Modellbaum \rightarrow **Create...**) mit dem Namen "Alu" und den gegebenen Materialeigenschaften. Leider kann man in Abaqus den Tangentenmodul nicht direkt angeben. Statt dessen spezifiziert man zwei (oder mehr) Punkte auf der Spannungs-Dehnungs-Kurve, die das Verfestigungsverhalten im plastischen Bereich festlegen (Abbildung 7).

			Edit Material		>
Name:	Alu				
Descript	ion:				1
Materi	ial Behaviors				
Elastic					
Plastic					
<u>G</u> ener	ral <u>M</u> echanic	al <u>T</u> hermal <u>E</u>	lectrical/Magnetic	<u>O</u> ther	*
Plastic					
Harde	ning: Isotropic	×			 Suboptions
Use	e strain-rate-de	pendent data			
🗌 Use	e temperature-o	dependent data			
Numb	er of field varia	bles: 0 🖵			
Numb Data	er of field varia	bles: 0			
Numb Data	er of field varia Yield	Plastic			
Numb Data	Yield Stress	Plastic Strain			
Numb Data 1	Vield Stress 414 1145	Plastic Strain 0			

Abbildung 7: Definition des Balkenmaterials

Dieses Material müssen wir nun dem Zylinder zuweisen. In Abaqus ist dazu aber ein Umweg über eine sogenannte **Section-Definition** nötig, die das Materialmodell in Abhängigkeit vom Elementtyp (Solid, Shell, Beam etc.) mit weiteren Optionen verknüpft.

Erstelle deshalb eine neue Section (Rechtsklick auf **Sections** im Modellbaum \rightarrow **Create...**) vom Typ **Solid/Homogeneous**, gib ihr z. B. den Namen "AluSection" und ordne ihr das soeben erstellte "Alu"-Material zu. Diese Section wiederum ordnen wir nun dem Balken zu: Rechtsklicke im Modellbaum auf den Knoten **Parts** \rightarrow **Balken** \rightarrow **Section Assignments** und wähle **Create...** Selektiere im Viewport nun den ganzen Balken (Auswahlrechteck um die Geometrie ziehen). Nenne das neue Set "BalkenGeometrieSet" und bestätige Deine Wahl (Abbildung 8). Dein Modellbaum sollte nun so aussehen wie in Abbildung 9.

Abbildung 8: Erstellung eines neuen Sets

Abbildung 9: Modellbaum nach Zuweisung der Section

Vernetzung und Wahl des Elementtyps

Wähle in der Kontextleiste das Modul **Mesh** und aktiviere das Bauteil "Balken" (Part: Balken). Wähle aus der Toolbox das Werkzeug **Seed Part** und setze die Elementgröße (Kantenlänge) auf 10 mm (Abbildung 10).

Abbildung 10: Einstellen der Elementkantenlänge

Vernetze dann die Balkengeometrie mittels **Mesh Part**. Klicke nun auf das Tool **Assign Element Type** (oder: Hauptmenü **Mesh** \rightarrow **Element Type...**) und wähle für das Set "BalkenGeometrieSet" den Elementtyp C3D20 (Abbildung 11).

\$	Element Type	×
Element Library	Family	
● Standard ○ Explicit	3D Stress	^
Geometric Order O Linear () Quadratic	Acoustic Cohesive Continuum Shell	~
Hex Wedge Tet		
Hybrid formulation	Reduced integration	
Element Controls		
Viscosity:	se default O Specify se default O Yes O No se default O Specify	
C3D20: A 20-node quadr	atic brick.	
Note: To select an element select "Mesh->Contro	shape for meshing, ols" from the main menu bar.	
ОК	Defaults Cancel	

Abbildung 11: Auswahl des Element-Typs

Anordnen der Bauteile in einer Assembly (Baugruppe)

Eine Assembly ist eine beliebigen räumlichen Anordnung einer oder mehrerer Part-Instanzen. Unsere Assembly wird nur aus einem Part (Bauteil), dem Balken, bestehen. Wechsle zunächst ins **Assembly-Modul**. Erstelle dort eine Instanz des Bauteils "Balken" mittels **Instance Part**. Das Ergebnis sollte wie in Abbildung 12 aussehen, sofern Du dich an die Empfehlungen bezüglich der Positionierung gehalten hast. Andernfalls kannst Du die Bauteile bzw. den Balken noch über die entsprechenden Werkzeuge (**Rotate/Translate**) positionieren.

Abbildung 12: "Assembly" bestehend aus einer Balken-Instanz

Festlegung von Last- und Randbedingungen

We chsle zum **Step**-Modul und fixiere zunächst ein Ende des Balkens mittels **Create Boundary Condition** (oder im Baum **Steps** \rightarrow **Initial** \rightarrow **BCs** \rightarrow **Create**). Erstelle eine Randbedingung vom Typ **Symmetry/Antisymmetry/Encastre** und weise diese einem Ende des Balkens zu. Wähle **PINNED** im nun erscheinenden **Edit Boundary Condition**-Dialog.

Erzeuge nun einen neuen Lastschritt vom Typ **Static, General (Steps** \rightarrow **Create**). Lege im **Edit-Step**-Dialog eine Zeitdauer von 1 fest und aktiviere **Nlgeom** (Abbildung 13). Die restlichen Parameter können fürs erste auf ihren Standardwerten belassen werden. Für diesen Lastschritt mußt Du nun die auf den Balken wirkende Kraft definieren (**Steps** \rightarrow **Step-1** \rightarrow **Loads** \rightarrow **Create...**): Erzeuge eine **Concentrated Force** entsprechend F_1 in Tabelle 1, die auf zwei Punkte am anderen Ende des Balkens verteilt wirken soll (Abbildung 14). Verfahre analog zur Definition der beiden weiteren Lastschritte (**Time period** 2 bzw. 3). Achte darauf, Lasten aus vorherigen Lastschritten ggf. zu deaktivieren.

•		Edit Step	×
Name: Type: S	Step-1 tatic, General		
Basic	Incrementation	Other	
Descrip	otion: Upwards be	ending	
Time p	eriod: 1		
Nigeor	m: ○Off (This ●On of la	setting controls the inclusion of nonlinear effects rge displacements and affects subsequent steps.)	
Autom	atic stabilization:	None	
		-	
	O	Cancel	

Abbildung 13: Einstellungsdialog für Step-1

	¢	Edit Load	×	y y
	Name: Loa Type: Cor Step: Upv Region: Upv	d-1 ncentrated force vards (Static, General) vardsLoadPts 🔉 💦		Z Z X
	CSYS: (Glo Distribution: CF1:	obal) 除 🙏 Uniform 🔽	f(x)	
	CF2: CF3: Amplitude:	11000[0 (Ramp)	Pr	
ľ,	Note: Force	will be applied per node. Cancel]	

Abbildung 14: Definition der Kraft für Lastschritt 1

Output Requests

Nun müssen wir nur noch festlegen, welche Ergebnisse und wie häufig Abaqus diese in die "Output Database" (ODB) schreiben soll. Aktiviere dazu wieder das **Step-Modul**. Abaqus unterscheidet zwischen sogenanntem **History Output** und **Field Output**: Field Output bezieht sich i. d. R. auf das gesamte Modell und ist für Größen sinnvoll, die man z.B. als Kontur-Plot darstellen möchte und für die eine vergleichsweise geringe zeitliche Auflösung ausreicht (z.B. Verschiebungen, Dehnungen, Spannungen). Output Requests vom Typ History Output hingegen beschreiben die Historie einiger weniger Knoten oder Elemente. So kann man z.B. die Knotenverschiebungen einiger weniger Knoten zeitlich hoch aufgelöst verfolgen, ohne das komplette Verschiebungsfeld mit hoher Frequenz in die Output Database schreiben zu müssen.

Abaqus hat beim Erstellen des ersten Lastschritts bereits einige Standard Output Requests erzeugt (*F-Output-1* und *H-Output-1* unter *Steps* \rightarrow *Step-1* \rightarrow *Field/History Output Requests* im Modellbaum). Wähle *F-Output-1* \rightarrow *Edit...* und aktiviere (mindestens) folgende *Output Variables*:

- Stresses: Stress components and invariants, Mises equivalent stress
- Strains: Total strain components, Plastic strain components, Elastic strain components
- Displacements: Translations and rotations

Solution

Nun können wir die eigentliche Berechnung starten. Öffne den **Job Manager** im **Job-Modul** und erzeuge einen neuen Job (Button **Create...** in Abbildung 15). Achte darauf, die Job-Optionen so anzupassen, daß alle CPU-Kerne Deines Rechners Verwendung finden. Ein Klick auf **Submit** im Job Manager startet den Job, mittels **Monitor...** kann man den Fortschritt verfolgen. War die Simulation erfolgreich (**Status: Completed**) gelangt man mit einem Klick auf **Results** zum Post-Processing.

\$	×			
Name	Model	Туре	Status	Write Input
PlasticBeamBending	PlasticBeam	Full Analysis	Completed	Data Check
				Submit
				Continue
				Monitor
				Results
				Kill
Create Edi	t Сору	Rename	Delete	Dismiss

Abbildung 15: Job Manager

Post-Processing & Auswertung

Das *Visualization-Modul* ist Abaqus' Post-Processor. U. a. folgende Werkzeuge könnten sich als nützlich erweisen:

- Plot Contours on Deformed Shape
- Contour Options
- Animate: Time History
- Options \rightarrow Common... \rightarrow Deformation Scale Factor

Nutze die gebotenen Möglichkeiten zur Modellauswertung, um folgende Fragen zu beantworten:

Fragen

- 1. Stelle die plastischen und elastischen Dehnung in *x*-Richtung dar (Field Output PE33 bzw. EE33)! Wieso sind am Ende von Lastschritt 3 noch immer elastische Dehnungen vorhanden? Wie erklärst Du Dir das Muster?
- 2. Wie würde sich das Ergebnis verändern, wenn wir nur den ersten und den letzten Lastschritt aufbrächten?
- 3. Was ist die Ursache für die im Vergleich zu den vorherigen Modellen langen Lösungszeiten?