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Problem Description
» P C RP set of deterministic parameters
> (Q,2,P) probability space
» D c RY open and bounded spatial domain
» X C H'(D) finite element space, dim(X) = N

Define parametrized stochastic forms

Q: XxXx(PxQ)—=R continuous bilinear form
A XxXxXx(PxQ)—=R continuous trilinear form
f: Xx(PxQ)—R bounded linear form

For (u,w) € P x Q, we define
9w, v;p,w) = ao(w,V; p,w) + ar(w, w, v; p,w) — f(v; p,w)
and the nonlinear, parametrized and random variational problem

find u(p,w) € Xst. g(u(p,w), v, u,w) = 0, YvelX.
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Output of Interest
for a linear functional /: X x P — R

S(p,w) = € (u(p,w); p)
V(p,w) = Ma(p) — M5(u)

where M (u) and My(u) denote first and second moment of s(u, -)

Context
» weak solution in space
» strong solution in probability = Monte Carlo evaluations

Motivation for Model Reduction
= solutions for many parameters are required
= solutions for many random realizations are required
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Basic Idea of the RBM

Idea
» create reduced space Xy C X “offline”

» of dimension N < N/
» made of snapshots, i.e. solutions for some pairs (u, w)

> solve problem on Xy “online”
» find u(p,w) € Xn s.t. glu(p,w),vip,w) = 0, VveXy
» complexity O(N®) (for each Newton iteration)

» develop error bounds

» confirm quality of the approximations of the reduced model
» control size of reduced system

Requirements
» affine decomposition of g w.r.t. (i, w)

> i.e. separate x-dependent from (u,w)-dependent terms

» to assemble system independent of N
» to evaluate error bounds independent of A/
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Affine decomposition w.r.t. u
Assumption: given by

Mo

9w, v, p,w) =
q=1

> gq represent the expectations
> gq represent the fluctuating parts with zero mean

Affine decomposition w.r.t. w
Karhunen-Loéve (KL) Expansion

9q(W,V;w) = quk ) 9gk(w, V)
k=0

Introduction

Oq(pt) - [S_Jq(W, V) + gg(w, v; w)]

» random variables {4 uncorrelated, zero mean, unit variance

» magnitude of gy« typically decreases exponentially fast
> truncate at some K < K = truncated forms g¥, g¥, dgX
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Assembling ay “offline”
> Let {¢1, ..., o} be the (finite element) basis of X,
assemble system matrix
Q K
a (e i iw) = > > Og(m)éq(w) ao.gr(eyn i), ij=1,.., N
g=1 k=0
» Let {(1,...,(ny} be the (reduced) basis of Xy, (= Zf\; Cn, i,
evaluate offline and store, independent of (i, w)

N
aO.qk(Cms Cn) = Z,‘j:1 Cm,an,i aO,qk(‘Pjv @i)) nm=1,.,N

Assembling a; “online”
» assemble online in (’)(QKNZ) independent of A/

aO (Cm(nv/h - Zzaq qu aquk(CmaCn), n,m= 17"'7N

g=1 k=0
» similarly for a; in O(QKN®) and f in O(QKN)



Achievements

reduced system independent of A/

assemble system in O(QKN®)
evaluate solution in O(N®) per Newton step

Further Tasks

develop error bounds
confirm quality of the approximations of the reduced model
selection of snapshots
control size of reduced system
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primal-dual formulation: for s(u, w) and M (u, w)

PRIMAL FORMULATIONS
» solutions ux € X and unk € Xy
QK(UK,V: pw) = 0, Vv e X,
QK(UNK, vip,w) = 0, Vv € Xy.

LINEAR DUAL FORMULATIONS
» solutions px € X and pwk € X§
dg" (v, pic; pw)[3 (Ut unk)] = —(v; p), Vv e X,
dgK(Vu pNK;Mvw)[UNK] = _E(V; /'L)7 Vv e S(Il\)/

> reduced space X? = span({C,}V,) € X, (= Pic(jin, wn)
» Fréchet derivative

dg(w, v; p,w)[z] = ag(w,Vv;u,w)+ ar(w,z,v; u,w) + ai(z,w, v; u,w)
» complexity corresponds to one primal Newton iteration
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solution error bounds

» Define the primal and dual RB residual as
mme(V; p,w) = gK(UNK7 Vi 1, W),
PRa(Vi p,w) = dg (v, pi) [unk] + £(v).

» Define the primal and dual KL “residual” as

Sk (Vi pyw) o= Zq 1Zk 1 19a() € Gai(un, V)1
S (Vi w) = Zq 1Zk K+1 Oq(1) €0 Ak (V, P ) [Unk]|

where |{g| < &, holds with probability 1 — o, 0 < o<1
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solution error bounds

» Denote p1(u, w) the continuity constant of a

» Define the inf-sup constant

dg(w, v; p, w)[unk]
B(u,w) = |nf sup
() 2= 0t SUR = Vil

» Define the RB and KL bounds

1 rRB(V)) P 1 (’N’QB(V)>
A , =—35 , A ,w) = —su ,
Ae(p,w) = BB ve)F(’( Ivix re (K ) BB ve)‘? vilx
5KL(V)> AP 1 5£L(V)
A ,w) su , A ,w):=——8u .
k(@) = Bis Vef?( vix kL(k ) B vef? Iv][x

» use Riesz representators of affine terms for evaluation
» online complexity O(Q?K2N*) independent of A/
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solution error bounds

For 2(Ams+Ax ) < 52, we define the bounds

Ap,w) = 2(Apg + Ake)

. - - 2
AP(p,w) = 2(ABg+AR) +5—’L’;A||pNK||x

such that there exists a unique solution u(u,w) € B(unx, gf) and

AN

lu(p, w) — unk (1, W)l x Ap,w)
(s, w) — P (. w)llx < AP(p,w)

Proof: based upon Brezzi-Rappaz-Raviart theory
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output error bounds

LINEAR OUTPUT APPROXIMATION

Snk (i, w) = £(Unk) + rre(Pnk)
My nk (1) = E[snk(p, )]

> Snk 7 {(Unk)
> rre(pnk) added as “correction” term

LINEAR OUTPUT BOUNDS

AY(n) = E[A%(n,-)]

» Apg, Ak appear in products with each other
= only small N and K necessary
> Ok is more precise than Ak, and decreases fast in K

AS(u,w) = BeAAP + Ski(pnk) J
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additional dual formulation: for s?(;,w) and M2 (u, w)

ADDITIONAL LINEAR DUAL FORMULATIONS
» Analogously to the first dual problem:

> solutions yx € X and ynk € X},
solutions zx € X and zyk € Xf,

dgK(v7 YK; M, W)[%(U-i-UNK)] = _2SNK(/’['7OJ) E(V; /.t), Vv e X7
dg" (v, zi; p, w)[3(u+unk)] = —2My w(p,w) £(V; 1), Vv € X.

dg™ (v, ynki: 1, w)lunk] = —2snk(paw) Uvip), Vv e XY,
dgK(Va ZNK; Ly w)[uNK] _2M1,NK(H’7 UJ) K(V; /1')3 Vv e )N(Ifl

> in practice, we use X§ = X}
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quadratic outputs

QUADRATIC OUTPUT APPROXIMATION

SEV;]((M’W) = (snk)’ +  2snk fee(Pvk) — me(Vik)

MEZ,]NK(N) = (M nk)° + E[2My nkre(Pa) — fre(2ni)]

» Additional “correction” terms

» Alternatively: sﬁ,]( = 2(uNK) — rga (k) — rrs(Ynk)

SECOND MOMENT AND VARIANCE

V() = E [sikn,)] = M) |
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quadratic output error bounds

LINEAR OUTPUT BOUNDS: AS(p,w) = BLAAP + &k (Pnk)
QUADRATIC OUTPUT BOUNDS

A% (1,w) = (AS)2 +  BAN + Sk (ynk),
AMf(,u) = (AM1)2 +E {ﬁLBAAZ I 5KL(ZNK)] .

» ASis already small = (A%)? almost negligible
— A will probably be of the same order than AS

VARIANCE OUTPUT BOUNDS

AV(p) = E[(A%?] +(Aa™)?
+E [,BLBAAY_Z T+ 5KL(YNK_ZNK)]




Achievements
reduced system
assemble system in O(QKN®)
evaluate solution in O(N®) per Newton step
efficient dual problems
complexity corresponds to one primal Newton iteration
error bounds
for s, s2, My, M, and V
all bounds are likely to be of the same order
computational complexity O(Q?K2N*)
we can derive sharper error bounds (see paper)
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EXAMPLE: stationary convection-diffusion process
CONCENTRATION/MASS TRANSPORT IN A WET SANDSTONE

parameter and constants

> 1 € [0.05,1.00] global water saturation in the pores

> pup € [0.20, 1.00] convection magnitude

> k: D xQ — [0,1] rate of pore space per control volume

» diffusivities: ns = 0.04 of sandstone, 7w = 3.10 of water, 7, = 1.20 of air

coefficients
> n(u,w) diffusivity, depending on 7s, nw, 7a, £(w) and g4
» J(u2) convection, depending on uo
» ~(w) random zero mean Neumann outlet condition

—V - (n(p,w) Vu(p,w)) + i(pz) - Vuu = 0 inD,
u(p,w) = 0 onlp,
n- (U(Muw) VU(MW)) = 0 onfly,

n- (n(p1,w) Vu(p,w)) = ~v(w) onTlou.
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eigenvalues and truncation values of the KL expansions

Four random realizations of x Four random realizations of ~

" g

KL Eigenvalues of KL Eigenvalues of ~

10 — A 10° — Ay
KL truncation values KL truncation values

> K, =30 > K, =11

> K. =47 > Ky =15
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ERROR DECAY

5 10 15 20 25
< s : .
Number N, N°, N” of basis functions

(a) RB error decay of primal solution v and

dual solutions p and (y —2z)

REsuLTS
For error tolerance 103
» needed basis functions

» speedup factor:
full system to reduced system

o AS2,I‘el . Asrel
NP —7 N=28
V,rel
10 = 10
107 107
4| 4
TS 20 24 2101 4, 7
N, N’ N

(b) rel. error decay of outputs s, s and V
without dk_-contributions

N | (N,NP,NY) | speedup

3.191 | (28,7,28) 33

12.555 | (28,7,28) 96
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