
Universität Ulm | 89069 Ulm | Germany Fakultät für

Mathematik und

Wirtschaftswissenschaften

Institut für

Numerische Mathematik

Speech Signal Noise Reduction

with Wavelets

Diplomarbeit an der Universität Ulm

Vorgelegt von:

Bernhard Wieland
bernhard.wieland@uni-ulm.de

am 9. Oktober 2009

Gutachter:

Prof. Dr. Karsten Urban
Prof. Dr. Stefan Funken

Contents

1 Introduction and Motivation: Why Wavelets 1

1.1 Preliminaries . 1

1.2 Some Notes on Speech Signals . 2

1.3 Motivation . 3

1.4 Outline and Structure . 5

2 Wavelet and Fourier Transform 7

2.1 The Continuous Wavelet Transform 7

2.2 The Discrete Fast Wavelet Transform 8

2.3 The Stationary Wavelet Transform 11

2.4 The Fourier Transform . 13

2.5 Comparison . 14

3 A General Noise and Speech Model 18

3.1 Noisy Speech Signal Model . 18

3.2 Noise Transformation . 19

3.3 Some Definitions and Notations 21

4 Spectral Domain Denoising 23

4.1 Noise Reduction Filter Model . 23

4.2 Wiener Filter . 24

4.3 Spectral Subtraction and Power Subtraction Filter 27

4.4 Ephraim-Malah Filter . 28

4.5 A priori SNR Estimation . 30

5 Lipschitz Denoising 32

5.1 Lipschitz Regularity . 32

5.2 Lipschitz Regularity Detection with the Wavelet Transform 35

5.3 Wavelet Transform Modulus Maxima 37

5.4 Denoising Based on Wavelet Maxima 44

i

CONTENTS ii

6 Diffusion Denoising 48

6.1 Introduction . 48

6.2 Diffusion of Wavelet Coefficients 49

6.3 Choice of Parameters . 52

7 Thresholding Methods 55

7.1 Hard and Soft Thresholding . 55

7.2 Selective Wavelet Reconstruction 56

7.3 VisuShrink . 57

7.4 Adapting to unknown smoothness 59

7.5 Minimax Threshold . 63

7.6 Stein Unbiased Risk Estimate . 68

7.7 Cross Validation . 71

7.7.1 Ordinary Cross Validation 71

7.7.2 Generalized Cross Validation 73

7.7.3 GCV Analysis . 75

7.8 SURE & GCV Minimization . 78

7.9 Level Dependent Thresholding . 83

7.10 Inter & Intra Scale Thresholding 85

8 Tree Structured Thresholding 87

9 Sophisticated Thresholding 92

9.1 Optimal Thresholds . 92

9.2 Sophisticated Thresholding . 94

9.3 Sophisticated Thresholding, SURE and GCV 95

9.4 Comparison . 98

9.5 Generalization and Improvement 102

9.6 Perspectives . 106

10 Biased Risk Based Sound Improvement 108

10.1 Biased Risk Contribution . 108

10.2 Minimization Problem . 110

11 Comparisons, Conclusions and Outlook 112

A Sound Examples: Specifications 124

Bibliography 127

List of Figures

1.1 Sounds “ a ”, “ n ”, “ t ” and “ s ” 2

1.2 Reconstructed and original German word “nichts” 3

2.1 Window function gm,n and wavelet function ψj,k 15

2.2 STFT and FWT phase-space lattice 16

4.1 General spectral domain denoising algorithm 25

4.2 Risk function for Wiener and power spectral filter 28

5.1 Graph of
√

|x| and its derivative 35

5.2 Colorbar: blue indicates smallest, red biggest values 40

5.3 Example 1: The step function . 41

5.4 Example 2: Dirac delta function 42

5.5 Example 3:
√

|x| . 43

5.6 Example 4: Gaussian white noise 43

5.7 Lipschitz denoising: 100ms speech, σ = 0.05 45

6.1 Diffusion of noisy sine function 50

6.2 Diffusion denoising of pure noise 53

7.1 Hard and Soft Thresholding . 56

7.2 Risk ρ(λ, S) and ρ(λopt(S), S) . 66

7.3 Optimal threshold value λ with corresponding risk 67

7.4 Sign of ∂/∂λ2(ρ(λ, S)) . 79

7.5 MSE, SURE and GCV . 82

9.1 λopt(S) with corresponding risk and softλopt(S)(S) 93

9.2 softλopt(S) and sophα,β(S) with α = 0.893 and β = 2.867α 95

9.3 soft, hard and sophisticated thresholding functions 96

9.4 risk contribution of soft, hard and sophisticated thresholding . . . 99

9.5 risk contribution for S = 0 and σ2 = 1 as a function of λ 100

9.6 risk contribution for fixed λ . 101

iii

LIST OF FIGURES iv

9.7 risk contribution with α = 2σ and β = 6α, σ = 1 102

9.8 optimal risk contribution for example of table 9.1, σ = 0.05 105

9.9 Histogram of transformed German “ch” and “aa” 106

10.1 bias2 and variance for soft and sophisticated thresholding 110

List of Tables

7.1 Universal Threshold as a function of the number of samples . . . 59

7.2 Minimax vs VisuShrink for σ = 1 68

8.1 Optimal threshold for CPRESS and speech example 4 91

9.1 Comparison: Sophisticated Thresholding with different parameters 104

9.2 Comparison: hard, soft and sophisticated thresholding 105

10.1 Optimal thresholds for biased risk 111

10.2 Bias and variance for biased risk 111

11.1 Explanations: σ = 0.0x . 112

11.2 SNR Comparison: σ = 0.01 . 118

11.3 MSE Comparison: σ = 0.01, MSE = 1.000e− 4 119

11.4 SNR Comparison: σ = 0.03 . 120

11.5 MSE Comparison: σ = 0.03, MSE = 9.000e− 4 121

11.6 SNR Comparison: σ = 0.05 . 122

11.7 MSE Comparison: σ = 0.05, MSE = 2.500e− 3 123

v

List of Sound Examples

1 arbeit.wav . 124

2 bursche.wav . 124

3 illustrierte.wav . 124

4 ironie.wav . 125

5 leer.wav . 125

6 lieblingsmusik.wav . 125

7 muecken.wav . 125

8 woche.wav . 126

9 worte.wav . 126

10 musicalnoise.wav . 126

11 diffusionnoise.wav . 126

vi

Chapter 1

Introduction and Motivation:

Why Wavelets

1.1 Preliminaries

Degradation of signals by noise is an omnipresent problem. In almost all fields

of signal processing the removal of noise is a key problem. For magnetic tapes,

analogue audio restoration techniques such as “Type A” Dolby Noise Reduction

have been already available and successful in the mid-1960s. Until the begin-

ning of the 1990s, digital audio processing had required expensive high-power

computers. Upcoming micro-chip improvements and affordable computers have

also led to more research on digital audio processing. Furthermore, the invention

of high quality digital audio media such as compact discs increased the general

awareness and expectation on sound quality. Later, especially digital speech de-

noising developed to be a more and more interesting field of study, since digital

communication via cell phones has become widely used.

In the past, beginning with the work of Norbert Wiener [35], several digital

denoising techniques based on Short Time Fourier Transform (STFT) algorithms

have been published (see chapter 4) and some reasonable results have already been

achieved. In this work I will introduce some denoising algorithms based on the

Fast Wavelet Transform (FWT) and develop some improvements. Let’s first take

a closer look on certain speech sound features before I provide some arguments

why wavelet transformations might be preferable to Fourier transform. In the

last part of this chapter, I provide the general outline and the structure of this

work.

1

CHAPTER 1. INTRODUCTION AND MOTIVATION: WHY WAVELETS 2

(a) sound “ a ” (b) sound “ n ”

(c) sound “ t ” (d) sound “ s ”

Figure 1.1: 10ms sounds “ a ”, “ n ”, “ t ” and “ s ”

1.2 Some Notes on Speech Signals

First, I will briefly introduce some characteristics of speech signals, such as audi-

tory quality, characterization of different sounds and problems that might occur.

Figure 1.2 shows 10ms of 4 different speech sounds using a sampling rate of 44100

samples per second. We can see that the vowel “a” and the consonant “n” have

a relatively regular shape, while “t”, pronounced as a single letter (i.e. just “t”,

not “tee“), and especially the sibilant “s” contain fast oscillating parts that look

very similar to noise. Hence, it is clear that denoising will be very sensitive for

such speech parts. This is also illustrated by figure 1.2, where the German word

“nichts” is shown. In black, we see the original signal, the blue graph represents

the reconstruction of a noisy version. A Fast Fourier Transform (FFT) based

method has been used, namely power spectral filters, see section 4.3. While the

“ni”-part seems to be well reconstructed with only minor errors, “ch” vanished

completely and “ts” appears only as a small disturbance.

Another problem we have to deal with, is the lack of good measures for sound

quality. All methods presented in this work are more or less based on the fol-

lowing quality “measures”: Mean Square Error (MSE) or expected MSE, called

risk, Signal to Noise Ratio (SNR), and smoothness, see section 3.3. Both, SNR

and MSE, evaluate in fact the error of the reconstruction, but SNR puts it in

CHAPTER 1. INTRODUCTION AND MOTIVATION: WHY WAVELETS 3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1.2: Reconstructed (blue) and original (black) German word “nichts”

a relation to the signal energy and is measured in decibel (dB). This is more

meaningful than simple MSE since for signals with very high energy, small errors

are perceived less distracting. However, one can easily illustrate that even SNR is

not really appropriate. Suppose that each coefficient of a reconstructed signal is

exactly half the original one, then SNR ≈ 3, which is extremely small. Still, the

reconstruction would be of very good sound quality. On the other hand, smooth-

ness does not provide any information about a good approximation of the signal.

Smooth reconstructions might be strongly deformed. Furthermore, reconsidering

figure 1.1, the original signal might not be smooth at all. Another measure, the

Itakura-Saito distance that is supposed to be a better indicator for sound qual-

ity, is not appropriate for our models since they is based on Fourier transformed

signals and we can therefore not minimize it in wavelet domain. Furthermore, it

is not even a metric.

1.3 Motivation

In chapter 2, Fourier and wavelet transformations are introduced and the main

differences are described which is the basis for some parts of the following dis-

cussion. Hence, if the reader is not familiar with any of these transforms and

its differences, I recommend to read chapter 2 first and go on with this section

afterwards.

As mentioned, first digital denoising methods were based on Fourier transfor-

mations, processing the signal in frequency domain. Even though very good re-

sults have been achieved, there are reasons why denoising using wavelet transform

algorithms might be preferable to Fourier based methods. Now, I will provide

some of these arguments.

CHAPTER 1. INTRODUCTION AND MOTIVATION: WHY WAVELETS 4

A. Auditory Perception: A sound signal that is received by the ear can be

described by a function s : R → R, where s(t) denotes the local pressure at the

corresponding time t. In some way, this one-dimensional signal is transformed

into a two-dimensional time-frequency plane, providing information about the oc-

currence of frequencies at any time, i.e. “when does which frequency occur” [17].

In fact, this is can be seen as a contradiction. Since pure frequencies are repre-

sented by complex exponentials eitω , they can not be associated with a certain

time point but last from −∞ to ∞. Vice versa, a certain time point, represented

by the Dirac delta function, contains all frequencies and it is not possible to asso-

ciate a special frequency. Hence, neither the signal itself nor its Fourier transform

provide the desired information and the hearing must be based on some compro-

mise between time localization and frequency localization [17]. Even though the

STFT provides such a compromise, wavelet transformations seem to come closer

to a more intuitive compromise, to rarely “update” low frequencies but to check

details, i.e. high frequencies, continuously. This is realized in some way by the

wavelet transformation since for high frequencies, the time resolution is much

finer than for low frequencies. Furthermore, the FWT treats frequencies in a

logarithmic way which is similar to acoustic perception [3].

B. Run-Time / Costs: The wavelet representation of a discretized signal of

length N can be obtained in O(N) whereas the STFT representation requires

O(N logM) where M denotes the sub-frame length of the used window. Hence,

the FWT algorithm might be preferable if the current application is very time sen-

sitive, i.e. for real time applications such as denoising communication transmitted

via radio. For example in helicopters, loud background noise is unavoidable and

makes communication difficult. Also high quality headphones try to remove back-

ground noise to enhance sound quality. However, it is clear that fast and effective

denoising techniques are needed.

C. Variety Of Wavelets: The wavelet transform is striking for its great

variety of different types and modifications. A whole host of different scaling and

wavelet functions (or scaling and wavelet coefficients) provide plenty of possible

adjustments and regulating variables. Examples are differentiability properties or

the number vanishing moments, symmetry features, complex or real wavelets,...

Some well known examples are the set of different Daubechies wavelets, Symmlets

and Coiflets. The corresponding scaling and wavelet coefficients can be found in

[4] or [34]. The Fourier Transform does not provide such a variety.

CHAPTER 1. INTRODUCTION AND MOTIVATION: WHY WAVELETS 5

D. Musical Noise Problem: Spectral domain denoising, Fourier based, of-

ten leads to special residual noise artifacts called musical noise or tonal noise,

sometimes regarded even more disturbing than the original Gaussian white noise.

An example of typical musical noise is provided by sound example 10. The way

musical noise occur can be explained considering a signal of pure noise. In spec-

tral domain, at each frame most of the frequencies will be removed. However,

some isolated frequencies will be preserved and perceived as tones. These isolated

frequencies randomly change from frame to frame, leading to rapidly time-varying

tones [14]. Hence, some post-processing might be necessary [15]. This compares

to the wavelet transform, which does not produce such artifacts due to better

time resolutions.

E. Image Processing: Wavelet transformation has been widely used for image

processing, such as edge or singularity detection [23], image compression (JPEG

2000) and especially image denoising [19], often outperforming existing algorithms

based on Fourier Transformations. Some of these algorithms have already been

used for the detection of abrupt changes in sound signals [16]. Hence, it is the

obvious thing to give wavelet transformations a trial for audio denoising as well.

We will try to modify some of the image processing algorithms, in particular the

image denoising methods, and test its applicability and performance on noisy

speech.

1.4 Outline and Structure

In chapter 2, I provide a brief introduction and comparison of different kinds of

wavelet and Fourier transformations. The Continuous Wavelet Transform (CWT)

will be only of theoretical interest, though, providing a better understanding of

the discrete transform as well as being used for some proofs in chapter 5. Before

several kinds of denoising techniques are presented, the general model of noisy

speech is given in chapter 3, together with some precise definitions of signal

goodness measures such as MSE, risk or SNR. Additionally, some notes on the

change of the behavior of transformed noise is provided.

The second part of this work, the presentation of several noise reduction meth-

ods, starts in chapter 4 with some well known and commonly used spectral filters,

i.e. Fourier transform based denoising filters, based on different noise reduction

assumptions. While the Wiener filter is based on risk minimization, spectral sub-

traction and power subtraction filters are based on rather intuitive approaches,

the removal of noise magnitudes. The Ephraim-Malah Filter however uses statisti-

CHAPTER 1. INTRODUCTION AND MOTIVATION: WHY WAVELETS 6

cal assumptions and conditional expectations to estimate the coefficient modulus.

The first wavelet transform based methods, introduced in chapter 5 and 6,

try to reconstruct the smoothness of the original signal. The idea of Lipschitz

denoising is to remove coefficients such that the produced outcome does not

contain negative Lipschitz singularities, i.e. the signal is uniformly Lipschitz

positive. Diffusion denoising performs several smoothing steps, each one can be

seen as an Euler step to solve a differential equation, modified in a way such that

important signal features are less smoothed than noise.

In chapter 7, the general thresholding concept is introduced. Except Visu

Shrink, introduced and analyzed in sections 7.3 and 7.4 with the objective to

produce smooth signal estimations, all thresholds are based on risk minimization.

In chapter 9, I develop some modifications of the soft thresholding function to

obtain better results. To reduce the occurrence of disturbing noise artifacts, i.e.

find a better compromise between smoothness and risk minimization, I develop

the idea of biased risk minimization in chapter 10. Tree structured thresholding,

presented in chapter 8, is based on the detection of important coefficients via

trees of wavelet detail coefficients, where “important” is in some way defined by

the used threshold value.

Finally, in chapter 11, a comprehensive comparison of the different denoising

results is provided. Corresponding implementations of all methods and tests for

several different speech examples can be found on the attached CD. All speech ex-

amples are specified in appendix A. Implementations for wavelet based methods

are provided in C++, spectral domain denoising is done in Matlab.

Chapter 2

Wavelet and Fourier

Transform

In this chapter, I will briefly introduce different wavelet transform concepts and

provide a general comparison with the Fourier transform, supporting the argu-

ments that have been mentioned in section 1.3 for the use of wavelet transforms

for denoising purposes instead of Fourier based spectral domain denoising. The

introduction will be as short as possible. First, the Continuous Wavelet Transform

(CWT) is presented. It is less restrictive than the definitions of the discrete trans-

formations — the Fast Wavelet Transform (FWT) and the Stationary Wavelet

Transform (SWT). For these transformations one first needs to introduce Mul-

tiresolution Analysis (MRA) to obtain consistent definitions. For more details

one may refer to [4], [25] [19] or [27].

2.1 The Continuous Wavelet Transform

For some mother wavelet function ψ(x), one generates a family of dilated and

shifted wavelets by

ψs,u(x) =
1√
|s|
ψ

(
x− u

s

)

with dilation s ∈ R\{0} and shift u ∈ R. It holds that ||ψ|| = ||ψs,u|| for all s, u.

The continuous wavelet transform of a real function f ∈ L2(R) is defined as the

7

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 8

inner product of f and ψs,u, i.e.

Wf(s, u) := (f, ψs,u)

:=

∞∫

−∞

f(x)|s|−1/2ψ

(
x− u

s

)
dx (2.1)

for real Wavelets. Wf(s, u) provides information at scale s localized at position

u. In theory, all functions ψ can play the role of a wavelet function. For most

application one needs a reconstruction formula to recover the function f , though.

One can show that for mother wavelets ψ such that

Cψ := 2π

∞∫

−∞

|ψ̃(ω)|2
|ω| dω <∞, (2.2)

where ψ̃ denotes the Fourier transform of ψ, it holds that

f(x) =
1

Cψ

∞∫

−∞

∞∫

−∞

Wf(s, u)
1

s2
ψs,u(x)ds du. (2.3)

Hence, one should restrict on mother wavelets ψ fulfilling (2.2). However, to

obtain the reconstruction formula (2.3), it is in most cases enough to require only

ψ̃(0) =

∞∫

−∞

ψ(x) dx = 0. (2.4)

Such function typically have oscillating properties. Hence the name Wavelets.

Some examples are the Morlet wavelet ψ(x) = eiω0xe−x
2/2σ2

0 or the Mexican hat

wavelet ψ(x) = (1− x2)ex
2/2. For more details and proofs of above assertions see

[4].

2.2 The Discrete Fast Wavelet Transform

Definition 2.2.1. Multiresolution Analysis (MRA)

A sequence of nested, closed subspaces of Vj ⊂ L2(R) is called Multiresolution

Analysis (MRA) if

(i) Vj ⊂ Vj+1 ∀j ∈ Z

(ii)
⋃
j∈Z Vj = L2(R)

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 9

(iii)
⋂
j∈Z Vj = {0}

(iv) f(·) ∈ Vj ⇔ f(2·) ∈ Vj+1 ∀j ∈ Z

(v) f(·) ∈ V0 ⇔ f(·+ k) ∈ V0 ∀k ∈ Z

(vi) ∃ϕ ∈ V0 such that {ϕ(· − k)}k∈Z is a stable Riesz basis for V0

The function ϕ is sometimes called father or scaling function.

If ϕ is normalized, then {ϕjk(·) := 2j/2ϕ(2j · −k)}k∈Z is a normalized basis

of Vj . For a function f ∈ L2(R), let fj denote the projection of f into Vj, i.e.

fj ∈ Vj such that f − fj ∈ V ⊥
j . Since Vj+1 ⊃ Vj , projections fj+1 into the finer

subspace Vj+1 obtain all information about f that is already provided by fj plus

some additional details . Hence, one can decompose Vj+1 into

Vj+1 = Vj ⊕Wj , j ∈ Z

where Wj denotes the so called detail space. We will only discuss the case of

orthonormal bases {ϕ(· − k)}k∈Z of V0. Similar results also hold for biorthognal

bases, see e.g. [29]. One can now proof that there is a function ψ such that

{ψj,k(·) := 2j/2ψ(2j · −k)}k∈Z form an orthonormal basis of the detail space Wj

[4]. The function ψ is called mother wavelet.

Since ϕ ∈ V0 ⊂ V1 and, as described above, {
√
2ϕ(2 · −k)}k∈Z denotes an

orthonormal basis of V1, it and follows that there is a sequence {ak}k∈Z ∈ l2(Z)

such that ϕ can be represented as the linear combination

ϕ(x) =
√
2
∑

k∈Z
akϕ(2x− k). (2.5)

Since W0 ⊂ V1, too, it follows in the same way that there is a sequence {bk}k∈Z ∈
l2(Z) such that ψ can be represented as the linear combination

ψ(x) =
√
2
∑

k∈Z
bkϕ(2x− k). (2.6)

These equations are called dilation equations or two-scale relation, the sequences

{ak}k∈Z and {bk}k∈Z are called scaling sequence and wavelet sequence, respec-

tively, and characterize the corresponding scaling and wavelet function. With

their help we can define the Fast Wavelet Transform (FWT) and its inverse.

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 10

Fast Wavelet Transform Let

fj+1(x) =
∑

k∈Z
cj+1,kϕj+1,k(x)

be the representation of the projection of a function f into Vj+1. One can decom-

pose this into Vj ⊕Wj by

fj+1(x) =
∑

k∈Z
cjkϕjk(x) +

∑

k∈Z
djkϕjk(x)

with

cjk =
∑

l∈Z
al−2kcj+1,l, (2.7)

djk =
∑

l∈Z
bl−2kcj+1,l. (2.8)

This decomposition is called Fast Wavelet Transform (FWT) and we call cj,k

approximation coefficients and dj,k detail coefficients. Furthermore, one can re-

construct cj+1 from cj and dj. This reconstruction is called Inverse Fast Wavelet

Transform (IFWT).

cj+1,k =
∑

k∈Z
al−2kcjk +

∑

k∈Z
bl−2kdjk.

The proofs are easy and well known. They can be found e.g. in [19]. There is

a strong connection between the CWT and FWT. First, all Wavelet functions

obtained from a MRA are good candidates for the CWT, too. Additionally, let

{cJ,k}k=0,..,N−1, N = 2J , be some sequence that can be considered as a discretized

version of a function f , say cJ,k = (f, ϕJ,k), then we have

cj,k = (ϕj,k, f) =

∫
2j/2ϕ(2jt− k)f(t) dt and (2.9)

dj,k = (ψj,k, f) =

∫
2j/2ψ(2jt− k)f(t) dt, (2.10)

i.e. both coefficients can be seen as a CWT with s = 2−j and u = k2−j. Hence,

cj,k and dj,k provide information at scale 2J−j localized at position 2J−jk with

respect to the original sequence cJ that is considered as a representation at scale

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 11

one, see [27]. Therefore, a representation of f is provided by

{c0, d0, d1, ..., dJ−1}. (2.11)

If only a finite number of coefficients ak and bk from (2.5) and (2.6), respectively,

are nonzero, the computation of the above representation (2.11) can be done in

O(N). Each coefficient vector dj and cj is of length O(2j), hence the total length

of the representation is O(N), too.

2.3 The Stationary Wavelet Transform

The Stationary Wavelet Transform (SWT) is a overrepresented form of the FWT.

The obtained representation is similar to (2.11), but now each coefficient vector

dj and cj is of length O(N), in case of periodic boundary conditions one obtains

a length of exactly N and the total number of coefficients is N log2(N) = J2J .

This is the reason why the SWT is also called non-decimated Wavelet Transform.

Let cJ be a discretized representation of a function f as described above, and

let {ak}k∈Z and {bk}k∈Z be the coefficients defined by (2.5) and (2.6), respectively.

Then, the SWT is defined as

cj,k =
∑

l∈Z
a
[J−j]
l−k cj+1,l,

dj,k =
∑

l∈Z
b
[J−j]
l−k cj+1,l

where

a
[r]
k =




an , if k = 2rn

0 , otherwise .

As for the FWT we have a connection to the CWT, that is

cj,k =

∫
2j/2ϕ(2jt− 2j−Jk)f(t) dt and (2.12)

dj,k =

∫
2j/2ψ(2jt− 2j−Jk)f(t) dt. (2.13)

Now, cj,k and dj,k provide information of the function f at scale 2J−j, localized at

position k, in opposition to FWT coefficients where only localizations at 2J−jk

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 12

are provided. The existence of coefficients at any position k = 0, ..., N − 1 at

each scale often facilitates the detection of correlations between different scales

and will be useful for some denoising algorithms (see section 7.9).

Nevertheless, the FWT is embedded in the SWT. Taking at each level j

only coefficients cj,k and dj,k such that k = n2J−j, n ∈ N, leads exactly to

the corresponding FWT coefficients. To confirm this, replace k in equations

(2.12) and (2.13) by n2J−j which leads to (2.9) and (2.10), respectively. In fact,

SWT can be seen as a rearrangement of all FWTs with shifted inputs. More

precisely, for shiftm(cJ,i) = cJ,i−m, the stationary wavelet transform contains all

coefficients of FWTs of shiftm(cJ), m = 0, ..., N − 1. Actually, this would lead

to N2 coefficients, however, several coefficients appear several times. Removing

this redundancy one obtains only O(N logN) coefficients and rearranging leads

to above representation. This procedure is also called cycle-spinning and further

explained and discussed in [2] and [27].

The inverse SWT can be done in several different ways. One possibility is to

take only the FWT coefficients and do the inverse FWT as described above. This

will be obtained using

cj+1,l =
∑

l∈Z
a
[J−j−1]
l−2k cj,2k +

∑

l∈Z
b
[J−j−1]
l−2k dj,2k.

In many cases a different approach might be better, though. Since we will pro-

cess all coefficient due to denoising issues, it might be better to use as well all

coefficients to compute the inverse SWT. These considerations lead to

cevenj+1,l =
∑

l∈Z
a
[J−j−1]
l−2k cj,2k +

∑

l∈Z
b
[J−j−1]
l−2k dj,2k

coddj+1,l =
∑

l∈Z
a
[J−j−1]
l−2k cj,2k+1 +

∑

l∈Z
b
[J−j−1]
l−2k dj,2k+1

cj+1,l =
cevenj+1,l + coddj+1,l

2

which is the average of all inverse FWTs of coefficients obtained from FWTs

taking at each step either only odd or even coefficients. One can show that this

leads to the average of all N inverse FWTs of shifted inputs mentioned above. A

complete discussion and proofs are provided in [27].

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 13

2.4 The Fourier Transform

Definition 2.4.1. The Continuous Fourier Transform (CFT) is defined as

F (ω) :=

∞∫

−∞

f(t)e−i2πtω dt. (2.14)

For signal analysis we need to introduce another form, the short-time Fourier

transform or windowed Fourier Transform which — for some window or frame

function g of compact support — is given by

F (ω, τ) :=

∞∫

−∞

f(t)g(t− τ)e−i2πtω dt. (2.15)

Definition 2.4.2. The Discrete Fourier Transform (DFT) is defined as

Xm =
N−1∑

k=0

xke
−i 2πkm

N (2.16)

where the sequence {xk}k=0,...,N−1 may represent a discretized function. The

discrete Short-Time Fourier Transform (STFT) for some window g is expressed

by

Xm,n =
∑

k∈Z
xkg(k − n)e−i

2πkm
M , (2.17)

where g(k) 6= 0 only if k ∈ {0, ...,M − 1}. M is called sub-frame length. It

depends on the application if xk is assumed to be zero for k /∈ {0, ..., N − 1} or if

xk is extended periodically.

The windowed Fourier transform provides additional time resolution infor-

mation. This is essential for speech signal processing since different sounds, e.g.

vowels or consonants, lead to completely different frequency ranges, see also chap-

ter 1.2. The length of a typical speech processing window is usually chosen to

be between 20 to 40 milliseconds [12]. Furthermore, overlapping windows are

necessary for good denoising results. On the other hand it is too expensive to

evaluate Xm,n at each possible value of n. Hence, to obtain an overlap of 50-75%,

the actual time resolution will be at most 5ms, or N/4 in the discrete case.

For fixed n, the STFT coefficients Xm,n, m = 0, ...,M − 1, can be computed

in O(M logM) using the Fast Fourier Transform algorithm (FFT), presented for

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 14

example in [14]. Hence, the complete Fourier representation with time resolution

as described can be obtained in O(N logM), where a full time resolution would

require O(NM logM).

A widely used class of windows, compactly supported on [0, 1] and with sub-

frame length M , is given by

gα(k) := α− (1− α)cos

(
2πk

M

)
.

These functions are called generalized Hamming windows, named after Richard

Hamming. The frames for the most commonly used values of α are

α = 1 rectangular window

α = 0.5 Hann or Hanning window, named after Julius von Hann

α = 0.53836 Hamming window .

For more Details see [14].

2.5 Comparison

The idea of both, wavelet and Fourier transform, is based on the computations

of inner products of some function f and some analyzing functions to obtain a

time-frequency representation [3]. To illustrate this, let’s define

gm,n(k) := g(k − n)e−i
2πkm
M ,

the product of a shifted version of some window function g and a complex expo-

nential. Hence, similar to the inner product (2.10), we have

Xm,n = (gm,n, x)2,

even though the inner is now considered to be discrete. I.e., gm,n plays a similar

role than the wavelet function ψj,k. The first index of both functions refers to the

frequency and the second one to a time shift, as illustrated in figure 2.1.

However, the way the frequency is characterized differs. For large j, one can

see that the ψj,k is a strongly concentrated or shrunken version of itself whereas

g is not shrunken but “filled” with oscillations for large m. The support of ψj,k

is proportional to 2−j whereas indices m of gm,n are rather proportional to the

number of oscillations of real(g). I.e. the wavelet transform provides a kind of

“zoom in ” property, for large j coefficients dj,k contain only information about a

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 15

0 1 2 3 4 5
−1

−0.5

0

0.5

1

real(g
5,4

)real(g
2,2

)

g
0,0

abs(g
5,4

)abs(g
2,2

)

(a) typical window function g = g0,0, g(t) = 0.511[0,1](t) (1− cos (2πt))

−4 −2 0 2 4 6 8 10
−2

−1

0

1

2

3

ψ
2,24

ψ
3,64

ψ
0,0

(b) wavelet ψ = ψ0,0, ψ(t) = 11[−4,4](t)(1− t2)e−t2/2

Figure 2.1: (a) window function gm,n, (b) wavelet function ψj,k.

very short time period in contrast to coefficients Xm,n. Hence, local effects can

be detected much easier using wavelets and might be a better choice whenever

good time resolutions at high frequencies are required.

This assumption can be supported by a comparison of the two phase space

lattices, provided in figure 2.2. The STFT lattice is illustrated in figure 2.2(a),

i.e. the points (m,n) = Z
2, figure 2.2(b) visualizes the FWT lattice. In this

case the grid is given by (2j, k2−j). Hence, in both cases the y-axis represents

the possible frequencies and the x-axis for each frequency the corresponding time

evaluation points.

To clarify the differences, consider a function f , supported on [0, 1], periodi-

cally expendable and represented by a discretized version si, i = 0, ..., N − 1, and

let’s take for example N = 1024 = 210. As shown above by (2.11), one can obtain

the wavelet representation of f , {c0, d0, d1, ..., d9}, in O(N), where the vectors

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 16

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

(m,n) = (2,−4)

(m,n) = (1,−4)

(m,n) = (0,−4)

(a) STFT phase space lattice

−2 −1 0 1 2

1

2

4

8

(j,k) = (0,−2)

(j,k) = (1,−4)

(j,k) = (2,−8)

(j,k) = (3,−16)

2−j

2−j

2j

(b) FWT phase space lattice

Figure 2.2: (a) STFT phase-space lattice, (b) FWT phase-space lattice

CHAPTER 2. WAVELET AND FOURIER TRANSFORM 17

di ∈ R
2i denote the details at frequency 2i and c0 ∈ R the approximation coeffi-

cient. Hence, the phase space lattice is given by {(j, k)|j = 0, .., 9, k = 0, .., 2j},
i.e. one obtains evaluations for 9 different frequencies, high frequencies more time

evaluations than low ones.

Let’s now take a look on the STFT. Suppose the sub-frame length of the

used window function g is chosen to be M = 256. One then obtains evaluations

at 256 frequencies 0, .., 255. As described in section 2.4, one will not evaluate

Xm,n for all n. Here let’s allow only 50% intersection of two shifted windows. In

this example, this would lead to 8 time evaluations per frequency and costs of

8·O(Mlog(M)) = O(Nlog(M)). No intersection would lead to 4 time-evaluations

and exactlyN Fourier coefficients, but would still require O(Nlog(N)) operations.

In summary, the number of points in the FWT phase-space lattice totals N ,

distributed on J − 1 frequencies, N/2 points for the highest frequency, just 2 for

the lowest one, one detail and one approximation coefficient. The STFT lattice

consists of cMN/M = cN points, evenly distributed on M frequencies, i.e. just

cN/M points for each frequency. Here, c refers to the overlapping rate of the

windows. I.e. for 50%, we have c = 2.

Chapter 3

A General Noise and Speech

Model

3.1 Noisy Speech Signal Model

Suppose a data vector y of finite length n is given and represents a combination

of an unknown speech signal and some as well unknown noise that is added to

the signal, i.e.

yi = si + ei, i = 0, ..., n− 1 (3.1)

where si refers to the unknown noise-free signal at time ti and ei is considered

to be the additional noise. Furthermore, for notational and algorithmic reasons,

we assume y to be periodic extensible, i.e. yi = yi+kn for all k ∈ Z, and n of the

form n = 2J for some J ∈ N. The periodicity is legitimated by considering only

signals s silent at the beginning and at the end.

From the observed data y we will try to estimate the original signal s. In the

following we assume s and e to be independent. For most denoising methods one

assumes e to be a vector of independent identically distributed (i.i.d.) normal

random numbers with ei ∼ N(0, σ2), i.e. Gaussian white noise with variance

σ2 that is not necessarily known. However, for some methods less restrictive

assumptions suffice. In any case we assume the expected noise to be zero, i.e.

E[e] = 0.

A second noise model is necessary for transformed coefficients. However, the

linearity of both, Fourier and Wavelet transform, leaves the additivity of model

(3.1) unchanged. Let’s denote the transformations of the data vector y and its

components s and e by Ypq, Spq and Epq, respectively, where p refers to the

18

CHAPTER 3. A GENERAL NOISE AND SPEECH MODEL 19

frequency and q stands for the time parameter, i.e. (p, q) =̂ (m,n) in the Fourier

transform case and (p, q) =̂ (j, k) in the wavelet transform case as described in

section 2.4. As mentioned, the linearity of both transformations leads to a second

noise model

Ypq = Spq + Epq, (p, q) ∈ I (3.2)

where I is the set of all possible indices in time-frequency domain. In the wavelet

case, Y , S and E may refer — if necessary — to both, approximation and detail

coefficients. However, most denoising algorithms leave approximation coefficients

unchanged and we do not consider the remaining approximation coefficients any-

way.

Let x be some data in time domain and X its transformation into time-

frequency domain. For orthogonal FWT it holds that ||x||2 = ||X||2, i.e. norms

in time and time-frequency domain are equal (see [19]). In the biorthogonal case

the Riesz basis property of (2.2.1) ensures equivalent norms. In the Fourier case it

holds that ||x||22 = 1
n
||X||22, also known as Parseval’s theorem. Hence, considering

norms in time domain is equivalent to restrict on norms in time-frequency domain,

especially minimizing in time-frequency domain minimizes (or nearly minimizes

in the biorthogonal Wavelet case) in time-domain.

3.2 Noise Transformation

One should pay some additional attention on the noise and its property change

after transformation. For E[e] = 0 it is clear that E[E] = 0 holds, too. Further

noise properties are given by its covariance matrix Q, i.e.

Qi,j = E [eiej] ,

Q = E
[
eeT
]
.

Since discrete Fourier and Wavelet transformations are linear, there is a matrix

A such that

Y = Ay, S = As, E = Ae

CHAPTER 3. A GENERAL NOISE AND SPEECH MODEL 20

and the new covariance matrix QW of E is obtained by

QA = E
[
EET

]

= E
[
AeeTAT

]

= AQAT .. (3.3)

In the Wavelet case it might be useful to derive the form of QA for some special

noise distributions and normalize the wavelet coefficients

Y new
jk =

1√
QA
jk,jk

Yjk (3.4)

to obtain stationary noise [19].

First, for orthogonal Wavelet transformations, A is orthogonal, too. Now, if

e represents white noise, i.e. Q = σ2I where I is the identity matrix and σ2

the noise variance, then QA = σ2I, too. Hence, the noise remains uncorrelated,

stationary and the variance does not change either. No normalization is necessary.

Let’s now discuss a more general assumption. Suppose the original noise is

stationary and the correlation between two noise data points depends only on

their distance. Then, Q is a symmetric Toeplitz matrix and one can prove the

following lemma.

Lemma 3.2.1. Let Ejk, (j, k) ∈ I, represent wavelet coefficients obtained by ei-

ther orthogonal or biorthogonal FWT of stationary noise with symmetric Toeplitz

covariance matrix. Then, the variance of each coefficient depends only on the

level j, i.e.

E[E2
j,k] = σ2

j (3.5)

Proof. Since Q is Toeplitz, we have Qu,v = q|u−v|. Using equation (2.8) one

obtains

E[EJ−1,kEJ−1,l] =
∑

u

∑

v

bu−2kbv−2lE[euev]

=
∑

u

∑

v

bu−2kbv−2lq|u−v|.

CHAPTER 3. A GENERAL NOISE AND SPEECH MODEL 21

Substituting m = u− 2k and n = v − 2l yields to

E[EJ−1,kEJ−1,l] =
∑

m

∑

n

bmbnq|2(k−l)+m−n|

= E[EJ−1,k+rEJ−1,l+r].

The same holds for scaling coefficients using equation (2.7). Hence, at level J −1

the covariance matrices of detail and approximation coefficients are Toeplitz, too.

Thus, we have

E[E2
J−1,k+r] = E[E2

J−1,k] = σ2
J−1,

a constant variance at level J − 1. One can repeat this procedure for any other

level in exactly the same way.

In fact, the covariance matrix Q = σ2I for Gaussian white noise is a spe-

cial Toeplitz matrix, too. However, even though lemma 3.2.1 holds as well for

biorthogonal wavelet coefficients, Ej,k, (j, k) ∈ I, might be correlated and not

stationary (i.e. σj1 6= σj2 for j1 6= j2) in opposite to the case of orthogonal FWT.

3.3 Some Definitions and Notations

Let us now collect some definitions used later for the analysis of denoising meth-

ods and for the evaluation of denoised speech signals. The following “measures”

constitute a first set of possible evaluations of the goodness of signal approxima-

tions.

Definition 3.3.1. Given a certain denoising method called T , denote estimates

of s by ŝT . The following expected values refer to the unknown noise, often

assumed to be normally distributed. Let’s define

• Mean Square Error (MSE) of s and ŝT

MSE(s, ŝT) =
1

n
||s− ŝT ||2

=
1

n

n−1∑

i=0

|si − ŝTi |2 (3.6)

• Bias of s and ŝT

bias2(s, ŝT) =
1

n
||s− EŝT ||2 (3.7)

CHAPTER 3. A GENERAL NOISE AND SPEECH MODEL 22

• Variance of ŝT

var(ŝT) =
1

n
E
[
||ŝT − EŝT ||2

]
(3.8)

• Risk

risk(s, ŝT) = E
[
MSE(s, ŝT)

]
(3.9)

=
1

n

n−1∑

i=0

E
[
|si − ŝTi |2

]

= bias2(s, ŝT) + var(ŝT). (3.10)

the expected MSE for a given Method T . Some easy calculations lead to

equation (3.10) and are not specified here.

• Ideal Risk

R(s, T) = inf
ŝT
risk(s, ŝT) (3.11)

which is the infimum of all risks that can be achieved using method T .

• Signal to Noise Ratio (SNR)

SNR(s, ŝT) = 10 ∗ log10
||s||2

||s− ŝT ||2 or (3.12)

SNR(s, y) = 10 ∗ log10
(
||s||2/||e||2

)
(3.13)

measured in decibels (dB).

All these definitions can be modified for transformed coefficients Y , S and

E, replacing n by the number of transformed coefficients, i.e. #(p, q) = |I|.
For FWT and FFT and under the assumption of periodic functions we have

|I| = n, but not for STFT and SWT. All summations need to be done over all

possible indices (p, q) ∈ I. As mentioned above, the l2-norms in time and time-

frequency domain are equivalent, i.e. minimization in time domain is equivalent

to minimization in time-frequency domain.

Chapter 4

Spectral Domain Denoising

In this chapter we will briefly discuss some well known and widely used denoising

methods based on STFT, as described for example in [12], [13], [14], [31], [35].

Nevertheless, all these filters could be almost directly applied on wavelet detail

coefficients instead of STFT coefficients, too. Hence, I used the general nota-

tion introduced in chapter 3, referring to the Fourier transform only as much as

necessary. A comparison of these filters applied on STFT and FWT coefficients,

respectively, can be found in [13]. These experiments has been based only on

different SNR measures but not on human perception. However, it turned out

that these filters applied on Fourier transform coefficients provide better results

than applied on Wavelet detail coefficients. Hence, it will be necessary to create

different methods that benefit from special wavelet properties as mentioned in

chapter 1, e.g. the finer time resolution.

4.1 Noise Reduction Filter Model

First, I will introduce some further SNR definitions that are especially used for

theoretical analysis of spectral domain denoising methods, only defined for co-

efficients in time-frequency domain. Let X denote the transformation of some

sequence x, for variances RX(p, q) and RX denoted by

RX(p, q) = E[|Xpq|2]
RX = E[||X||2]

one defines “a priori SNR”

ξpq =
RS(p, q)

RE(p, q)
(4.1)

23

CHAPTER 4. SPECTRAL DOMAIN DENOISING 24

and “a posteriori SNR”

γpq =
RY (p, q)

RE(p, q)
. (4.2)

Due to the independence of S and E and for E[E] = 0, it is clear that RY =

RS +RE and hence

γpq = 1 + ξpq.

Some commonly used methods to determine ξpq are provided in section 4.5.

Considering noise models (3.1) and (3.2), spectral domain denoising can be

generalized as shown in figure 4.1. It is based on a so called gain or transfer

function H : R+ → [0, 1], a function of one parameter, the “a priori SNR” ξp,q.

The estimation Ŝp,q of Sp,q is given by

Ŝp,q = Hp,q · Yp,q (4.3)

where Hp,q := H(ξp,q). The fact that Hp,q ∈ [0, 1] ensures each coefficient is either

preserved or shrunken but not enlarged. To obtain ξp,q one needs to determine

the noise variance RE(p, q) which is constant for all (p, q) ∈ I for stationary noise,

for Gaussian white noise RE(p, q) ≡ σ2. Otherwise, some normalizations similar

to (3.4) might be useful to avoid current and expensive noise variance updating.

The actual gain function H depends on the used filter, i.e. the denoising method.

For the following filters, the gain function is chosen to be real even though

the transformed coefficients may be complex. Hence, these filters only change

the spectral amplitude but not phase. However, Ephraim and Malah show that

the optimal phase estimator is given by the phase of the noised transformed

coefficients [12]. Hence, real gain functions are sufficient.

4.2 Wiener Filter

One of the most common filters and basis for many others [14],[31],[12] is the

Wiener Filter (WF), published already in 1949 by Norbert Wiener [35]. We use

the noise model in spectral domain as described in (3.2), that is

Ypq = Spq + Epq,

CHAPTER 4. SPECTRAL DOMAIN DENOISING 25

Figure 4.1: General spectral domain denoising algorithm

CHAPTER 4. SPECTRAL DOMAIN DENOISING 26

and try to find an “optimal” gain function Hpq. The idea of the Wiener filter is to

minimize the Risk function (3.9) in spectral domain, i.e for n = |I| one minimizes

Risk(S, Ŝ) =
E

[
||S − Ŝ||2

]

n

=
E [||S −HY ||2]

n
.

Norbert Wiener proposed to use the zero of the risk’s partial derivative with

respect to H , i.e. to find a gain function H such that

n
∂Risk(S, Ŝ)

∂H
= 2E

[
(S −HY)Ȳ

]

= 2
(
E
[
SȲ
]
−HE

[
||Y ||2

])

= 0.

Therefore, with RX = E [||X||2], one obtains

HWiener =
E
[
SȲ
]

RY

=
E
[
(Y − E)Ȳ

]

RY

=
RY − E

[
EȲ
]

RY

=
RY − E

[
E(S̄ + Ē)

]

RY

=
RY −RE

RY
,

applying the independence of E and S which implies E[ES̄] = 0 for E[E] = 0.

Using ξpq and γpq as defined by (4.1) and (4.2), respectively, the gain function is

given by

HWiener
pq =

RY (p, q)−RE(p, q)

RY (p, q)

=
γpq − 1

γpq
=

ξpq
1 + ξpq

(4.4)

and leads to estimations of Spq given by

ŜWiener
pq = HWiener

pq Ypq. (4.5)

CHAPTER 4. SPECTRAL DOMAIN DENOISING 27

The fact that ξpq in (4.5) is positive ensures HWiener
pq to be in [0, 1], i.e. Wiener

filtering can be considered as shrinking coefficients. Considering above equations,

one can see HWiener as both, a function of a priori SNR and a posteriori SNR.

However, in each case we need to find approximations for γpq or ξpq, respectively.

Some methods are presented in section 4.5. Assuming the knowledge of RS(p, q) =

S2
pq and Epq ∼ N(0, σ2), a priori noise ξpq could be exactly evaluated and the risk

function would be given by

risk(S, ŜWiener) =
1

|I|
∑

(pq)∈I

S2
pqσ

2

S2
pq + σ2

. (4.6)

The proof is straightforward using simple calculations and the definition of MSE.

4.3 Spectral Subtraction and Power

Subtraction Filter

Some widely used alternatives are the Spectral Subtraction Filter (SSF) and the

Spectral Power Filter (PSF) [13], [14]. In contrast to the Wiener filter which

is based on a well-defined optimality criterion, i.e. the minimization of the risk

function, SSF and PSF use a rather intuitive approaches. The idea of SSF is to

remove the noise magnitude, i.e. simplified we have

|ŜSSFpq | = |Ypq| −
√
RE(p, q)

and

ŜSSFpq =
|Ypq| −

√
RE(p, q)

|Ypq|
Ypq

This method is especially useful for systems using multiple microphones, one

recording noisy speech and another noise only. Assuming |Ypq| =
√
RY (p, q), one

can use above notations and with γpq = 1 + ξpq, one obtains

HSSF
pq =

√
RY (p, q)−

√
RE(p, q)√

RY (p, q)

= 1−
√

1

1 + ξpq
(4.7)

ŜSSFpq = HSSF
pq Ypq. (4.8)

CHAPTER 4. SPECTRAL DOMAIN DENOISING 28

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Wiener Risk

PSF Risk

Figure 4.2: Risk function for Wiener and power spectral filter

A similar filter, the PSF, is based on the idea of obtaining gain functions H ≈
S/Y . Since E [|S|2] = RS = RY − RE, an appropriate choice is given by

HPSF
pq =

√
RY (p, q)− RE(p, q)√

RY (p, q)

=

√
ξpq

1 + ξpq
(4.9)

which is in fact just the square root of the Wiener filter. Similar to (4.6), if ξpq is

given exactly, the risk function can be provided,

risk(S, ŜPSF) =
1

|I|
∑

(pq)∈I
2S2

pq

(
1−

√
S2
pq

S2
pq + σ2

)
. (4.10)

In figure 4.2 the Wiener risk is compared with the PSF risk as a function of one

single coefficient S and with σ2 = 1. It is clear that the Wiener risk is smaller

since it is constructed to minimize the risk function. However, PSF may have

other advantages. A hole class of similar filters is given in [31], changing only few

parameters, e.g. using other roots but the square root.

4.4 Ephraim-Malah Filter

The following more complex filter has been presented by Ephraim and Malah

in [12]. It is based on the following statistical assumptions: the FFT coeffi-

cients Ypq, Spq and Epq can be seen as Gaussian random variables with zero

mean, i.e. Xpq ∼ N(0, RX(p, q)), X ∈ {Y, S, E}. This is motivated by the cen-

tral limit theorem, since each coefficient is a weighted sum of some “random”

CHAPTER 4. SPECTRAL DOMAIN DENOISING 29

variables. Sufficiently separated samples of the original signals are almost in-

dependent. Appropriate Windows (e.g. Hanning windows) reduces correlations

between widely separated coefficients but enlarges correlations between adjacent

coefficients. However, correlations between transformed coefficients approach zero

for large frame lengths. hence, we assume that the coefficients are pairwise inde-

pendent (or at least only weakly dependent). For more details see [12].

The Ephraim-Malah Filter (EMF) pursues the estimation of the spectral am-

plitude using conditional expectations, i.e. for

Spq = Apqe
iαpq

Ypq = Bpqe
iβpq ,

one estimates Apq based on the set of observations {Ypq|(p, q) ∈ I}. The pairwise

independence ensures that the estimation Âpq of Apq depends only on Ypq, i.e.

only on coefficients of same time and frequency. More precise, the estimation is

given by the conditional expectation

Âpq = E [Apq|Ypq]

=

∞∫
0

2π∫
0

apqP (Ypq|apq, αpq)P (apq, αpq) dαpqdapq
∞∫
0

2π∫
0

P (Ypq|apq, αpq)P (apq, αpq) dαpqdapq

where P (·) denotes probability density functions

P (Y |a, α) =
1

πRE
exp

(
−|Y − aeiα|2

RE

)

P (a, α) =
a

πRS
exp

(
− a2

RS

)
.

As shown in [12], substituting the above equations into the integral leads to

Âpq =

√
πξpq

1 + ξpq
exp

(
−ξpq

2

)(
(1 + ξpq)I0

(
ξpq
2

)
+ ξpqI1

(
ξpq
2

))
Bpq (4.11)

where In is the modified Bessel function of order n,

In(x) =
1

2π

2π∫

0

cos(βn)excosβdβ.

As mentioned above, the optimal phase estimator α̂pq is given by βpq. For that

CHAPTER 4. SPECTRAL DOMAIN DENOISING 30

reason the EMF gain function and the estimator ŜEMF
pq can now be obtained by

HEMF
pq =

Âpq
Bpq

(4.12)

ŜEMF
pq = HEMF

pq Ypq

= HEMF
pq Bpqe

iβpq

= Âpqe
iβpq . (4.13)

4.5 A priori SNR Estimation

The a priori SNR ξpq is given by the ration of signal spectral component variance

RS(p, q) and noise spectral component variance RE(p, q). Let’s take first a look

at the latter one. Then, I will provide some different methods of estimating ξpq

as shown for example in [12].

Noise Spectral Component Variance In practice this variance is esti-

mated using an interval without speech, hence only affected by noise. Assuming

the noise to be stationary, i.e. RE(p, q) ≡ const, it suffices to estimate RE only

one time. For a fixed window indicated by q0 with pure zero mean noise and n

samples, that is the sample variance

R̂E =
1

n− 1

n−1∑

p=0

Y 2
pq0
.

However, it is not always easy to determine pure noise time intervals. Especially

for non-stationary noise, one needs to update RE regularly. Nevertheless it is

the most common method, also used in professional software, e.g. the open

source audio editor Audacity. For some applications like communication from a

helicopter, additional microphones are installed recording only noise, facilitating

the estimation of RE . We will see later that there are wavelet based denoising

methods that can be realized without explicit noise variance estimation.

A priori SNR Since RY (p, q) = E[|Ypq|2] = |Ypq|2 is known, with above esti-

mation of RE(p, q) one could use RS(p, q) = RY (p, q) − R̂E(p, q) leading to the

approximations

γ̂pq = |Ypq|2/R̂E(p, q),

ξ̂(1)pq = γ̂pq − 1.

CHAPTER 4. SPECTRAL DOMAIN DENOISING 31

However, using just one coefficient of the transformed input to estimate a priori

noise is probably too imprecise. Furthermore, as the name says, the variances

rather indicate a kind of volatility around (p, q) than an approximation of Ypq

or Spq, respectively. Hence, assuming only slowly in time varying variances RE

and RS, averaging several values Ypq might be preferable [12]. Let’s base the es-

timation on L consecutive observations Yp,q, Yp,q−1, ..., Yp,q−L+1 of same frequency

but in different time frames. One assumes these values to be independent, which

would be reasonable for non-overlapping frames. Now, one uses the sample vari-

ance of these values and obtains

R̂S(pq) =





1
L

L−1∑
l=0

|Yp,q−l|2 −RE(p, q) , if nonnegative

0 , otherwise

which leads to

ξ̂(2)pq =





1
L

L−1∑
l=0

γ̂p,q−l − 1 , if nonnegative

0 , otherwise.

where as above γ̂p,q−l =
|Yp,q−l|2
RE(p,q−l) . In practice, this average is replaced by a

recursive averaging,

γ̄pq = αγ̄p,q−1 + (1− α)
γpq
β

where 0 ≤ α < 1, β ≥ 1. The choices of α and β depend on the used filter and

on auditory perception. Some examples can be found in [12]. Now, the estimator

for a priori SNR is given by

ξ̂(3)pq =




γ̄pq − 1 , if nonnegative

0 , otherwise.

Another similar estimator, especially used in combination with the Wiener filter,

is given by

ξ̂(4)pq = αξ̂
(4)
p,q−1 + (1− α)11{γpq≥1}(γpq − 1)

with initial condition ξ̂
(4)
p,−1 = 1 which has been verified to be appropriate [12].

Chapter 5

Lipschitz Denoising

The idea of Lipschitz denoising is based on the detection of Lipschitz regularities

using local maxima of the wavelet transform. The same results can be obtained

using more general Besov regularities instead (see section 7.4). However, in this

case Lipschitz regularity is more illustrative and facilitates the understanding.

The presented method is based on the work of Mallat, Hwang and Zhong [22], [23],

[24]. It has been successfully applied on edge detection and image enhancement.

I will provide some examples of Lipschitz regularities and its detection with the

help of wavelets and investigate the usage of the presented methods in Audio

signal denoising.

5.1 Lipschitz Regularity

In the first section I will introduce the notion of Lipschitz regularity and its prac-

tical meaning as well as a definition of singularity based on Lipschitz regularities.

Furthermore I will provide some examples of different Lipschitz regularities for a

better understanding.

Definition 5.1.1. (Lipschitz Regularity)

(i) Let n ∈ N and α ∈ R such that n ≤ α ≤ n+1. A function f is called Lips-

chitz α at x0 if there exist constants A and h0 > 0 as well as a polynomial

Pn(h) of order n such that the following holds ∀ h < h0:

|f(x0 − h)− Pn(h)| ≤ A|h|α. (5.1)

(ii) The function is said to be uniformly Lipschitz α in the interval (a, b) if there

exists a constant A and for each x0 ∈ (a, b) there is a polynomial Pn(h) of

order n such that (5.1) is satisfied if x0 + h ∈ (a, b).

32

CHAPTER 5. LIPSCHITZ DENOISING 33

(iii) The Lipschitz regularity of f at x0 is defined as sup{α|f is Lipschitz α at

x0}.

(iv) We say that f is singular at x0 if it is not Lipschitz 1 at x0.

Lipschitz regularity gives an indication of differentiability. A function f that

is continuously differentiable at x0 is Lipschitz 1. If the derivative of f is not

continuous but bounded at x0, f is still Lipschitz 1, therefore according to 5.1.1

not singular at x0. Let n ∈ N and α > n. A function f that is Lipschitz α at x0 is

n times differentiable at x0 and Pn(h) is identical to the n-th Taylor polynomial

of f at x0. Lipschitz regularity provides even more information. Suppose the

Lipschitz regularity of f at x0 is α0 with n < α0 < n + 1, then f is n times

differentiable at x0 but its nth derivative is singular at x0. Furthermore, α0

characterizes this singularity.

Remark 5.1.2.

(i) One can prove that if f is Lipschitz α at x0 then its primitive is Lipschitz

α+ 1 at the same point.

(ii) The opposite is not true: Let a primitive F of a function f be Lipschitz α,

then f is not necessarily Lipschitz α−1. This is due to possible oscillations

as shown in [23].

However, if f is uniformly Lipschitz α on an interval (a, b) for α /∈ Z, α > 1

then its primitive is Lipschitz α + 1 on the same interval. By extending this

property one can define negative uniform Lipschitz exponents for tempered dis-

tributions. A tempered distribution can be characterized as “slow growing”, e.g.

locally integrable function with at most polynomial growth f(x) = O(|x|r) for

some r which includes all functions f ∈ Lp(R), p ≥ 1. A formal definition can

be found for example in [37] and many other fundamental books on functional

analysis.

Definition 5.1.3. For a tempered distribution f and for α ∈ RrZ a non-integer

real number and (a, b) ⊂ R a real interval, f is said to be uniformly Lipschitz α

on (a, b) if its primitive is uniformly Lipschitz α + 1 on (a, b).

Having this definition in mind we can redefine the notion of singularity in a

more general way than 5.1.1 (iv).

Definition 5.1.4. We will call a function f isolated singular at x0 if there is

no interval (a, b) with x0 ∈ (a, b) such that f is uniformly Lipschitz 1 but there

is an interval (a, b), x0 ∈ (a, b), such that f is uniformly Lipschitz 1 over any

subinterval of (a, b) that does not include x0.

CHAPTER 5. LIPSCHITZ DENOISING 34

I already mentioned that continuously differentiable functions and functions

with noncontinuous but bounded derivatives are Lipschitz 1 and therefore not

singular. I will provide some more examples for a better understanding of Lips-

chitz regularity. Later I will refer to these examples to demonstrate how to use

wavelet transform to detect singularities.

Example 1. (The step function)

The primitive of a step function

s(x) =




0 , if x < 0

1 , if x ≥ 0

is continuous but not differentiable at x = 0. However, since it is piecewise linear

the primitive is still Lipschitz 1 in a neighborhood of 0 and therefore uniformly

Lipschitz α0 for α0 < 1. Hence, the step function is uniformly Lipschitz α1 for

α1 < 0. Definition 5.1.3 is only defined for non-integer α, that’s why we can not

say that s is Lipschitz 0. Nevertheless it has an isolated Lipschitz α1 singularity

at x = 0.

Example 2. (The Dirac delta function)

The step function s is the primitive of the Dirac delta function, defined as

δ(x) =




∞ , if x = 0

0 , if x 6= 0.

Thus we can immediately conclude from definition 5.1.3 and the preceding exam-

ple that it is uniformly Lipschitz α for α < −1 in a neighborhood of x = 0, hence

singular at x = 0.

Example 3. (
√

|x|)
f(x) =

√
|x| = |x| 12 is continuous and differentiable for all x 6= 0, but it is not

Lipschitz 1 since the derivative

f ′(x) = 0.5 ∗ sgn(x) ∗ |x|− 1

2 =




0.5 ∗ x− 1

2 , if x > 0

−0.5 ∗ (−x)− 1

2 , if x < 0.

is not bounded in any neighborhood of x = 0 (see figure 5.1). Thus, f is not Lip-

schitz 1 and it directly follows from definition 5.1.1 that the function is Lipschitz
1
2
. For n = 0 and Pn(h) ≡ 0 we get

∣∣∣|x0 + h| 12 − Pn(h)
∣∣∣ = |h| 12 ≤ A|h|α

CHAPTER 5. LIPSCHITZ DENOISING 35

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

Figure 5.1: Example 3: Graph of
√
|x| (a) and its derivative (b)

which is obviously true for α = 1
2

and A = 1.

Example 4. (Gaussian white noise)

As mentioned for example in [1] Gaussian white noise is singular almost every-

where and has a uniform Lipschitz regularity of −1
2
. Later we shall see that

common audio speech signals have positive Lipschitz regularities and therefore

they can be distinguished from Gaussian white noise.

5.2 Lipschitz Regularity Detection with the

Wavelet Transform

Let us now come to the relation of Lipschitz regularity and the continuous wavelet

transform. For a wavelet function ψ, define the dilation of ψ as

ψs(x) =
1

s
ψ(
x

s
)

and the continuous wavelet transform of a function f ∈ L2(R) as the convolution

of f and ψs

Wf(s, x) := f ∗ ψs :=
∞∫

−∞

f(u)
1

s
ψ

(
x− u

s

)
du. (5.2)

Please note that this definition is slightly different from the CWT introduced in

section 2.1. Instead of an inner product as in formula (2.1) the wavelet transform

is now written as a convolution which will facilitate some proofs. Furthermore,
1√
s

is replaced by 1
s
. This makes it easier to detect Lipschitz regularities from

the wavelet transform. However, the difference between both transforms is just

a constant factor depending on the scale and does not change anything of the

CHAPTER 5. LIPSCHITZ DENOISING 36

general concept. We say that ψ has n vanishing moments if

∞∫

−∞

xkψ(x) dx = 0 (5.3)

for all nonnegative integers k < n. Obviously, this definition is the same for both

definitions of the CWT. The following theorem provides a way how to detect the

Lipschitz regularity of a function f with the help of the decay of the Wavelet

transform as a function of the scale s.

Theorem 5.2.1. Let ψ be a real wavelet function with compact support and n

vanishing moments. For f ∈ L2(R), [a, b] ⊂ R and 0 < α < n the following

statements are equivalent:

• For all ǫ > 0, f is uniformly Lipschitz α on (a+ ǫ, b− ǫ).

• There is a constant Aǫ such that for x ∈ (a+ ǫ, b− ǫ) and s > 0

|Wf(s, x)| ≤ Aǫs
α. (5.4)

Proof. For only continuously differentiable wavelet functions and n = 1 a proof

of the theorem can be found in [18]. In the case of n vanishing moments, n > 1,

for any positive integer p < n there exists another wavelet function ψ1 such that

ψ(x) =
dpψ1(x)

dxp

and, in the sense of weak derivatives, it holds that

Wf(s, x) = f ∗ ψs(x) (5.5)

=
dp

dxp
(f ∗ spψ1

s)(x) (5.6)

= sp
(
dpf

dxp
∗ ψ1

s

)
(x). (5.7)

Let p be an integer such that 0 < α−p < 1. The function f is uniformly Lipschitz

α if and only if dpf/dxp is uniformly Lipschitz α − p which is according to the

already proven case n = 1 equivalent to

∣∣∣∣
dpf

dxp
∗ ψ1

s(x)

∣∣∣∣ ≤ Aǫs
α−p (5.8)

Eventually, using equation (5.7), this is equivalent to equation (5.4).

CHAPTER 5. LIPSCHITZ DENOISING 37

There is a similar result based on the Fourier transform, considering the scale

s “equivalent” to 1/ω for frequencies ω. A function f is uniformly Lipschitz α on

R if

∞∫

−∞

|f̂(ω)|(1 + |ω|α)dω <∞,

where f̂(ω) denotes the Fourier transform of f . This sufficient condition implies

that |f̂(ω)| has a decay “faster” than 1/ωα for large frequencies ω. In opposition

to the Fourier transform condition, (5.4) is sufficient and necessary as well as

localized on finite intervals.

Remark 5.2.2.

• If ψ has exactly n vanishing moments, the decay of |Wf(s, x)| does not tell

us anything about Lipschitz regularities α > n. For example sin(x) has

regularity +∞, but the decay of |Wf(s, x)| would be of order sn.

• For α < 0, α /∈ Z equation (5.4) remains valid to characterize uniform

Lipschitz exponents. This follows directly from definition 5.1.3 of negative

Lipschitz regularities.

However, to detect the Lipschitz regularity at a point x0 theorem 5.2.1 imposes

to measure the decay of Wf(s, x) in a whole two-dimensional neighborhood of

x0, which is useless for numerical computations. The next section will provide

numerically more efficient methods.

5.3 Wavelet Transform Modulus Maxima

In the following we suppose f and ψ to be real. Now, I will provide the exact

definition of the meaning of modulus maxima and maxima lines.

Definition 5.3.1.

• A modulus maxima is defined as a point (s0, x0) such that for any x in

a neighborhood of x0 we have |Wf(s0, x)| < |Wf(s0, x0)| . We still call

(s0, x0) a modulus maxima if the inequality is strict for only the right or

only the left side of the neighborhood of x0, i.e. if (s0, x0) is a strict extrema

on either the left or the right side of x0.

• A maxima line is defined as a connected curve in the scale space (s, x) along

all points are modulus maxima.

CHAPTER 5. LIPSCHITZ DENOISING 38

The next theorem shows that if there are no modulus maxima in a neigh-

borhood of x0 at fine scales, then the function is uniformly Lipschitz α in this

neighborhood for α < n.

Theorem 5.3.2. Let ψ be a n-times continuously differentiable wavelet function

with compact support and n vanishing moments and let f ∈ L1([a, b]).

• If there is a scale s0 > 0 such that |Wf(s, x)| has no local maxima for all

scales s < s0 and x ∈ (a, b), then ∀ǫ > 0 and α < n f is uniformly Lipschitz

α in (a+ ǫ, b− ǫ).

• If ψ is additionally the n-th derivative of a smoothing function θ, i.e. θ =

O(1
1+x2

) and
∫
θ(x) dx 6= 0, then f is uniformly Lipschitz n on such an

interval.

Proof. The exact proof is very technical and can be found in [23]. In short, for

the first part one proves by induction that if |Wf(s, x)| has no maxima, for any

n and any ǫ > 0 there is a constant Aǫ,n such that

|Wf(s, x)| ≤ Aǫ,ns
n (5.9)

holds for x ∈ (a + ǫ, b − ǫ) and s < s0. Then one can apply theorem 5.2.1. For

the second part of the proof, we write ψ = dnθ/dxn and get, in the weak sense of

derivatives,

|Wf(x, s)| = sn
dnf

dxn
∗ θs(x).

The first part of the theorem and equation (5.9) now implies that for any ǫ > 0

and x ∈ (a + ǫ, b− ǫ) ∣∣∣∣
dnf

dxn
∗ θs(x)

∣∣∣∣ ≤ Aǫ,n.

Since the integral of θ(x) is not vanishing, this equation implies that dnf/dxn is

bounded by Aǫ,n and from definition 5.1.1 we get that f is uniformly Lipschitz n

on (a+ ǫ, b− ǫ).

In other words the theorem states that in any neighborhood where the wavelet

transform of f has no modulus maxima at fine scales, f can not be singular and

the closure of the set of points where f is not Lipschitz n is included in the

closure of the wavelet transform maxima of f . Hence, all singularities of f can

be detected by following the maxima lines when the scale goes to zero.

In the following we suppose that the function f has no fast oscillations. We

say a function f has fast oscillations if it is not Lipschitz α although its primitive

is Lipschitz α+1. One example of a fast oscillating function could be sin(1/x) in

CHAPTER 5. LIPSCHITZ DENOISING 39

the neighborhood of x = 0. However, such “fast oscillations” are not important

for our denoising models. The following theorem characterizes singularities from

the behavior of modulus maxima.

Theorem 5.3.3. Let ψ be of compact support, n times continuously differentiable

and the n-th derivative of a smoothing function. Furthermore let f be a tempered

distribution and x0 ∈ (a, b). We assume that ∃s0 > 0 and a constant C such that

for x ∈ (a, b) and s < s0, all modulus maxima belong to a cone defined by

|x− x0| ≤ Cs. (5.10)

Then the following statements hold:

• For any x1 ∈ (a, b), x1 6= x0, f is uniformly Lipschitz n in a neighborhood

of x1.

• Let α < n, α /∈ Z, then f is Lipschitz α at x0 if and only if there exists a

constant A such that at each modulus maxima (s, x) in the cone (5.10) it

holds that

|Wf(s, x)| ≤ Asα. (5.11)

Proof. One can prove the first part with the help of theorem 5.3.2. It follows

directly that f is Lipschitz n at all points x1 6= x0. For any ǫ > 0 such that

a + 2ǫ < x0 − 2ǫ there exits sǫ such that for s < sǫ and x ∈ (a + ǫ, x0 − ǫ)

the wavelet transform |Wf(s, x)| has no maxima (i.e. (s, x) is not in the cone

(5.10)). Hence, with theorem 5.3.2 one concludes that f is uniformly Lipschitz

n in a neighborhood of x1 ∈ (a, x0). Obviously, the same proof can be done for

x1 ∈ (x0, b).

The main difference between the second part of this theorem and theorem

5.2.1 is that we consider only points in the cone (5.10) and look only on modulus

maxima. However, the truth of equation (5.11) can be followed directly from

theorem 5.2.1. So it remains to prove that the Lipschitz regularity at x0 depends

only on the modulus maxima in the cone (5.10). Let x1 ∈ (a, x0) and x2 ∈ (x0, b).

Since f is Lipschitz n in the neighborhood of x1 and x2 one obtains from theorem

5.2.1 that there exists s0 > 0 such that for s < s0,

|Wf(s, x1)| ≤ A1s
n and (5.12)

|Wf(s, x2)| ≤ A2s
n. (5.13)

For x ∈ (x1, x2) and s < s0, |Wf(s, x)| is smaller or equal to |Wf(s, x1)|,
|Wf(s, x2)| and all modulus maxima in the cone (5.10) for s < s0. Further-

CHAPTER 5. LIPSCHITZ DENOISING 40

min 0 max

Figure 5.2: Colorbar: blue indicates smallest, red biggest values

more, all the modulus maxima are smaller or equal to Asα. From (5.12) and

(5.13) and since α < n (which implies that f is also Lipschitz α at x1, and x2),

one derives that there exists a constant B such that for x ∈ (x1, x2) and s < s0

|Wf(s, x)| ≤ Bsα.

Now, one can apply again theorem 5.2.1 since x0 ∈ (x1, x2) and one obtains that

f is Lipschitz α at x0.

For the detection of Lipschitz regularity, it is useful to rewrite equation (5.11)

in the following form:

log|Wf(x, s)| ≤ log(A) + αlog(s). (5.14)

Thus, theorem 5.3.3 says that the Lipschitz regularity at a point x0 is given by

the maximum slope of straight lines that remain above log|Wf(x, s)| for (s, x) in

the cone defined by (5.10) and on a logarithmic scale.

Usually we deal with discretized functions, let’s assume the resolution is 1.

Hence, the smallest possible scale is 1. In fact it doesn’t even make sense to

talk about singularities or discontinuities as well as Lipschitz regularities for the

discrete case. However, we will see that evaluating the decay of |Wf(s, x)| up

to the finest scale s = 1 already provides good results. Let us again take a look

at the examples introduced in section 5.1. Instead of determine α by finding the

slope of the line that is above all modulus maxima as proposed by (5.14) we use

the line best approximating (in mean square error sense) a function “through”

the modulus maxima since we can not evaluate Wf(s, x) at any scale.

For the following computations, I evaluated the functions at 256 equidistant

points in the interval [−1, 1). An algorithm similar to the stationary wavelet

transform is used, taking into account that we used a slightly different definition

of the continuous wavelet transform. The wavelet function ψ(x) is chosen to be a

quadratic spline of support [−1, 1] and with one vanishing moment, as suggested

by Mallat and Hwang in [23]. The algorithm has also been described by Mallat

and Zhong in [24].

CHAPTER 5. LIPSCHITZ DENOISING 41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) graph of a step function

2

4

8

16

32

−1 −0.5 0 0.5 1

(b) stationary wavelet transformWf(s, x) at
scales s = 2n, n = 1, ..., 5

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) modulus maxima of Wf(s, x)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

(d) log2(Wf(s, x)) as a function of log2(s)
for all modulus maxima

Figure 5.3: Example 1: The step function

In example 1 we analyzed a step function, plotted in figure 5.3(a). In figure

5.3(b) one can see its wavelet transform Wf(s, x) at scales s = 2n, n = 1, ..., 5 .

Here and in the following, the colors indicate the values of Wf(s, x) as described

by the colorbar in figure 5.2. Here, only in a neighborhood of x = 0, the wavelet

transform coefficients are nonzero (and negative), all other coefficients vanish.

The fact that there are only non-positive values is due to the fact that the used

wavelet function ψ satisfies ψ(x) ≥ 0 for x ≤ 0 and ψ(x) ≤ 0 for x > 0. In

figure 5.3(c) the modulus maxima are plotted. One can see that we have only

one modulus maxima at each scale s = 2n, n = 1, ..., 5 and one cold imagine that

there would be a maxima line connecting all modulus maxima and converging

to x = 0 if we would not be restricted on discretized signals and therefore on

just a handful scales. However, figure 5.3(c) indicates a Lipschitz regularity of

less than 1 at x = 0. At the same time, using the first part of theorem 5.3.3,

we know that at any x 6= 0 we have a Lipschitz regularity of at least 1. To

obtain the Lipschitz regularity at x0 we can use figure 5.3(d). One can see that

log2(Wf(s, x)) as a function of log2(s) is almost constant. According to the

second part of theorem 5.3.3 it is now clear that the function is Lipschitz 0 at

x = 0 since there is a constant A (the value of the modulus maxima) such that

log2(W (s, x)) ≤ log2(A) + 0 ∗ log2(s). Hence, we verified the result obtained in

example 1.

In figure 5.4 the graph of an approximation to the Dirac delta function, in-

troduced in example 2, is shown as well as its wavelet transform and modulus

CHAPTER 5. LIPSCHITZ DENOISING 42

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) graph of δ(x) = 1 for x = 0 and δ(x) = 0
otherwise as an approximation of the Dirac
delta function

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(b) stationary wavelet transformWδ(s, x) at
scales s = 2n, n = 1, ..., 5

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) modulus maxima of Wδ(s, x)

1 2 3 4 5
−4

−3

−2

−1

0

1

(d) log2(Wδ(s, x)) as a function of log2(s) for
all modulus maxima

Figure 5.4: Example 2: Dirac delta function

maxima. In this case we have two modulus maxima lines, both converging to

x = 0. The reason why figure 5.4(d) plots only one point per scale is that the two

modulus maxima in each scale have the same amplitude, respectively. However,

one can see that a straight line through these points has a slope of about −0.8.

This does not coincide exactly with the result provided in example 2 where we

have proved that the Dirac delta function is Lipschitz −1. This is due to the

approximation of the Dirac delta function and the discretization. In this case

one could obtain better results using for example Haar wavelets where the slope

would be almost exactly −1.

Figure 5.5 shows the plots of example 3. I proved that the Lipschitz regularity

is α = 0.5. Indeed one can see in figure 5.5(d) that the line that approximates best

(in the sense of mean square error) a line through the points has a slope of about

0.4. So again, we obtain a rough approximation for α. For many applications

this is already good enough, though. Furthermore, the steps from log(s) = 3 to

log(s) = 4 and from log(s) = 4 to log(s) = 5 are almost 0.5. The other modulus

maxima that occur on scale s = 2 don’t affect these results since they are out of

the cone of influence. Furthermore, their appearance is neither a contradiction to

theorem 5.3.2 nor the regularity at these parts since regularity is only a necessary

condition.

The last example is Gaussian white noise with standard deviation σ = 0.2

where I claimed Lipschitz regularity to be α = −0.5. A random sample can be

CHAPTER 5. LIPSCHITZ DENOISING 43

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) graph of f(x) =
√
|x|

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(b) stationary wavelet transformWf(s, x) at
scales s = 2n, n = 1, ..., 5

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) modulus maxima of Wf(s, x)

1 2 3 4 5
−8

−6

−4

−2

0

(d) log2(Wf(s, x)) as a function of log2(s)
for all modulus maxima

Figure 5.5: Example 3:
√

|x|

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) graph of Gaussian white noise with σ =
0.2

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(b) stationary wavelet transformWf(s, x) at
scales s = 2n, n = 1, ..., 5

2

4

8

16

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) modulus maxima of Wf(s, x)

1 2 3 4 5
−8

−6

−4

−2

0

2

(d) log2(Wf(s, x)) as a function of log2(s)
for all modulus maxima

Figure 5.6: Example 4: Gaussian white noise

CHAPTER 5. LIPSCHITZ DENOISING 44

seen in figure 5.6. With the help of the plot of log(Wf(x, s) in a log(s) scale one

can verify this claim. In figure 5.6(d) all modulus maxima are plotted. One can

see that the overall average decrease is about −0.5. However, one can not expect

the slope to be −0, 5 at each cone of influence since the randomness also leads to

smoother and less smooth parts. Anyway, in the next section it is described that

one can still use the properties described by above theorems for the reconstruction

of noisy signals.

5.4 Denoising Based on Wavelet Maxima

In general, Lipschitz denoising can be seen as a 5-step procedure. First, one

applies the modified SWT algorithm on the noisy input signal. This algorithm

slightly differs from the algorithm introduced in section 2.3: each coefficient of

the wavelet representation is multiplied by a level dependent factor that turns

the wavelet maxima slopes in a way such that they directly indicate the Lipschitz

regularity. In the second step one determines the modulus maxima of the de-

tail coefficients. We leave the approximation coefficients untouched, therefore no

modulus maxima need to be detected here. Thirdly, one needs to decide which

maxima are mostly influenced by noise and therefore need to be removed. Af-

terwards, using the remaining maxima, one needs to reconstruct/determine the

wavelet coefficients that should be used for the last step, the inverse modified

SWT.

It is clear that the crucial question is how to implement the third and forth

step. We analyzed before that common signal features are of Lipschitz regularity

not less than 0. Even the step functions, for images one of the most important

signal features, is of Lipschitz regularity α = 0. Noise however creates singu-

larities of negative Lipschitz regularity. It can be seen in figure 5.6 that white

noise produces singularities of regularity α ≈ −1
2
. Furthermore, isolated “clicks”

which are common noise artifacts in audio signals can be represented as delta

functions of singularity α ≈ −1, see figure 5.4. Hence, we try to remove all mod-

ulus maxima on maxima lines with negative slope. It is however very difficult to

exactly determine modulus maxima lines since, by contrast with above examples,

singularities are not well isolated from each other and it is not clear to which

singularity a modulus maxima may belong. I therefore propose a much simpler

and faster method, providing already relatively good results as shown below in

figure 5.7.

For the wavelet modulus maxima selection, I propose to consider each cone of

influence as defined by (5.10) separately. A wavelet modulus maxima should be

CHAPTER 5. LIPSCHITZ DENOISING 45

−0.5

0

0.5

(a) Original speech signal

−0.5

0

0.5

(b) Noisy speech signal, σ = 0.05

−0.5

0

0.5

(c) Denoised speech signal

Figure 5.7: Lipschitz denoising: 100ms speech, σ = 0.05

removed if there is a larger modulus maxima in the same cone at the next smaller

scale, i.e. a direct line between these maxima would have negative slope. Only at

the finest scale, one needs to consider the slope of whole maxima lines. At each

scale we use the largest (if there is any) modulus maxima in the actual cone and

determine if the slope of a straight line approximating the curve through these

maxima (as a function of log(s)) is rather negative or positive. In the latter case

one keeps the modulus maxima, otherwise it has to be removed.

Mallat and Hwang use a special reconstruction algorithm using only the re-

maining modulus maxima [23]. It is based on several projections, similar to

repetitive wavelet and inverse wavelet transformations. However, to many details

disappear using this algorithm. Hence, I propose again a different way. If a mod-

ulus maxima is not affected by noise but contains only important signal features,

it is likely that the surrounding coefficients are important, too, and should be

used for the reconstruction of the signal, whereas coefficients next to removed

maxima are likely to be mainly affected by noise as well and don’t need to be

kept. The reconstruction algorithm works now in the following way: suppose we

are given two subsequent modulus maxima at some level j, at position k and l,

CHAPTER 5. LIPSCHITZ DENOISING 46

then one distinguishes the following cases:

(i) both maxima are supposed to be removed, then

Ŝjk, ..., Ŝjl = 0

(ii) both maxima are supposed to be kept, then

Ŝjk = Yjk, ..., Ŝjl = Yjl

(iii) only the maxima at position k is supposed to be kept, then

Ŝji = Yji for k ≤ i ≤ k+l
2

, Ŝji = 0 for k+l
2
< i ≤ l

(iv) only the maxima at position l is supposed to be kept, then

Ŝji = 0 for k ≤ i ≤ k+l
2

, Ŝji = Yji for k+l
2
< i ≤ l

In fact, this selection algorithm denotes a “keep or kill” method. To obtain

additional smoothing, one may change cases (iii) and (iv). E.g. for a “smooth”

filter function f : {k, ..., l} → [0, 1] one can use

Ŝji = f(i) · Yji.

The function f should be chosen to be zero at the modulus maxima that is to be

removed and one for the the other maxima, strictly increasing or decreasing in

between. However, I tested several different filters, obtaining only minor changes

and no audible improvements.

Figure 5.7 provides a section of 100ms of speech example 4, Gaussian white

noise with σ = 0.05 has been added and denoised using Lipschitz denoising.

Experiments led to an optimal choice of J = 4, i.e. processing only 4 scales,

and orthogonal Daubechies wavelets with 7 vanishing moments. Furthermore,

the constant C of equation (5.10) has been chosen to be 10. Smaller values lead

to less noise reduction while larger values produce too much signal deformation.

One can see that a huge amount of noise has been reduced. Indeed, SNR has been

improved from 8.696dB to 16.149dB, MSE has been reduced from σ2 = 2.5e− 3

to 4.493e− 4. More examples and comparisons can be found in chapter 11.

However, some problems occur using Lipschitz denoising. First, since only 4

scales are used for the denoising algorithm, the remaining approximation coeffi-

cients still contain some noise, a constant background low frequency noise, like

the noise of a far away highway. Lipschitz denoising turned out to be incapable of

removing this noise artifact without strong signal deformation. Hence, an addi-

tional post-processing might be necessary, using one of the denoising algorithms

presented in the following chapters, applied only on the remaining approximation

coefficients. A second problem, similar though, is that signals with only small

CHAPTER 5. LIPSCHITZ DENOISING 47

amount of noise influence are too much deformed, see table 11.2. E.g. for the

same speech signal, but now adding Gaussian white noise of much smaller stan-

dard deviation σ = 0.01, the SNR even decreases from 22.672dB to 19.380dB.

Nevertheless, the sound quality has been improved a lot. This is in fact one of

the main problems in denoising, that SNR and other measures do not provide

enough information about auditory quality. A third problem is the denoising of

sibilants like “s”, “sh”, “z” and others. Lipschitz denoising treats some of them like

noise and strongly deforms, sometimes almost removes such sounds. However, on

balance, it already provides a very good denoising technique.

Chapter 6

Diffusion Denoising

6.1 Introduction

For the signal y(t) the Partial Differential Equation (PDE)

vu(t, u) =
∂

∂t

(
g(v2t (t, u))vt(t, u)

)
(6.1)

v(t, 0) = y(t) (6.2)

(t, u) ∈ R× [0,+∞) (6.3)

describes a diffusion process v, embedding the signal y(·) into a family of functions

v(·, u). For constant diffusivity function g ≡ c this PDE is identical to the heat

equation vu = cvtt that can be interpreted as temperature at location t in some

body at time u. Eventually, (as u → ∞), the temperature of the body will

equalize. Hence, one can see v(t, u) as smoothed version of y(t) with smoothing

parameter u. In our case we consider t to be the signal time while u is called

diffusion time or smoothing parameter. The idea behind diffusion denoising is to

smooth noisy data y up to a certain level, i.e. up to a diffusion stopping time

U . Ones uses v(·, U) as an approximation of the original signal s. In their work

about edge detection using diffusion [28], Perona and Malik propose a diffusivity

function of the form

g(x2) =
1

1 + x2

λ2

(6.4)

where λ denotes a threshold parameter. Suppose λ is in some way related to

the “derivative” of Gaussian noise, or discretized, to the difference between two

coefficients. Then, for derivatives much larger than λ, which is an indication for

important edges, g becomes small and less smoothing is done. Otherwise, one

48

CHAPTER 6. DIFFUSION DENOISING 49

expects the derivative to be influenced mainly by noise, hence g should be large

and strong smoothing is performed.

A discretized version of 6.1 based on Euler’s method is given by

vi(u+ τ) = vi(u) +
τ

h

[
g
(
v̇2i (u)

)
v̇i(u)− g

(
v̇2i−1(u)

)
v̇i−1(u)

]
, (6.5)

where vi(u) = v(ti, u) with ti+1 − ti = h and τ the step sizes in signal time

and diffusion, respectively. The derivative v̇i(u) =
δ
δt
v(ti, u) can be obtained by

numerical differentiation, e.g.

v̇i(u) =
1

h
(vi+1(u)− vi(u)) .

Since we are not interested in precise solutions of PDE (6.1) but only in a

smoothed version of y, here, this simple one-step-method — namely Euler’s

method — is sufficient.

An example of smoothing by diffusion is shown in figure 6.1. Gaussian white

noise has been added to a sine function and denoised using the method described

above with constant diffusivity function g ≡ 1, diffusion time step size τ = 0.1

and signal time resolution h = 1:

vneui = vi + 0.1 (vi+1 − 2vi + vi−1) .

One can see in figures 6.1(a) and 6.1(b) that a view iterations are already sufficient

to achieve strong smoothing while differences between further iterations seem to

be rather small. Although the denoised version of figure 6.1(d) is very close to

the original sine function, as k approaches infinity the signal would converge to

constant 0, i.e. the integral or average value of the signal. Hence, a crucial ques-

tion will be when to stop the iteration or how to change the diffusivity function

g in a way such that v(t, u) leads to a good approximation of s(t).

6.2 Diffusion of Wavelet Coefficients

Even though it seems the results of the example provided above and illustrated

in figure 6.1 are close to the actual sine function, it is not enough to use such

simple smoothing algorithms. Small oscillatory details are usually smoothed first

by such smoothing filters. However, these details are one of the most important

features of audio signals [32]. To distinguish important audio signal features from

noise we apply (6.4) and (6.1) to the detail coefficients of a wavelet representation

of the signal. Hence, large derivatives lead to small changes of the new coefficient

CHAPTER 6. DIFFUSION DENOISING 50

noisy sine
denoised sine
sine

(a) k = 16 (b) k = 64

(c) k = 256 (d) k = 1024

Figure 6.1: Diffusion of noisy sine function

which is deduced from the idea that large differences between neighboring wavelet

coefficients indicate important acoustic events and should not be smoothed [32].

Such an event is usually well localized in time but appears at several different

levels. Hence, smoothing should be suppressed or enhanced equally throughout

all levels and the diffusivity function used to update some coefficient Yjk should

not just depend on coefficients at level j but on coefficients at all levels and same

location as Yjk. Hence, for each time step k, k = 0, ..., n − 1, one computes a

diffusivity value gk that is used at all levels and particular time. This procedure

has to be done once at the beginning of each iteration. A crucial question is which

differences should enter a particular diffusivity. In the following some realizations

of this method are provided.

FWT Based Diffusion Denoising

Welk, Bergmeister and Weickert [32] propose a simple method based on the idea

to use the wavelet coefficients of all levels at a fixed time k given by

(
Y0,⌊ k

2J
⌋, Y1,⌊ k

2J−1 ⌋, ..., YJ−1,⌊k
2
⌋
)
.

CHAPTER 6. DIFFUSION DENOISING 51

Since gk should represent the difference between coefficients at time k and k − 1

the direct approach would be to use

gk := g

(
J−1∑

j=0

(
Yj,⌊ k

2J−j ⌋ − Yj,⌊ k−1

2J−j ⌋
)2
)

= g

(
J−1∑

j=0

(
Yj,⌊2jk/2J⌋ − Yj,⌊2j(k−1)/2J ⌋

)2
)
. (6.6)

Vice versa, the associated time of some wavelet coefficient Yjk is supposed to be

2J−jk and therefore (6.5) can be modified to

Y neu
jk = Yjk +

τ

2J−j

(
g2J−j(k+1)

Yj,k+1 − Yjk
2J−j

− g2J−j(k)

Yjk − Yj,k−1

2J−j

)

= Yjk +
τ

22(J−j)
(
g2J−j(k+1)[Yj,k+1 − Yjk]− g2J−j(k)[Yjk − dj,k−1]

)
(6.7)

where 2J−j is the signal time step size at level j which holds under the assumption

of a signal time resolution h = 1. In fact, since 2J−jk is always even, it is only

necessary to compute gk for even values of k.

However, a point of criticism is that diffusivity at different locations depend

on different numbers of coefficients.The number of levels j where
⌊

k
2J−j

⌋
=
⌊
k−1
2J−j

⌋

depends on k and therefore the number of terms on the sum of (6.6) that are

unequal zero depends on k, too. I therefore propose a slightly different diffusivity

function that ensures each summand to be nonzero, precisely

gk := g



J−1∑

j=0

(
Yj,⌊ k

2J−j ⌋+1 − Yj,⌊ k

2J−j ⌋
2J−j

)2

 . (6.8)

The two coefficients Yj,⌊ k

2J−j ⌋+1 and Yj,⌊ k

2J−j ⌋ are chosen such that their corre-

sponding times enclose k, i.e.

2J−j
(⌊

k

2J−j

⌋
+ 1

)
≥ k ≥ 2J−j

(⌊
k

2J−j

⌋)
.

Furthermore, to normalize the differences, we need to divide by time step size

2J−j of the corresponding level j.

SWT Based Diffusion Denoising

An easier formula can be obtained using stationary wavelet transform coefficients.

CHAPTER 6. DIFFUSION DENOISING 52

The time resolution is level-independent and the diffusivity can be obtained by

gk := g

(
J−1∑

j=0

(Yj,k − Yj,k−1)
2

)
. (6.9)

However, the results are not much better than using above methods though the

complexity of updating the wavelet coefficients is increasing by a factor of log n.

Hence, in the following we concentrate on the diffusivity function defined by (6.8).

6.3 Choice of Parameters

There are three parameters we need to adjust, the threshold value λ for the

computation of the diffusivity function g in equation (6.4), the diffusion step size

τ in equation (6.5) and finally the number of diffusion steps, i.e. the number of

iterations of formula (6.7).

Choice of diffusion step size τ : Since we are not interested in a precise

solution of a differential equation but just in smoothing of the input leading

ideally to good auditory properties, it is not necessary to choose very small τ .

Furthermore, due to the fact that each iteration is of complexity O(n), we will

rather use some larger τ to save some iterations, at the expense of a denoised

signal of a little less quality. However, I performed several tests using different

values, inferring that τ = 1 is already sufficient and provides no worse results

than much smaller step sizes. For example, the difference to a method using

τ = 0.1 and 10 times more iterations is almost imperceptible.

Choice of threshold λ: First, the notion “threshold” might be misleading,

since we do not treat coefficients above and below λ differently. It is rather a

wight of the diffusivity function. However, for large λ, the smoothing step (6.7)

is much stronger than for small values, since g(x2) ≈ 1 for λ2 >> x2 whereas

for small λ, the diffusivity g approaches zero and only little smoothing is done.

For image edge detection, Perona and Malik took λ as 90% of the integral value

of the histogram of absolute values of of all gradients throughout an image [28].

This value needed to be evaluated at each iteration. In fact, it can be considered

as a weighted average of noise gradients. It is “expensive” to evaluate this value,

though. Welk, Bergmeister and Weickert [32] use constant thresholds, fixed by

hand, for audio denoising, although, as mentioned before, the threshold should be

related in some way to the expected difference of two random noise coefficients.

Since noise should reduce at each iteration, I propose to reduce the threshold at

CHAPTER 6. DIFFUSION DENOISING 53

−0.2

−0.1

0

0.1

0.2

(a) pure noise

−0.2

−0.1

0

0.1

0.2

(b) noise after 100 iterations

−0.05

0

0.05

(c) noise after 1000 iterations

−0.05

0

0.05

(d) noise after 5000 iterations

Figure 6.2: Diffusion denoising of 50ms pure noise

each step, too. The variance of the difference of two independent and identically

distributed Gaussian random variables is given by two times the variance of the

original random variable, hence standard deviation is obtained by
√
2σ. Hence, I

propose to start with the universal threshold λdiff =
√
2σ

√
2 logn = 2σ

√
logn ,

introduced in chapter 7 and section 7.3. This value denotes, with high probability,

an upper bound for Gaussian random variables of variance 2σ2. We will use this

value although the difference of two Gaussian random variables is not Gaussian

anymore. However, I tested different thresholds, too, and λdiff seemed to be

an appropriate choice. Furthermore, several experiments leaded to a shrinking

factor of δ = 99% at each iteration to obtain relatively good results. Of course,

for diffusion step sizes τ 6= 1, one needs to adjust the shrinking factor.

Number of iterations: The choice of the shrinking factor solves in some way

the problem of the stopping time. Knowing δ and σ, it is clear that after some

iterations, the threshold will be too small to cause any significant signal change.

For the examples provided in chapter 11, I stopped after 80 iterations.

Diffusion denoising holds some problems, though. First, all assumptions and

choices of parameters are based on rather intuitive considerations and some ex-

periments. There is no guarantee that diffusion denoising indeed leads to good

results. Furthermore, as shown in figure 6.2, one can see that even pure noise

is not removed completely, even though for this plot no threshold shrinking has

CHAPTER 6. DIFFUSION DENOISING 54

been done. Instead, diffusion denoising produces signals containing a charac-

teristic constant background “noisy beeping”, an example is provided by sound

example 11.

However, the denoising results are similar to Lipschitz denoising, referred to

SNR and MSE measures. Only for signals with only little noise, diffusion de-

noising outperforms Lipschitz denoising significantly, see table 11.2 and 11.3. For

noisy speech with larger noise variance, using just SNR and MSE, no preference

can be recognized.

Chapter 7

Thresholding Methods

This chapter deals with different thresholding methods. Section 7.1 introduces the

most commonly used thresholding methods, hard and soft thresholding. Sections

7.3 to 7.9 are basically about the detection of “optimal” thresholds, where the

notion of optimality might differ at each section.

In the following we assume the noise ei of model (3.1) to be independent

Gaussian white noise with variance σ2, i.e.

ei ∼ N(0, σ2), i = 0, ..., n− 1.

Using orthogonal FWT, it holds that

Ejk ∼ N(0, σ2), (j, k) ∈ I,

as shown in section 3.1. Furthermore, we assume |I| = n to simplify notations.

7.1 Hard and Soft Thresholding

Hard thresholding is a typical “keep or kill” method, where all coefficients with

modulus less than threshold λ are set to be zero, the other coefficients remain

unchanged, i.e.

hardλ(x) = 11{|x|>λ} · x

=




x , if |x| > λ

0 , otherwise.
(7.1)

The function hardλ(x) is plotted in figure 7.1(a), using the threshold value λ = 1.

Soft thresholding, shown in figure 7.1(b), is a little different since no coefficient

55

CHAPTER 7. THRESHOLDING METHODS 56

remains unchanged. Any modulus larger than the threshold is shrunken by λ, i.e.

soft thresholding is given by

softλ(x) = sgn(x)(|x| − λ)+

= (x− sgn(x)λ)+

=





x− λ , if x > λ

x+ λ , if x < −λ
0 , if x ∈ [−λ, λ]

(7.2)

There is a connection of soft thresholding and the spectral subtraction method

introduced in section 4.3. Considering the first part of equation (4.7) and assum-

ing
√
RY (p, q) = |Ypq| and λ = σ, both filters are equivalent, i.e. softλ(Ypq) =

HSSF
pq Ypq, since HSSF

pq ≥ 0 as shown in section 4.5. However, we will not take the

standard deviation as threshold value.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) hard

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) soft

Figure 7.1: Hard and Soft Thresholding, threshold λ = 1

7.2 Selective Wavelet Reconstruction

In this section we will discuss a method related to hard thresholding but more gen-

eral, called Selective Wavelet Reconstruction (SWR). It provides a lower bound

for the risk of hard thresholding and we will also use the following results for

comparisons with soft thresholding methods. However, SWR is not a threshold-

ing method and only of theoretical use. In fact, it is just a general “keep or kill”

method, more precise

ŜSWR
jk = δjkYjk, δjk ∈ {0, 1}, (j, k) ∈ I.

CHAPTER 7. THRESHOLDING METHODS 57

Given the knowledge of the original signal coefficients Sjk one could derive the

optimal values of δ, in the sense of minimizing the risk function.

Theorem 7.2.1. The optimal SWR estimator is obtained using

δoptjk = 11{|Sjk|>σ}

and the expected MSE of S and ŜSWR is given by the ideal risk

R(S, SWR) =
1

n

∑

(jk)∈I
min(|Sjk|2, σ2)

Proof. Leaving a coefficient untouched, i.e. Ŝjk = Yjk, one obtains a risk contri-

bution of

E[(Sjk − Ŝjk)
2] = E[(Sjk − Yjk)

2] = E[E2
jk] = σ2.

Suppose |Sjk| > σ, then “killing”, i.e. Ŝjk = 0, would lead to the risk contribution

E[(Sjk − Ŝjk)
2] = E[(Sjk)

2] > σ2

which would be worse than “keeping” the coefficient. In the same way, if |Sjk| ≤ σ,

it is better to remove the coefficient since

E[(Sjk − Ŝjk)
2] = E[(Sjk)

2] ≤ σ2

is at least as good as leaving the coefficient untouched. Hence, at each coefficient

the above definition of δ leads to an expected MSE of min(|Sjk|2, σ2).

7.3 VisuShrink

The first and easiest thresholding method, called VisuShrink, is based on soft

thresholding using the so called universal threshold [8]

λV S = σ
√

2 logn. (7.3)

The estimation ŜV Sjk is therefore given by

ŜV Sjk = softλV S(Yjk). (7.4)

CHAPTER 7. THRESHOLDING METHODS 58

Although the threshold does not depend on the input data (therefore “univer-

sal”), it provides already good results as illustrated by the following theorem.

Indeed, we can mimic SWR — which would require total knowledge of signal S

— essentially within a factor 2 logn.

Theorem 7.3.1. Using the universal threshold and soft thresholding as defined

above one obtains

risk(S, ŜV S) ≤ (2 logn + 1)

(
σ2

n
+R (Y, SWR)

)

Proof. I will provide only an outline of the proof. For more details see [8]. One

shows for X ∼ N(µ, 1) and λ =
√
2 logn with n ≥ 2 that

E
[
(softλ(X)− µ)2

]
≤ (2 logn + 1)(1/n+min(µ2, 1))

holds. Summation leads to the deserved result. With

E
[
(softλ(X)− µ)2

]
= 1− 2P (|X| < λ) + E

[
min

(
X2, λ2

)]
(7.5)

≤ 1 + λ2

≤ (1 + 2 logn)(1/n+ 1)

using min (X2, λ2) ≤ λ2 and

E
[
(softλ(X)− µ)2

]
≤ 2− 2P (|X| < λ)

≤ 2P (|X| ≥ λ) + µ2

using min (X2, λ2) ≤ X2 it is enough to show that

2P (|X| ≥ λ) + µ2 ≤ (2 logn+ 1)(1/n+ µ2)

which can be done with the help of some simple statistical calculus [8].

It might be surprising that the threshold depends on the number of input data

such that joining two signals would change its value. However, the philosophy

behind the dependence on the signal length is rather taking more samples on

a given interval. Hence, adding more samples enhances redundancy and there

is less information in the additional data. Therefore, important coefficients are

concentrated in a very slowly growing data set while at the same time the signal

energy is the same in time and wavelet domain. For that reason one expects the

magnitude of these important coefficients to grow. Additionally, the dependence

CHAPTER 7. THRESHOLDING METHODS 59

of λV S on n is weak as illustrated by table 7.1. Doubling λV S, i.e. λV S → 2λV S,

requires n to be raised to the power of 4, n → n4, as seen in table 7.1 from first

to last row, n = 64 to n = 16777216. Another reason for the dependence on

J n = 2J λV S

6 64 2.884053773201766
8 256 3.330218444630791
10 1024 3.723297411059034
12 4096 4.078667960675236
16 65536 4.709640090061899
20 1048576 5.265537695468319
24 16777216 5.768107546403532

Table 7.1: Universal Threshold as a function of the number of samples

n is discussed in the next section. For an increasing number of coefficients the

probability to have very large values Ejk increases, in other words the expected

maximum noise coefficient value becomes larger. To completely remove noise, we

need to adjust the threshold value. However, for most applications one does not

compute the full wavelet representation up to level j = 0. Suppose a signal of

length n = 2J is given and a wavelet representation up to level j0 > 0 is evaluated,

then the universal threshold needs to adjusted to

λV S = σ
√

2 log (2J−j0).

and therefore, increasing n does not change the threshold value.

7.4 Adapting to unknown smoothness

For smoothness analysis it is useful to consider more appropriate function spaces

than Lebesgue spaces Lp[0, 1] since its norm

||f ||Lp[0,1] =




1∫

0

|f(t)|pdt




1

p

, 1 ≤ p <∞

provides little smoothness information. Sobolev spaces W k
p [0, 1] can be seen as

complete extensions of Ck[0, 1] in Lp[0, 1] with Sobolev norm

||f ||W k
p

=

(
k∑

n=0

||f (n)||Lp[0,1]

)p

, 1 ≤ p <∞

||f ||W k
∞

= max
0≤n≤k

||f (n)||L∞[0,1]

CHAPTER 7. THRESHOLDING METHODS 60

where all derivatives are considered in weak sense [37]. Finally, there are even

more general spaces called Besov spaces [6], [9], [19]. For the r-th difference of a

Lp[0, 1]-function given by

∆r
hf =

r∑

k=0

(
r

k

)
(−1)kf(t+ kh)

one defines the r-th modulus of smoothness of f

wr,p(f ; t) = sup
h≤t

||∆r
hf ||Lp[0,1−rh]

and for r > α the Besov semi-norm

|f |Bα
pq

=




1∫

0

(
wr,p(f ; u)

uα

)q
du

u




1

q

, 1 ≤ q <∞

|f |Bα
p∞

= sup
0<t<1

wr,p(f ; h)

tα
.

Eventually, the Besov norm is defined as

||f ||Bα
pq
= ||f ||Lp[0,1] + |f |Bα

pq
. (7.6)

In this definition, α can be seen as an indication of smoothness. Functions of

Besov spaces are typically piecewise smooth. For a wavelet expansion

f(t) =

2J−1∑

k=0

cJkϕJk(t) +

∞∑

j=J

2j−1∑

k=0

djkψjk(t)

one defines the so called Besov sequence space [9], [6] given by the norm

||d||bαpq =




∞∑

j=J

2jβq




2j−1∑

k=0

|djk|p



q

p




1

q

, 1 ≤ q <∞

||d||bαp∞ = sup
j≥J


2jβ




2j−1∑

k=0

|djk|p



1

p


 .

CHAPTER 7. THRESHOLDING METHODS 61

where β = α + 1/2 − 1/p. There are two constants c0(α, p, q) and c1(α, p, q)

independent of f such that

c0||f ||Bα
pq
≤ ||d||bαpq ≤ c1||f ||Bα

pq
. (7.7)

This norm equivalence provides methods of measuring smoothness in wavelet

domain.

We will now show that VisuShrink produces reconstructed signals ŝV S that are

with high probability at least as smooth as the original signal s in the following

sense [6]:

Theorem 7.4.1. Let (si = s(ti))
n−1
i=0 represent a function in Besov space Bα

pq[0, 1]

and (ŝV Si)n−1
i=0 its estimation using VisuShrink and an orthonormal wavelet basis.

There is a sequence πn independent of s and Bα
pq with πn → 1 as n → ∞ and a

constant C(Bα
pq) such that

P
(
||ŝV S||Bα

pq
≤ C · ||s||Bα

pq

)
≥ πn. (7.8)

For the proof of this theorem we first prove the following lemmas where πn is

determined. Furthermore, we show that with probability πn the estimated signal

wavelet coefficients are smaller (in absolute value) than the actual signal wavelet

coefficients.

Lemma 7.4.2. Let (zi)i∈N be i.i.d Gaussian random variables with z0 ∼ N(0, σ2).

For

πn := P

(
max
0≤i<n

(zi) ≤ σ
√
2 logn

)
(7.9)

it holds that lim
n→∞

πn = 1.

Proof. We use the fact that

lim
n→∞

P

(
max
0≤i<n

(zi) ≤ x

)
= e−a ⇔ lim

n→∞
n(1− Φ(x)) = a

where Φ(x) is the distribution of zi. Furthermore, it holds that 1−Φ(x) ∼ σ2 φ(x)
x

CHAPTER 7. THRESHOLDING METHODS 62

as x → ∞. Hence, for x = σ
√
2 logn we get

lim
n→∞

πn = 1

⇔ lim
n→∞

nσ2φ(σ
√
2 logn)

σ
√
2 logn

= 0

⇔ lim
n→∞

nσ2 1√
2πσ

1

nσ
√
2 logn

= 0

which is obviously true.

Lemma 7.4.2 also ensures that for observed data containing only noise and no

signal information, i.e. si = 0, i = 0, ..., n− 1, noise is removed completely with

probability πn. Indeed, no noise can be heard listening to denoised signals using

VisuShrink. However, it is clear that signal information will be deformed, too.

The next lemma makes this even more clear.

Lemma 7.4.3. With πn as defined by (7.9)

P
(
|ŜV Sjk | ≤ |Sjk| ∀ (j, k) ∈ I

)
≥ πn (7.10)

for all S ∈ R
n.

Proof. Let An denote the event

{
max
0≤i<n

(zi) ≤ σ
√
2 logn

}
. We show that

An ⇒ |ŜV Sjk | ≤ |Sjk| ∀ (j, k) ∈ I.

Since P (An) ≥ πn, this will prove the lemma. If ŜV Sjk = 0 it is clear that the right

side holds. For each coordinate where ŜV Sjk 6= 0 we have

|ŜV Sjk | = |Yjk| − σ
√

2 logn

and since An holds, |Yjk − Sjk| ≤ σ
√
2 logn which leads to

|Sjk| ≥ |Yjk| − σ
√

2 logn = |ŜV Sjk |.

Proof of theorem 7.4.1. From (7.7) we get

c0||s||Bα
pq
≤ ||S||bαpq ≤ c1||s||Bα

pq
and

c0||ŝV S||Bα
pq
≤ ||ŜV S||bαpq ≤ c1||ŝV S||Bα

pq

CHAPTER 7. THRESHOLDING METHODS 63

since c0 and c1 are independent of the used signal. Using Lemma 7.4.3 we get

with a probability greater or equal to πn.

||ŝV S||Bα
pq

≤ 1

c0
||ŜV S||bαpq

≤ 1

c0
||S||bαpq

≤ c1
c0
||s||Bα

pq
.

So theorem 7.4.1 holds for πn of lemma 7.4.2 and C = c1/c2.

7.5 Minimax Threshold

In the above section an easy threshold has been introduced that already provides

good visual and auditory results. However, it is based on the idea of removing

all noise without regarding possible signal destruction. In fact, those denoised

signals often sound dully since most of the high frequencies are removed, too. In

the following sections we will derive thresholds that minimize the risk function,

i.e. the expected mean square error. As already seen in (3.9) and (3.10), the risk

function can be seen as a sum of bias squared and variance. The best threshold

to minimize the variance is far away of being a good choice to make the bias

smaller, though. More precisely,

lim
λ→∞

var(Ŝλ) = lim
λ→∞

1

n
E||Ŝλ − EŜλ||2 = 0, (7.11)

lim
λ→∞

bias2(S, Ŝλ) = lim
λ→∞

1

n
||S − EŜλ||2 = 1

n
||S||2. (7.12)

Hence, thresholds minimizing the risk function are best compromises between

variance and bias.

In this section we are interested in a minimax risk threshold, i.e. a threshold

λ∗ such that

sup
S
risk(S, Ŝλ)

becomes minimal, i.e.

sup
S
risk(S, Ŝλ

∗

) = inf
Ŝλ

sup
S
risk(S, Ŝλ). (7.13)

In words, we are looking for a threshold that minimizes the risk assuming the

worst possible signal. Hence, it is not data adaptive. Let us first consider the

CHAPTER 7. THRESHOLDING METHODS 64

risk contribution of a single coefficient defined by

ρ(λ, S) = E
[
(softλ(Y)− S)2

]
. (7.14)

Risk is then obtained by risk(λ) = 1
n

∑
ρ(λ, Sjk). In the following we always

assume noise to be Gaussian with density φ and distribution Φ,

φ(x) =
1

σ
√
2π
e

−x2

2σ2

Φ(x) =

x∫

−∞

φ(x)dx.

So far, we don’t know the value of ρ(λ, S) neither how to minimize it. The

following lemmas provide a form of ρ(λ, S) that requires only the evaluation of φ

and Φ. First, we introduce the expected error after soft thresholding and come

then to the computation of ρ(λ, S).

Lemma 7.5.1. Let Y = S+E ∼ N(S, σ2) and Ŝλ = softλ(Y). Call Eλ = Ŝλ−S
the bias of the thresholding method. It holds that

EEλ = S + Φ(λ− S)(λ− S)

+ Φ(λ + S)(−λ− S)

+ φ(λ− S)(σ2)

+ φ(λ+ S)(−σ2) (7.15)

CHAPTER 7. THRESHOLDING METHODS 65

Proof.

EŜλ =

∞∫

−∞

softλ(x)φ(x− S)dx

=

∞∫

λ

(x− λ)φ(x− S)dx+

−λ∫

−∞

(x+ λ)φ(x− S)dx

=

∞∫

λ−S

(x+ S − λ)φ(x)dx+

−λ−S∫

−∞

(x+ S + λ)φ(x)dx

= (S − λ) [1− Φ(λ− S)] +

∞∫

λ−S

xφ(x)dx

+ (S + λ) [Φ(−λ− S)] +

−λ−S∫

−∞

xφ(x)dx

Using xφ(x) = −σ2φ′(x) and Φ(−x) = 1− Φ(x) one obtains

EŜλ = 2S + Φ(λ− S)(λ− S)

+ Φ(λ + S)(−λ− S)

+ φ(λ− S)(σ2)

+ φ(λ+ S)(−σ2) (7.16)

Since EEλ = EŜλ − S the proof is done.

Lemma 7.5.2. Using the assumptions of lemma 7.5.1 we have

ρ(λ, S) = E

[
(Ŝλ − S)2

]

= 2σ2 + 2λ2 − S2

+ Φ(λ− S)(−σ2 − λ2 + S2)

+ Φ(λ + S)(−σ2 − λ2 + S2)

+ φ(λ− S)(−σ2(λ+ S))

+ φ(λ+ S)(−σ2(λ− S)) (7.17)

CHAPTER 7. THRESHOLDING METHODS 66

Figure 7.2: Risk ρ(λ, S) for uncorrupted coefficient S and, in black, ρ(λopt(S), S)

Proof.

E

[
(Ŝλ − S)2

]
=

∞∫

−∞

[
soft2λ(x)− 2Ssoftλ(x) + S2

]
φ(x− S)dx

=

∞∫

−∞

soft2λ(x)φ(x− S)dx − 2SE[Ŝλ] + S2

The second term is already known from lemma 7.5.1. One can calculate the first

term in the following way:

∞∫

−∞

soft2λ(x)φ(x− S)dx =

∞∫

λ−S

(x+ S − λ)2φ(x)dx+

−λ−S∫

−∞

(x+ S + λ)2φ(x)dx

After expanding the parenthesized terms in the integrals, one uses

b∫

a

x2φ(x)dx = −xσ2φ(x)|ba + σ2

b∫

b

φ(x)dx

and as in the previous lemma xφ(x) = −σ2φ′(x). After some calculations, putting

everything together leads to equation (7.17).

Figure 7.2 illustrates the risk development as a function of thresholds λ and

uncorrupted coefficients S. In this example, the noise variance σ2 is chosen to

be 1. Apparently, large coefficients require small threshold values. For large S

and λ, bias is growing very fast and although some large λ would reduce most

CHAPTER 7. THRESHOLDING METHODS 67

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

λopt(S)

risk(λopt(S), S)

Figure 7.3: Optimal threshold value λ with corresponding risk

of the variance, risk is in this case dominated by a large bias. The contrary is

true for small coefficients S. Risk is dominated by variance and requires therefore

large thresholds. The development of the risk minimizing threshold λopt(S) and

the corresponding risk is illustrated by the black line in figure 7.2. For better

visualization, λopt(S) and ρ(λopt(S), S) are plotted as functions of S in figure 7.3.

One can see that for large coefficients the optimal threshold tends to zero and risk

remains σ2. Hence, the minimax threshold λ∗ of (7.13) that assumes the worst

possible value S would be zero and no thresholding would be done.

Donoho and Johnstone [8] propose a different kind of minimax threshold,

based on the ideal risk of Selective Wavelet Reconstruction and the risk approx-

imation given in theorem 7.3.1. For VisuShrink we had

risk(λV S) ≤ Λ


σ

2

n
+

1

n

∑

(j,k)∈I
min(S2

jk, σ
2)




where Λ was given by 2log(n) + 1. The objective of their work presented in [8]

is to find a threshold λ∗ such that the factor Λ becomes minimal assuming the

worst possible values Sjk. To obtain this, consider again the risk contribution

of a single coefficient S, in fact the worst possible one. It is clear that the best

factor we can obtain under uncertainty of S is given by

Λ∗ = inf
λ
sup
S

ρ(λ, S)

σ2/n+min(S2, σ2)
(7.18)

and the desired threshold λ∗ is given by

λ∗ = largest λ attaining Λ∗. (7.19)

CHAPTER 7. THRESHOLDING METHODS 68

Donoho and Johnstone prove that it is enough to take the maximum over S ∈
{0,∞} instead of taking the supremum over all possible values of S. Using lemma

7.5.2 one obtains risk contributions

ρ(λ,∞) = σ2 + λ2

ρ(λ, 0) = 2(σ2 + λ2)(1− Φ(λ))− 2σ2λφ(λ).

Thus, minimizing Λ for a fixed n requires at each step one evaluation of Φ and

φ. In table 7.2 we can see some threshold values for VisuShrink and Minimax.

Additionally, the factor Λ∗ is provided. Computations were done for noise vari-

ance σ2 = 1. However, while λ∗ is growing linear with σ for both, VisuShrink and

Minimax, the factor Λ∗ is not dependent on σ. Therefore, and since Minimax is

k n = 2k λ∗ λV S Λ∗ 2logn+ 1

6 64 1.4741 2.8841 3.1244 9.3178
8 256 1.8591 3.3302 4.4389 12.0904
10 1024 2.2262 3.7233 5.9502 14.8629
12 4096 2.5751 4.0787 7.6291 17.6355
16 65536 3.2213 4.7096 11.3763 23.1807
20 1048576 3.8079 5.2655 15.5002 28.7259
24 16777216 4.3456 5.7681 19.8846 34.2711

Table 7.2: Minimax vs VisuShrink for σ = 1

not data adaptive, minimizing has to be done only one time for each value of n

and a specific value of σ, e.g. σ = 1. The results can be stored and used without

any more computational effort. Since λ∗ is growing very slowly in n, it might be

sufficient to store only λ∗(n) for n = 2k, k ∈ N, and use rough approximations

for other values of n.

Some further minimax methods are discussed by Donoho and Johnstone in

[10] and [11]. It is assumed that the unknown signal s belongs to a known class of

smooth functions F , where F is a ball in a Besov spaces, to achieve more realistic

minimax MSE. I.e. the supremum sup risk(s, ŝ) is taken over all s ∈ F . However,

further threshold finders, presented in the following sections, will concentrate on

direct MSE or risk minimization instead of minimizing some upper bound.

7.6 Stein Unbiased Risk Estimate

So far, the introduced thresholds and thresholding methods were independent of

the given data. Wasting the information contained in the input data is care-

less, though. Especially assuming the worst possible uncorrupted signal could be

CHAPTER 7. THRESHOLDING METHODS 69

considered as far too pessimistic. Knowing the input Y , it is rather unrealistic

to assume S to be either infinity or zero. In the following sections we will see

different approaches for data adaptive thresholding methods with the aim of risk

minimization and based on soft thresholding. In the subsequent chapter, I will

suggest a different kind of thresholding that is based on the idea not to use the

same threshold for all coefficients.

Let’s now denote the estimator of S using soft thresholding with threshold λ

by

Ŝλ = Ŝsoftλ

= softλ(Y) (7.20)

and the MSE and risk of S and Ŝλ by

MSE(λ) = MSE(S, Ŝλ)

=
1

n
||Ŝλ − S||2,

risk(λ) = E[MSE(λ)]

Furthermore, for the measurement of the effect of thresholding, define

F (λ) =
1

n
||Ŝλ − Y ||2. (7.21)

The first MSE estimator we will discuss is called Stein Unbiased Risk Estimate

(SURE) and introduced by Donoho and Johnstone in [9]. Some additional anal-

ysis can be found in [19]. It is based on more general work of Charles Stein [30].

Although for a given threshold λ, both, Y and Ŝλ and therefore also F are known,

it is necessary to consider the expectation of this function to find approximations

of the expected MSE. I.e. one uses

E[F (λ)] =
1

n
E

[
||Y − S||2 + ||S − Sλ||2 + 2(Y − S, S − Ŝλ)

]

= σ2 + risk(λ)− 2

n
E[(E,Eλ)] (7.22)

where Eλ = Ŝλ−S denotes the remaining noise after thresholding. Lemmas 7.6.1

and 7.6.2 will lead to a more useful notation of the third term of equation (7.22).

CHAPTER 7. THRESHOLDING METHODS 70

Lemma 7.6.1. The derivative of Eλ
jk, seen as a function of Ejk, is given by

∂Eλ
jk

∂Ejk
=




1 , if |Yjk| > λ

0 , otherwise

Proof. With the help of equation (7.2) we rewrite Eλ as

Eλ = softλ(Y)− S

=





(Y − λ)− S , if Y > λ

(Y + λ)− S , if Y < −λ
−S , otherwise

=





E − λ , if Y > λ

E + λ , if Y < −λ
−S , otherwise.

It is now easy to see that above claim holds.

Lemma 7.6.2. Let φ be the Gaussian density function with µ = 0. Then

E
[
EjkE

λ
jk

]
= σ2P (|Yjk| > λ)

Proof. Since xφ(x) = −σ2φ′(x), we have

E
[
EjkE

λ
jk

]
=

∞∫

−∞

Eλ
jkEjkφ(Ejk)dEjk

= −σ2

∞∫

−∞

Eλ
jkφ

′(Ejk)dEjk

= −σ2
[
Eλ
jkφ(Ejk)

]∞
−∞ + σ2

∞∫

−∞

∂Eλ
jk

∂Ejk
φ(Ejk)dEjk

and with lemma 7.6.1 we get

E
[
EjkE

λ
jk

]
= σ2P (|Yjk| > λ)

Now we need to find the probability P (|Yjk| > λ). Therefore we first define n0

as the number of wavelet coefficients that are shrunken to zero, i.e. the number

CHAPTER 7. THRESHOLDING METHODS 71

of wavelet coefficients whose modulus is less than or equal to the threshold,

n0 = |{(j, k) ∈ I|Y λ
jk = 0}|

= |{(j, k) ∈ I|Yjk ≤ λ}|. (7.23)

As shown in [19], it is the obvious choice to use P (|Yjk| > λ) = n−n0

n
and one

obtains

E[(E,Eλ)] = σ2
∑

(j,k)∈I
P (|Yjk| > λ)

= σ2
∑

(j,k)∈I

n− n0

n

= σ2(n− n0) (7.24)

Using equations (7.22) and (7.24) we construct the MSE approximation

SURE(λ) = F (λ)− σ2 + 2σ2n− n0

n
, (7.25)

where SURE = risk = EMSE. Let’s mention again that, unlike Minimax,

SURE is adaptive, although it is as well derived from MSE expectation.

7.7 Cross Validation

In this section I will introduce Ordinary Cross Validation (OCV) and Generalized

Cross Validation (GCV) [26], [21], [20]. Like SURE, both of them can be seen

as a function of a threshold parameter λ and are estimates of the MSE function.

However, GCV evaluation only requires input data, no additional knowledge is

necessary. Estimations of noise variance is not needed either.

In short, the concept of cross validation is given by the construction of several

estimates, never using the whole data set. Using these estimates one predicts

what the expelled data could have been. Finally one compares the prediction

with the actual values of the expelled data.

7.7.1 Ordinary Cross Validation

Ordinary Cross Validation (OCV) is based on the assumption of in some way

smooth original data si. Hence, each value si can be approximated by linear

combinations of its neighbors. Let’s now define ỹi as a weighted average of the

observed data {y0, ..., yi−1, yi+1, ..., yn−1}. Noise in this component is smoothed,

CHAPTER 7. THRESHOLDING METHODS 72

and therefore it is considered to be relatively noise independent. Let’s denote

s̃λ,i := IFWT (softλ(FWT ({y0, ..., yi−1, ỹi, yi+1, ..., yn−1})))

the reproduced signal after soft thresholding using ỹi instead of yi. One considers

s̃λ,ii as a “prediction” of the coefficient yi and takes the distance |s̃λ,ii − yi| as a

measure of optimality of the threshold choice. The distance is dominated by noise

for small threshold values while large ones induce too much signal distortion. One

repeats the same procedure for each component, i.e. n transformations, threshold

procedures and inverse transformations are necessary. Then, one computes

OCV (λ) =
1

n

n−1∑

i=0

(yi − s̃λ,ii)2 (7.26)

which is called “Ordinary Cross Validation” or “Leaving Out One - Ordinary Cross

Validation”. Now one could try to minimize OCV (λ) to obtain a near optimal

threshold. However, in this version each OCV evaluation in the minimization

procedure would contribute costs of O(n2). Hence, we need to find more advan-

tageous algorithms. To do so, let’s first discuss the choice of ỹi. A possible value

could be 1
2
(yi−1 + yi+1) [26], however, to simplify the computation it is useful to

take ỹi in way such that

ỹi = s̃λ,ii . (7.27)

Thresholding has a leveling effect and it holds that ([19])

ỹi = max
i
yi ⇒ s̃λ,ii ≤ ỹi

ỹi = min
i
yi ⇒ s̃λ,ii ≥ ỹi.

which proves the existence of this value. As before ŝλ denotes the reconstructed

signal after soft thresholding, i.e.

ŝλ := IFWT (softλ(FWT (y))).

Using the above choice of ỹi one has

yi − s̃λ,ii =
yi − ŝλi
1− ai

(7.28)

CHAPTER 7. THRESHOLDING METHODS 73

where ai is given by

ai =
ŝλi − s̃λ,ii
yi − s̃λ,ii

=
ŝλi − s̃λ,ii
yi − ỹi

≈ ∂ŝλi
∂yi

. (7.29)

Assuming the knowledge of ai, one can approximate OCV (λ) in O(n), leading to

OCV (λ) =
1

n

n−1∑

i=0

1

(1− ai)2
(yi − ŝλi)

2 (7.30)

Hence, one needs to find a fast evaluable approximation of ai. As already indi-

cated by formula (7.29), the derivative ∂ŝλi /∂yi might be a good basis for such an

approximation. However, let’s introduce first

D(j1k1),(j2k2) :=
∂Y λ

j1k1

∂Yj2k2

=
∂

∂Yj2k2
softλ(Yj1k1).

Using (7.2) one immediately sees that D(j1k1),(j2k2) = 0 for (j1, k1) 6= (j2, k2) and

D(jk),(jk) =




0 , if |Yjk| ≤ λ

1 , otherwise

Furthermore, let W denote a wavelet transform matrix and define A =W−1DW .

Now, one can see that

∂ŝλi
∂yi

= Aii

and the evaluation requires only one forward and inverse wavelet transform.

Hence, one indeed obtains an approximation of the OCV function that can be

obtained in O(n), replacing ai in formula (7.30) by Aii.

7.7.2 Generalized Cross Validation

As discussed above, for each OCV evaluation in a minimization procedure, two

forward and inverse wavelet transforms are required. Additionally, for small

CHAPTER 7. THRESHOLDING METHODS 74

threshold values, most of the Aii are close to one and the algorithm could become

unstable. In this section we will see a similar function that can be minimized in

wavelet domain and that avoids the mentioned problems. The idea is to approxi-

mate ai of formula (7.26) using a constant value, say ai ≡ α for all i = 0, .., n−1.

In fact one uses the average of all values Aii [33], [21],

α =
1

n

n−1∑

i=0

Aii

=
1

n
· tr(A),

where tr(A) is the trace of A. Since W is regular and A = W−1DW , recalling

the definition of D, one obtains

α =
tr(D)

n
=
n− n0

n

where n0 is defined by (7.23). Applied to equation (7.26), one obtains the so

called generalized cross validation

GCV (λ) =
1

n

1

(1− α)2

n−1∑

i=0

(yi − ŝλi)
2

=
1
n
||y − ŝλ||2
(
n0

n

)2 (7.31)

If the transform is orthogonal, this is equivalent to

GCV (λ) =
1
n
||Y − Ŝλ||2
(
n0

n

)2

=
F (λ)
(
n0

n

)2 (7.32)

Hence, it is now possible to minimize in wavelet domain and therefore, the com-

putation of GCV (λ) is much easier and faster than the evaluation of OCV (λ). A

special treatment needs to be implemented in the case of n0 = 0, although this

case is extremely unlikely for λ > 0. Especially in the presence of Gaussian white

noise we expect to shrink many coefficients to zero. However, one chooses in this

case GCV (λ) to be 2 ∗ σ2. A justification is provided in the next section where

a more rigorous analysis of the GCV procedure is done.

CHAPTER 7. THRESHOLDING METHODS 75

7.7.3 GCV Analysis

So far, we have no guarantee that GCV really approximates the MSE or risk

function. The assumptions for cross validations were rather rough and seem to be

very unsound. This section provides a relation of GCV and SURE that indeed

ensures the quality of the GCV function. Additionally, a result of asymptotic

behavior is provided. Let’s call n1 = n − n0 the number of wavelet coefficients

that have not been shrunken to zero. Note that n1/n should be rather small for

most applications since relatively smooth functions can be represented by just

a little number of coefficients. Hence, we omit terms of the order (n1/n)
2 and

rewrite

GCV (λ) =
F (λ)

(
1− n1

n

)2

=
F (λ)

1− 2n1

n
+
(
n1

n

)2

≈ F (λ)

1− 2n1

n

≈ F (λ)

(
1 +

2n1

n

)
(7.33)

Using formulas (7.22) and (7.24) together with lemma 7.6.2 and assuming the

difference F (λ)− E[F (λ)] to be very small we have

F (λ) = E[F (λ)] + (F (λ)− E[F (λ)])

≈ σ2 + risk(λ)− σ2 2E[n1]

n
(7.34)

and therefore, neglecting again terms of the order (n1/n)
2, we obtain

GCV (λ) ≈ F (λ)

(
1 +

2n1

n

)

≈ F (λ) +
2n1

n
σ2 +

2n1

n
risk(λ).

For threshold values near the minimum risk threshold, risk(λ) is much smaller

than σ2 = risk(0). So we omit the last term of the above equation, too. Now,

CHAPTER 7. THRESHOLDING METHODS 76

one can see the connection to the SURE formula (7.25):

GCV (λ) ≈ F (λ) +
2n1

n
σ2 (7.35)

= SURE(λ) + σ2 (7.36)

≈ MSE(λ) + σ2 (7.37)

However, for GCV evaluation there is no need to know the value of σ2, so no

additional noise variance approximation is necessary. This is useful especially for

signals with no “silent” parts that are only influenced by noise and would easily

provide noise variance approximations. For many applications, such silent parts

are hard to determine, anyway. Furthermore, for mean square error minimization

the constant term σ2 does not change anything and GCV should provide good

results (see also section 7.8). Formula (7.37) also justifies the choice of GCV (λ)

for n0 = 0. This case is only likely for very small threshold values and therefore

we choose GCV to be equal to GCV (0) ≈MSE(0) + σ2 = 2σ2.

Another interesting result is the asymptotic behavior of GCV . Let’s therefore

denote first λopt as the optimal threshold, i.e. the threshold that minimizes the

expected MSE function, λopt = argmin risk(λ) and λgcv the threshold that mini-

mizes the expected GCV function, λgcv = argmin EGCV (λ). The next theorem

states that risk(λopt) and risk(λgcv) have the same asymptotic behavior, i.e. for

large n both thresholds lead to almost the same risk. An outline of the proof is

provided.

Theorem 7.7.1. With λopt and λgcv as given above and for piecewise smooth

signals, it holds that

lim
n→∞

risk(λgcv)

risk(λopt)
= 1 (7.38)

Proof. In the first part of the proof, an upper bound of risk(λgcv)/risk(λopt) is

derived. In the second part, I provide a less restrictive explanation why we can

expect this upper bound to converge to 1 for piecewise smooth signals. For a

detailed proof see [19].

In the following we call µ0 = E(n0/n) and µ1 = E(n1/n) = 1−µ0. Furthermore

we have, using (7.34),

EGCV (λ) = E

[
F (λ)

(n0/n)2

]

=
(
risk(λ) + σ2 − 2σ2µ1

)
/µ2

0

CHAPTER 7. THRESHOLDING METHODS 77

Now, we get

∣∣∣∣
risk(λ)− (EGCV (λ)− σ2)

risk(λ)

∣∣∣∣ =

∣∣∣∣1−
EGCV (λ)

risk(λ)
+

σ2

risk(λ)

∣∣∣∣

=

∣∣∣∣1−
risk(λ) + σ2 − 2σ2µ1

µ2
0 · risk(λ)

+
σ2

risk(λ)

∣∣∣∣

=

∣∣∣∣1−
1

µ2
0

+
σ2

risk(λ)
·
(−1 + 2µ1

µ2
0

+ 1

)∣∣∣∣

=
1

µ2
0

∣∣∣∣
(
µ2
0 − 1 +

σ2

risk(λ)
µ2
1

)∣∣∣∣

≤ 1

µ2
0

(∣∣µ2
0 − 1

∣∣+
∣∣∣∣
σ2µ2

1

risk(λ)

∣∣∣∣
)

=
1

µ2
0

(
(1− µ2

0) +
σ2µ2

1

risk(λ)

)

=: h(λ)

The function h(λ) leads directly to the upper bound of risk(λgcv)/risk(λopt):

risk(λgcv)(1− h(λgcv)) ≤ EGCV (λgcv)− σ2

≤ EGCV (λopt)− σ2

≤ risk(λopt)(1 + h(λopt))

and hence

1 ≤ risk(λgcv)

risk(λopt)
≤ 1 + h(λopt)

1− h(λgcv)
(7.39)

If we can show that limn→∞ h(λ) = 0 for both thresholds, the proof is done.

To obtain this, we have to show that µ1 → 0 (which infers µ0 → 1) and that

µ2
1/risk → 0. Let’s discuss the behavior of the risk first. In figure 7.2 the risk

contribution of a single coefficients with respect to λ is shown and total risk is

obtained by 1/n
∑
ρ(λ, Sjk). Since for large coefficients even optimal thresholds

produce a risk contribution of about σ2, we can assume for non-silent speech

signals that at least one signal wavelet coefficient S is large enough such that

ρ(λ, S) ≥ σ2. Hence, risk would be at least σ2/n. Therefore, it is now sufficient

to show that nµ2
1 → 0.

Let’s denote the set of indices where the original signal wavelet coefficients is

zero by

I0 = {(j, k) ∈ I|Sjk = 0}

CHAPTER 7. THRESHOLDING METHODS 78

and in the same way I1 = I −I0 the indices of original signal wavelet coefficients

unequal to zero. Suppose the original signal is piecewise polynomial, then the

number of nonzero coefficients is proportional to the number of levels, i.e. one

can say |I1| = O(log n), [19]. Then one obtains

µ1(λ) =
1

n

∑

(j,k)∈I
P (|Yjk| ≥ λ)

≤ 1

n


 ∑

(j,k)∈I1

1 +
∑

(j,k)∈I0

P (|Ejk| ≥ λ)




=
|I1|
n

+
|I0|
n
P (|Ejk| ≥ λ).

As n approaches infinity, we have λopt = O(
√
log n) for the optimal threshold

λopt, [19]. Since

1− Φ(x) ≈ σ2φ(x)

x
as x→ ∞,

it holds that P (|Ejk| ≥ λ) = O(1/(n
√
log n)) for threshold values in the neigh-

borhood of λopt. In summary, we have in the piecewise polynomial case

µ1 = O
(
log n

n
+

1

n
√
log n

)
= O

(
logn

n

)

and nµ2
1 = O(log2 (n)/n) → 0 for threshold values in the neighborhood of λopt.

Similar arguments hold for general piecewise smooth signals, where one can

not assume that most coefficients are exactly zero. However, using Iε0 = {(j, k) ∈
I||Sjk| ≤ ελopt} instead of I0, similar arguments hold since one can show that

there is a level j0, such that all coefficients in higher levels that are not affected

by singularities are of modulus smaller than ελ∗, see [19].

7.8 SURE & GCV Minimization

Maarten Jansen assumes SURE and GCV to be convex functions in λ [19]. I

will now provide arguments based on the risk contribution function that support

this assumption. Nevertheless, one can show at the same time that there are

cases where the risk is not convex and so SURE and GCV cannot assumed to

be convex, either. These cases are very unlikely for speech signals, though.

A function is convex if and only if its second derivative is nonnegative. Simple

calculations, using again the fact that xφ(x) = −σ2φ(x), lead to the first and

CHAPTER 7. THRESHOLDING METHODS 79

Figure 7.4: Sign of ∂/∂λ2(ρ(λ, S)) for σ = 0.05, black indicates negative and white
positive values

second derivative of the risk contribution function ρ(λ, S),

∂

∂λ
ρ(λ, S) = 4λ− 2λ(Φ(λ+ S) + Φ(λ− S))− 2σ2(φ(λ+ S) + φ(λ− S))

∂2

∂λ2
ρ(λ, S) = 4− 2(Φ(λ+ S) + Φ(λ− S))− 2S(φ(λ+ S) + φ(λ− S)).

Figure 7.4 shows the sign of the second derivative of the risk contribution for

σ = 0.05. The black area indicates pairs (λ, S) such that the sign is negative.

Hence, for these pairs the risk contribution is not convex. The total risk is however

a sum of all these risk contribution. For S close to zero, we have ρ(λ, S) > 0 for all

λ. Figure 7.4 provides the sign of ρ for threshold values λ ≤ 0.25 ≈ σ
√
2 log 218

which is approximately the universal threshold for n = 218. However, the actual

denoising algorithms will usually not evaluate the wavelet representation for more

than 12 levels. Hence, 0.25 be seen as an upper bound for λ in this case. Since

most of the uncorrupted signal wavelet coefficients S are expected to be zero or

very close to zero, risk(λ) is strongly influenced by the risk contribution for small

S. The black part is supposed to have minor influence on the risk. Furthermore,

ρ(λ, S) is definitely convex for smaller λ. As a conclusion one can assume the

total risk to be convex. For SURE and GCV we have

risk(λ) = ESURE(λ) and

SURE(λ) ≈ GCV (λ)− σ2

which confirms above assumption that SURE and GCV can be expected to

convex, too.

Figure 7.5(a) compares the actual mean square error with SURE and GCV

CHAPTER 7. THRESHOLDING METHODS 80

for speech example 9 where Gaussian white noise (σ = 0.05) has been added.

For the computation of SURE, σ2 is obtained by computing the sample variance

using about 50 milliseconds of the beginning of the signal where it is assumed to

carry only noise. One can see that one obtains a good MSE approximation.

GCV however seems to be “unstable” near zero. Discontinuities occur and

furthermoreGCV (λ) 6=MSE(λ)+σ2 for small thresholds. Since most coefficients

Yjk are close to zero, for small thresholds, even little changes of λ lead to strong

changes of n0 and of the denominator of

GCV (λ) =
F (λ)
(
n0

n

)2 . (7.40)

At the same time, we showed that GCV can be obtained using SURE and

neglecting terms of the order (n1/n)
2. For small thresholds this value might not

be as small as expected and cause some errors. Additionally we omitted the term

(n1/n)risk(λ) assuming the risk to be much smaller than σ2 near the optimal

threshold. For small thresholds n1 is still large and we are not close to the

optimal λ, though. For larger threshold values, GCV becomes much smoother

since most pure noise coefficients are already shrunken to zero and changes of the

denominator occur less often and are smaller.

For the minimization we use a special algorithm for convex functions, the so

called golden search since the golden value g = (
√
5 − 1)/2 is used to divide

the search interval into different parts. One starts with four threshold values,

the left and right bound of the interval I and two in the middle of the interval

such that the distance to the bounds is for both exactly (1 − g)|I|. In the next

step one determines which of the two thresholds in the middle is the better one.

The other one is chosen to be a new bound and one neglects the corresponding

old bound, i.e. one shrinks the length of the interval by the factor g in the

“direction” of the better value. The new interval is divided into three parts in

the same way as above. The choice of the golden value ensures that the better

threshold value is again one of the new values in the middle of the interval. Hence,

only one new MSE approximation via SURE or GCV has to be performed in

each step. Furthermore, the relative distance between two thresholds remains

constant. This procedure is repeated until the length of the interval is smaller

than a certain bound. This part is performed by the inner while loop of algorithm

7.1.

Now, it remains to choose the initial threshold interval. Of course, on could

use [0, λV S] since the universal threshold can be seen as some kind of upper bound

CHAPTER 7. THRESHOLDING METHODS 81

for optimal thresholds. However, first of all it would require the knowledge of σ,

which is not necessary for the evaluation of GCV and would eliminate one of

its advantages. Furthermore, the discontinuities of the GCV function near zero

could cause trouble. Therefore, one starts with rather too large values, i.e. an

interval shifted to the right. After the execution of above algorithm one checks if

it has changed the left bound of the interval. If so, the minimum of the convex

function is definitely in the interval produced by the algorithm. If not, the left

bound was too large and one starts again with a new interval until either the left

bound changes at some time or the right bound becomes too small. This part is

performed by the outer while loop of algorithm 7.1.

Algorithm 7.1 Golden Search Algorithm

1: g =
√
5−1
2

2: λ4 = max{|Sjk|}
3: while λ4 > ǫ1 and λ1 unchanged do

4: λ1 = λ4/50
5: λ2 = λ1 + (1− g)(λ4 − λ1)
6: λ3 = λ4 − (1− g)(λ4 − λ1)
7: compute mse(λ2); compute mse(λ3);
8: while {λ4 − λ1 > ǫ2} do

9: if mse(λ2) > mse(λ3) then

10: λ1 = λ2; λ2 = λ3; λ3 = λ4 − (λ2 − λ1);
11: mse(λ2) = mse(λ3); compute mse(λ3);
12: else

13: λ4 = λ3; λ3 = λ2; λ2 = λ1 + (λ4 − λ3);
14: mse(λ3) = mse(λ2); compute mse(λ2);
15: end if

16: end while

17: end while

It might be interesting what happens to signals that are not influenced by

noise. It would be desirable to have no or at least only very few changes of the

signal, i.e. a threshold as close to zero as possible. For σ2 = 0, SURE is given

by

SURE(λ) = F (λ) + σ2 − 2σ2n0

n

and clearly leads to an optimal threshold λ = 0. Only the first term does not

vanish. It is increasing in λ, though, and therefore the optimal threshold is

obtained. For GCV this is less clear. However, it also works surprisingly well.

The neglected terms are small even for small threshold values since σ2 = 0 and

most coefficients are already very close to zero, even before thresholding, and

CHAPTER 7. THRESHOLDING METHODS 82

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 10

−3

threshold λ

 GCV(λ)

 SURE(λ)

 MSE(λ)

(a) Speech example 9 with Gaussian white noise, σ = 0.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
x 10

−3

threshold λ

 GCV(λ)

 SURE(λ)

 MSE(λ)

(b) Speech example 9 without noise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

0

1

2

3

4

5
x 10

−3

threshold λ

 GCV(λ)

 SURE(λ)

 MSE(λ)

(c) Pure Gaussian white noise, σ = 0.05

Figure 7.5: MSE, SURE and GCV

CHAPTER 7. THRESHOLDING METHODS 83

for increasing thresholds, the denominator of equation 7.40 changes very slowly.

MSE, SURE and GCV in case of pure speech are plotted in figure 7.5(b), again

for speech example 9.

A second special case is pure noise, i.e. S = 0 for all coefficients. Correspond-

ing MSE, SURE and GCV are shown in figure 7.5(c). Large thresholds should

be preferred. Indeed, as λ approaches infinity, both, SURE and GCV , converge

to the minimum achievable risk value since n0 → n and F (λ) → σ2.

7.9 Level Dependent Thresholding

Until now, the introduced thresholding methods made no use of the multiscale

representation of the signal. Different levels represent different frequencies and

coefficients show different characteristics at different level, as shown in the previ-

ous chapter. In this and the following section we will see some suggestions how

to use dependencies between different levels [20].

So far we assumed noise to be Gaussian and white, i.e. stationary and uncor-

related noise coefficients. Otherwise, with the knowledge of the covariance matrix

Q, one could use formula (3.3) to normalize the wavelet coefficients

Y new
jk =

1√
QA
jk,jk

Yjk.

But for all that, Q is generally unknown and hard to determine. Suppose noise is

stationary Gaussian but correlated in a way such that the correlation between two

points depend only on the distance of the points, one obtains a symmetric Toeplitz

covariance Matrix Q and in lemma 3.2.1 we have learned that the variance of the

transformed noise depends only on the level, i.e.

E[E2
jk] = σ2

j ∀k ∈ Ij

where Ij denotes the set of indices of coefficients at level j. The wavelet transform

of stationary correlated noise is only stationery within a given level. Hence, a

single threshold for all levels makes no more sense. As mentioned above one could

normalize the wavelet coefficients to obtain stationary noise in wavelet domain,

too. However, even for this case it is not easy to find good approximations for

all values of σj . Uncorrelated noise variance can easily be estimated using either

very fine scales where little signal information is stored but still noise appears in

the same way as in all other scales, or one could use the original data y and try

to determine a “silent” part with no signal but corrupted by noise. Instead of the

CHAPTER 7. THRESHOLDING METHODS 84

determination of each σj , level dependent thresholding might be useful.

Level dependent thresholding can be applied very easily. One just performs

a GCV minimizing procedure at each level separately and obtains for each level

a different threshold value. GCV properties are not corrupted by correlated

noise. Correlations just lead to a different “sorting” of the coefficients which does

not change anything in the GCV computation since at a certain level the noise

variance is constant. In statistics this property is called homogeneity of variance.

Advantages: Level dependent thresholding is not only useful for the process-

ing of correlated noise. Using non-orthogonal wavelet transforms, wavelet noise

coefficients will be correlated and non-stationary as mentioned in section 3.1. Al-

though in this case the knowledge of the variance of the original noise coefficients

leads to the knowledge of the covariance matrix Q and one could apply (3.3),

level dependent thresholding might be easier.

Optimal thresholds do not only depend on the on the noise variance. Sig-

nal characteristics play an important role as well. As mentioned earlier, these

characteristics might change at different levels. As shown in chapter 5, impor-

tant coefficients do not necessarily show up at different levels with the same

magnitude. In low levels, i.e. at coarse scales, many coefficients contain much

information and are therefore large while at levels with finer resolution, large

coefficients are rare and most coefficients are influenced only by noise. Hence,

fine resolutions require rather large thresholds while at the same time for coarse

parts with much signal information, small thresholds are preferable. So even for

orthogonal wavelet transformation and stationary uncorrelated white noise, level

dependent thresholding might lead to better results. Hence, a single threshold is

already a compromise between coarse and fine levels.

Disadvantages: Level dependent thresholding leads to one important disad-

vantage. At coarse levels, one might not have enough coefficients to obtain good

MSE approximations via GCV since for n = 2J , level j consists of only about

2J−j coefficients. The solution could be the use of the stationary wavelet trans-

form (SWT) as described in section 2.3. For SWT, the homogeneity of variance

property holds, too. At each level one has n coefficients. Therefore, good MSE

approximations can be obtained at each level. Memory and time complexity is

now O(n logn), though. At each level, the proportion of noise free coefficients

remains the same as for FWT. Hence, at coarse scales most coefficients provide

signal information, the representation is not sparse there. Hence, it is not useful

to process too coarse levels. On the other side, finer levels are still sparse and

CHAPTER 7. THRESHOLDING METHODS 85

contain very few signal information. Additionally, inverse SWT provides an ad-

ditional smoothing as described in section 2.3 which might improve the output

signal quality in the sense of less noisy structures.

7.10 Inter & Intra Scale Thresholding

Xu, Weaver, Healy and Lu [36] describe a denoising method that - with slight

modification - can be seen as a thresholding method using inter scale dependen-

cies. It is based on the idea that important signal features show up not only at a

single scale but at a hole set of coefficients at the same location but subsequent

levels. This assumption has already been justified in chapter 5. To measure

if a coefficient should be kept or not, they propose not to use the coefficient

magnitude, but a inter scale correlation factor Corrl defined as the product of l

coefficient values at same location but subsequent coarser levels given by

corrjk(l) =
l∏

i=0

Yj−i,k (7.41)

To simplify notation, a notion of stationary wavelet transform has been used

here, but it works in the same way using FWT coefficients instead. One just

needs to find the right coefficients at the same location. Xu et al propose to

select at each level the coefficients with largest correlation factors until the sum

of the squares of the selected coefficients exceeds a certain threshold value. This

threshold value can however be considered to be an upper bound of the signal

information and should be selected in a way such that the threshold represents

the expected amount of signal information provided at the given scale for the

uncorrupted signal.

Jansen modified this algorithm and created a kind of soft thresholding [19].

Now, the correlation factor is not only the measure if a coefficient should be

shrunken to zero or not, but it also influences the shrinking value:

Ŝλjk =

(
1− λ

|corrjk(l)|

)

+

Yjk. (7.42)

For l = 0 this is exactly soft thresholding. Jansen states that already for l = 1,

this method outperforms the previous ones. Besides, GCV can be evaluated and

minimized in exactly the same way as mentioned in earlier sections. Comparisons

can be found in chapter 11. Modifications of inter level dependencies are however

possible. One could try using a sum of coefficients instead of the product in for-

CHAPTER 7. THRESHOLDING METHODS 86

mula (7.42), or selecting not only coefficients of coarser levels for the computation

of the correlation factor.

A method very similar to inter scale thresholding is called intra scale or block

thresholding. It is based on the idea that for an important signal coefficient, the

neighboring ones should be rather large and important, too, since except for Haar

wavelets, neighboring basis functions don’t have disjoint support. Block thresh-

olding, as the name indicates, keeps, shrinks or kills not only single coefficients

but complete blocks, based on the values of a superset of coefficients. I.e., let I0

be a set of indices of adjacent wavelet coefficients at a fixed level. Furthermore,

let I1 ⊃ I0 another set of indices of adjacent coefficients including I0. Let’s denote

µI1 by

µI1 =
1

|I1|
∑

(j,k)∈I1

Y 2
jk. (7.43)

Similar to (7.42) we use a kind of soft thresholding defined by

Ŝjk =

(
1− λ2

µI1

)

+

Yjk ∀(j, k) ∈ I0 (7.44)

for a given threshold λ. For |I0| = 1 each coefficient is processed separately.

However, the decision if it is better to keep or kill it is still based on information

provided by surrounding coefficients. A GCV procedure is again possible.

Block thresholding removes some additional spurious “blips” but inter scale

thresholding is still better. However, a variety of modifications and combinations

with other methods is possible.

Chapter 8

Tree Structured Thresholding

The method presented in this chapter uses again dependencies between coeffi-

cients of different levels. It is based on so called trees of wavelet coefficients and

introduced in the following definition:

Definition 8.0.1. For some wavelet coefficient Sj,k, a coefficient at level j + 1

is called son of Sj,k if it is positioned at the same location. Accordingly, Sj,k is

called parent of this coefficient. A wavelet tree is a set T of wavelet coefficients

such that

(i) there is exactly one coefficient Sj0,k0 ∈ T with no parent in T , i.e.

(ii) Sj1,k1 ∈ T , where (j1, k1) 6= (j0, k0), implies the existence of a parent in T

The coefficient Sj0,k0 is called root of the wavelet tree.

For n = 2J and for some discrete wavelet transform with periodic boundary

conditions, each wavelet coefficient Sjk, j < J − 1, has exactly two sons, given by

Sj+1,2k and Sj+1,2k+1 and we obtain a full binary tree.

We assume that inter-scale dependencies can be detected in such trees and

subtrees in the following way: If a coefficient Sjk is large since it contains signal

information, we expect coefficients at the same location but level greater than j

to be large as well. This fact has already been mentioned and used in chapter

5. At the same time, noise leads to rather local effects and a noise singularities

do not appear throughout many different levels. These assumptions are used for

tree structured thresholding [19]. One requires approximations Ŝjk of the original

signal wavelet coefficients to comply two conditions:

(i) Ŝtreejk ∈ {Yjk, 0}

87

CHAPTER 8. TREE STRUCTURED THRESHOLDING 88

(ii) Ŝtreejk = 0 implies each son to be zeros as well

The first condition indicates that we perform some kind of hard thresholding or

rather a “keep or kill” method. The second constraint requires each coefficient of

the subtree of a “killed” coefficient to be zero, too. Hence, a “killed” coefficient

produces a complete zero-subtree.

Similar to risk minimization methods like SURE or GCV , one tries to find

the best approximation of the signal as a compromise between closeness of fit and

sparseness, or in other words bias and variance. For a given threshold λ, we try

to find an approximation that minimizes

CPRESS(Ŝtree) = ||Ŝtree − Y ||2 + λ2n1

under above constraints. As before, n0 denotes the number of “killed” coefficients

and n1 the number of kept coefficients. The minimization problem can also be

considered in the following way: Find a coefficient selection vector x ∈ {0, 1}n
such that

CPRESS(x) =
∑

(j,k)∈I
(1− xjk)Y

2
jk − xjkλ

2 → min (8.1)

under the constraint that T = {xjk|xjk = 1} is a wavelet tree. Hence, for each

index (j, k) either λ2 or Y 2
jk is added to the CPRESS value. David L. Donoho

describes a connection of tree structured thresholding and the best-ortho basis

algorithm [34]. It is shown that using Haar wavelets, both algorithms are equiv-

alent [5], [7]. However, in his work he also provides an algorithm called CART

(classification and regression trees), based on dynamic programming, that has

been modified and used for the CPRESS minimization.

Algorithm 8.1 provides a minimization method for CPRESS(x) that can be

done in O(n). Values CPRESSjk[0] denote the minimal CPRESS value of a

subtree with root Yjk under constraint Ŝtreejk = 0, while CPRESSjk[1] denotes

the minimal subtree value for Ŝtreejk = Yjk. I.e. the number in brackets denotes

the used value of xjk. Furthermore, Ij denotes the set of the indices of all wavelet

coefficients at level j. The algorithm can be subdivided into 4 parts, described

in the following paragraphs.

Part I: In the first part of the algorithm, the best CPRESS values of subtrees

consisting of only the root element are determined. Optimal xjk is given by

argmin(CPRESSJ−1,k(x)), i.e. for Y 2
J−1,k > λ2 it is better to keep the coefficient

CHAPTER 8. TREE STRUCTURED THRESHOLDING 89

Algorithm 8.1 CART Algorithm

1: PART I. init bottom
2:

3: for k ∈ IJ−1 do

4: CPRESSJ−1,k[0] = Y 2
J−1,k

5: CPRESSJ−1,k[1] = λ2

6: xJ−1,k = (CPRESSJ−1,k[1] < CPRESSJ−1,k[0])
7: end for

8:

9: PART II. bottom up algorithm
10:

11: for j = J − 2 to J0 do

12: for k ∈ Ij do

13: CPRESSjk[0] = CPRESSson1[0] + CPRESSson2[0] + Y 2
jk

14: CPRESSjk[1] = CPRESSson1[xson1] + CPRESSson2[xson2] + λ2

15: xjk = (CPRESSjk[1] < CPRESSjk[0])
16: end for

17: end for

18:

19: PART III. top down correction
20:

21: for j = J0 to J − 2 do

22: for k ∈ Ij do

23: xson1 = xson1 · xjk
24: xson2 = xson2 · xjk
25: end for

26: end for

27:

28: PART IV. thresholding
29:

30: for (j, k) ∈ I do

31: Ŝjk = Yjk · xjk
32: end for

CHAPTER 8. TREE STRUCTURED THRESHOLDING 90

to obtain a CPRESS contribution of equation (8.1) of only λ2. Hence, xJ−1,k = 1.

Part II: The second part is a bottom up algorithm that computes the minimal

CPRESS value for all subtrees and the optimal value of the coefficient selection

value xjk. CPRESS values can be obtained by the sum of the appropriate

CPRESS values of both sons. adding either λ2 or Y 2
jk, depending on xjk. For

xjk = 0, due to condition (ii) above, xj1,k1 = 0 for all Yj1,k1 in the subtree with

root Yjk. Hence, one has to add CPRESS[0] for both sons and Y 2
jk for the root.

In the other case, xjk = 1, one can decide for each son either to take CPRESS[0]

or CPRESS[1]. Obviously, we take the smaller ones, given by CPRESS[xson1]

and CPRESS[xson2], respectively, where son1 and son2 denote the index of the

two sons. The root contributes λ2 to the sum.

Part III: So far, we got for each coefficient Yjk the optimal coefficient selection

value xjk under the assumption that Yjk is the root of the tree. Furthermore, we

obtained the optimal CPRESS value for the complete tree (or in fact, if J0 6= 0,

for several trees). However, if the coefficient selection value of the parent of any

Yjk is zero, we need to adjust the coefficient selection values in the subtree. This

is done in the third part of the algorithm, starting at the lowest level, i.e. the top

of the tree.

Part IV: Finally, in the last part, the actual thresholding is done and one

obtains the approximation Ŝtree.

For a given threshold λ, algorithm 8.1 provides an efficient way to find the

optimal tree. Nevertheless, the problem of finding an optimal threshold value

is still unsolved. CPRESS minimization procedures in terms of λ, e.g. golden

search introduced for SURE and GCV in 7.8, do not work here. In fact, the

minimum would be achieved for λ = 0 or λ = ∞. For both thresholds, one

obtains CPRESS(x) = 0. In the first case, the algorithm would lead to the

“optimal” coefficient selection values xjk = 0 for all (j, k) ∈ I which leads to

CPRESS(x) = 0. In the second case, λ = ∞, the algorithm leads to xjk = 1

for all (j, k) ∈ I and again CPRESS(x) = 0. Donoho proposes to use the

universal threshold σ
√
2 logn, [7]. For good MSE results this threshold is too

large, though. Differently from SURE and GCV values, CPRESS is no mea-

sure for good approximations, even though in all cases one may consider the

threshold value λ to be a weight to control sparsity. I.e., for large thresholds

it is less desirable to keep coefficients than for small ones. Hence, I claim that

thresholds produced by GCV or SURE are better candidates than the universal

CHAPTER 8. TREE STRUCTURED THRESHOLDING 91

thresholds in terms of risk minimization. Indeed, experiments show (see table

8.1 and chapter 11) that these thresholds are not only better than the universal

threshold but come very close to the optimal thresholds in terms of MSE re-

duction for tree structured thresholding. Since tree structured thresholding is a

keep or kill method and therefore close to hard thresholding, thresholds generated

for sophisticated thresholding (see next chapter) provide better quality than soft

thresholds. The optimal threshold has been obtained performing several denois-

Threshold Finder λ SNR MSE

VISU 0.1769 15.819 4.848e-4
Minimax 0.1024 17.078 3.627e-4
SURE Soft 0.0841 15.261 5.512e-4
GCV Soph 0.1204 17.191 3.534e-4
SURE Soph 0.1131 17.224 3.508e-4

Optimal 0.1095 17.256 3.482e-4

Table 8.1: Optimal threshold for CPRESS and speech example 4 and Gaussian white
noise, σ = 0.05, MSE = 2.5e − 3, SNR = 8.696, transform used Daubechies
wavelets db20 and J = 9

ing procedures using different values of λ. However, it is only optimal for this

choice of wavelets and this speech example and does not provide any information

about optimal threshold for other examples. One can see, though, that using

CPRESS for this example, one can not achieve better MSE than 3.482e− 4.

Chapter 9

Sophisticated Thresholding

All previous methods try to find a single global threshold that is then applied on

all coefficients. In this chapter I will present some arguments that validate the

assumption that using different thresholds depending on the coefficient magnitude

lead to better results in MSE minimization. Finally, I will develop an efficient

method for the detection of such thresholds and call it sophisticated thresholding.

It will turn out that good approximations can be achieved minimizing with respect

of only one parameter using revised forms of SURE or GCV .

9.1 Optimal Thresholds

Let’s reconsider figures 7.2 and 7.3 where risk and optimal thresholds λopt(S) for

soft thresholding are plotted. The optimal threshold clearly depends not only

on the noise standard deviation σ but as well on the uncorrupted signal wavelet

coefficient. Small values of S require large thresholds that approach infinity as S

comes close zero, whereas for large coefficients S, one expects small thresholds to

be better, approaching now zero as S becomes very large. Unfortunately, we can

not apply λopt(S) directly to the data since S is of course unknown. However,

let’s do some further analysis of the optimal threshold, the corresponding risk

and their dependence on σ.

Lemma 9.1.1. Let Y = S + E be a noisy signal coefficients and E ∼ N(0, σ2).

Furthermore, let λoptσ (S) denote its optimal soft threshold depending on the un-

derlying uncorrupted signal wavelet coefficients S. Then, it holds that

λoptσ (σS) = σλopt1 (S) (9.1)

Proof. Let riskσ(λ, S) denote the risk of soft thresholding some noisy Y , given

92

CHAPTER 9. SOPHISTICATED THRESHOLDING 93

0 1 2 3
0

1

2

3

id(S)

λopt(S)

softλopt(S)

risk(λopt(S), S)

(a) σ = 1.0

0 0.5 1 1.5
0

0.5

1

1.5

id(S)

λopt(S)

softλopt(S)

risk(λopt(S), S)

(b) σ = 0.5

Figure 9.1: λopt(S) with corresponding risk and softλopt(S)(S)

the noise level σ and the underlying signal coefficient S. Using equation (7.17),

one obtains

riskσ(σλ, σS) = σ2risk1(λ, S) (9.2)

Hence, if λopt1 minimizes risk1(λ, S), then σλopt1 minimizes riskσ(λ, σS).

This result is visualized in figure 9.1. The optimal threshold λopt(S) and the

corresponding risk are provided for two different values of σ and plotted as a

function of S ∈ [0, 4σ], respectively. Lemma 9.1.1 says that the knowledge of λopt

for a certain noise level σ is equivalent to the knowledge of the optimal threshold

for any noise level. Hence, in the following we can assume σ to be equal to one

without loss of generality.

Additionally, figure 9.1 shows the result of soft thresholding coefficients S

(blue line) using threshold λopt(S). This is is in fact the best approximation of S

we can expect using soft thresholding. However, using a single threshold for all

coefficients this is not attainable. In order to find good thresholds, two values of

λopt(S) seem to be important: the largest value of S such that softλopt(S) = 0,

and secondly, the value of S such that softλopt(S) ≈ S. Since λopt(S) is never

exactly zero and therefore softλopt(S) 6= S for alls S, I define the second value to

be chosen such that λopt(S) is arbitrarily small. Let’s denote these two values by

α and β, respectively, precisely

α = sup{S ∈ R|λopt(S) ≥ S} (9.3)

β = inf{S ∈ R|λopt(S) < ε}. (9.4)

CHAPTER 9. SOPHISTICATED THRESHOLDING 94

In fact, α can be obtained by the intersection of S and λopt(S). It turns out that

α ≈ 0.893σ and, for ε = 2−5σ, one obtains β ≈ 2.867α.

9.2 Sophisticated Thresholding

The idea of sophisticated thresholding is use find a thresholding function that

is easy to compute and approximates softλopt(S), i.e. a functions, let’s call it

sophα,β, such that the following restrictions hold:

(i) sophα,β(S) = 0 ∀S ∈ [0, α]

(ii) sophα,β(S) = S ∀S ≥ [β,∞)

(iii) sophα,β(S) ≈ softλopt(S) ∀S ∈ [α, β],

i.e. a concave easy computable function with rather large slope at α and

(iv) the slope one at β, i.e. ∂
∂S
sophα,β(β) = 1.

(v) sophα,β(−S) = −sophα,β(S)

The last condition allows to consider only positive values of S for further anal-

ysis, where condition (iv) ensures differentiability at S = β. No differentiability

condition is set at S = α since obviously even softλopt is not smooth at this point.

However, continuity is demanded and covered by overlapping intervals for S in

the first and third condition. Some experiments with different concave functions

resulted in

sophα,β(x) =





0 , if x ∈ [0, α]

a1
a2−x + a3 , if x ∈ (α, β)

x , if x ∈ [β,∞)

(9.5)

where, for β = 2.867α,

a1 = (β − β2/α)2 = 28.651α2

a2 = 2β − β2/α = −2.486α

a3 = β2/α = 8.220α.

The approximation is surprisingly good, as shown in figure 9.2. The mean square

error 1
m
||sophα,β − softλopt||2 for S ∈ [α, β] is less than 10−3σ2, where m >> 1

denotes the number of grid points in [α, β]. There still is the problem of the

unknown S, though, and so far we do not know how to apply the soph threshold

CHAPTER 9. SOPHISTICATED THRESHOLDING 95

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

soft
λ

opt − soph
α, β

soph
α, β

soft
λ

opt

Figure 9.2: softλopt(S) and sophα,β(S) with α = 0.893 and β = 2.867α

function on noisy coefficients Y . Of course one could consider to apply the soph

function directly on Y instead S, but I will show that it is possible to achieve

much better results, using other values α than before.

9.3 Sophisticated Thresholding, SURE and

GCV

Let’s consider sophα := sophα,2.867α as a threshold function of a single parameter

α, similar to hard and soft thresholding in section 7.1. Figure 9.3 compares these

methods using λ = α = 1. One can see that sophisticated thresholding can bee

considered as a kind of compromise between soft and hard thresholding. For α =

β one would obtain hard thresholding while for α → ∞ it rather approximates

soft thresholding. Hence, one could try to use similar methods than before to find

optimal threshold values for sophisticated thresholding. We will see that SURE

and GCV , introduced in section 7.6 and 7.7, respectively, originally based on

soft thresholding, can be modified in order to use the MSE minimization for

sophisticated thresholding as well.

SURE: In section 7.6 we derived

risk(S, softλ(Y)) = E [F (λ)]− σ2 +
2

n
E
[
(E,Eλ)

]

where

F (λ) =
1

n
||softλ(Y)− Y ||2

Eλ = softλ(Y)− S

CHAPTER 9. SOPHISTICATED THRESHOLDING 96

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

soph

λ, 2.867λ

hard
λ

soft
λ

Figure 9.3: softλ, hardλ and sophλ,β for β = 2.867α

and derived that the last term can be approximated by 2σ2n1/n. In the same

way we now derive a version of SURE adapted to sophisticated thresholding.

We therefore need to find a new approximation for the last term. For Eα =

sophα(Y)− S and E = Y − S, we have

E [(E,Eα)] =
∑

(j,k)∈I
E[EjkE

α
jk]

and like in the proof of lemma 7.6.2, substituting E = Y + S and using (9.5), we

obtain

E[EjkE
α
jk] = σ2

∞∫

−∞

∂Eα
jk

∂Ejk
φ(Ejk)dEjk

= σ2




∫

Y :α<|Y |<β

a1
(a2 − |Y |)2φ(Y)dY +

∫

Y :|Y |≥β

1 · φ(Y)dY




= σ2

∫

Y :α<|Y |<β

a1
(a2 − |Y |)2φ(Y)dY + σ2P (|Y | ≥ β).

The approximation is now a little more complicated than for soft thresholding.

Nevertheless, it can be easily computed by

E [(E,Eα)] =
∑

(j,k)∈I
E[EjkE

α
jk]

≈ σ2
∑

Y :α<|Y |<β

a1
(a2 − |Y |)2 + σ2n2

CHAPTER 9. SOPHISTICATED THRESHOLDING 97

where n2 denotes the number of coefficients Y such that |Y | ≥ β which leads to

the approximation P (|Y | ≥ β) ≈ n2/n. Eventually the new SURE function is

given by

SURE(α) = F (α)− σ2 +
2σ2

n


n2 +

∑

Y :α<|Y |<β

a1
(a2 − |Y |)2


 . (9.6)

The complexity is not much worse than for SURE based on soft thresholding.

For each Y such that α < |Y | < β, two extra divisions and additions have to be

performed and the total complexity is still O(n).

GCV: We use again the results of section 7.7.1 and 7.7.2. In formula (7.31) we

had

GCV (λ) =
1

(1−D)2
F (λ) (9.7)

where D denoted the average over all derivatives ∂Ŝλjk/∂Yjk, i.e

D =
1

n

∑

(j,k)∈I

∂Ŝλjk
∂Yjk

We can use exactly the same Formula for sophisticated thresholding, only the

computation of the derivatives is different and F (α) is of course obtained using

the soph function. The derivative is given by

soph′α,β(Y) =





0 , if |Y | ∈ [0, α]

a1
(a2−|Y |)2 , if |Y | ∈ (α, β)

1 , if |Y | ∈ [β,∞)

(9.8)

and therefore have

D ≈ 1

n


0 · n0 +

∑

Y :α<|Y |<β

a1
(a2 − |Y |)2 + 1 · n2


 (9.9)

where n0 = |{Y : |Y | ≤ α}| and n2 = |{Y : |Y | ≥ β}|. As before, there is not

much more computational effort than for soft thresholding.

CHAPTER 9. SOPHISTICATED THRESHOLDING 98

9.4 Comparison

The thresholding method introduced in the previous section is assumed to produce

less MSE. In this section I will verify this, comparing the risk contribution of a

single coefficient for soft, hard and sophisticated thresholding. The next lemma

provides the risk contribution for sophisticated and hard thresholding.

Lemma 9.4.1. The risk contribution of a single coefficient using sophisticated

thresholding is given by

ρsoph(α, β, S) = E
[
(sophα,β(Y)− S)2

]

= s2σ2 − S2

+ Φ(β − S)(−σ2 + S2) + Φ(β + S)(−σ2 + S2)

+ φ(β − S)(σ2(β − S)) + φ(β + S)(σ2(β + S))

+

β∫

α

(
soph2α,β(x)− 2Ssophα,β(x)

)
φ(x− S)dx

+

−α∫

−β

(
soph2α,β(x)− 2Ssophα,β(x)

)
φ(x− S)dx (9.10)

For hard thresholding we have

ρhard(λ, S) = E
[
(hardλ(Y)− S)2

]

= 2σ2 − S2

+ Φ(λ− S)(−σ2 + S2) + Φ(λ + S)(−σ2 + S2)

+ φ(λ− S)(σ2(λ− S)) + φ(λ+ S)(σ2(λ+ S)) (9.11)

Proof. Simple calculation similar to lemma 7.5.1 and lemma 7.5.2 lead to (9.10).

The second part of the proof is obtained using the fact that hard thresholding

can be seen as a special case of sophisticated thresholding with λ = α = β, i.e.

ρhard(λ, S) = ρsoph(λ, λ, S). Hence, hard thresholding is obtained by omitting the

integrals in equation (9.10).

There is no known analytic solution for the two integrals of (9.10). However,

for the subsequent analysis it is sufficient to leave them this way. With lemma

CHAPTER 9. SOPHISTICATED THRESHOLDING 99

0 5 10 15
0

2
4
0
3
6
9

12
15
18

(a) ρsoft(λ, S), λ ∈ (0, 4), S ∈ (0, 15)

0 5 10 15
0

2
4
0
3
6
9

12
15
18

(b) ρhard(λ, S), λ ∈ (0, 4), S ∈ (0, 15)

0 5 10 15
0

2
4
0
3
6
9

12
15
18

(c) ρsoph(α, β, S), α ∈ (0, 4), β = 2.867α, S ∈ (0, 15)

Figure 9.4: risk contribution of (a) soft, (b) hard and (c) sophisticated thresholding
with σ = 1

7.5.2 and lemma 9.4.1, it is clear that for large S and fixed thresholds,

ρsoph(α, β, S) → σ2

ρhard(λ, S) → σ2

ρsoft(λ, S) → σ2 + λ2

since φ(x− S), φ(x+ S), Φ(x− S) approach zero and Φ(x + S) approaches one

where x denotes any fixed value independent of S. The two integrals of (9.10)

approach zero, too, since sophα,β is bounded for fixed α and β. Hence, large

coefficients contribute much more risk for soft thresholding than for sophisticated

CHAPTER 9. SOPHISTICATED THRESHOLDING 100

0 1 2 3 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

riskhard (λ, 0)

risksoph(λ, 2.867λ, 0)

risksoft (λ, 0)

Figure 9.5: risk contribution for S = 0 and σ2 = 1 as a function of λ

or hard thresholding. Additionally, since risk contribution for large coefficients is

almost independent of the threshold, hard and sophisticated thresholding enable

the choice of larger thresholds. Larger thresholds however lead to less risk for

small values S, as seen in figure 9.1. Small S requires very large thresholds.

Therefore, one might expect a smaller MSE.

Figure 9.4 displays the risk contributions of all three thresholding methods for

σ2 = 1 and S ∈ [0, 15]. Indeed, it seems like hard and sophisticated thresholding

are to favor. Surprisingly, hard thresholding seems to be of superior quality since

sophisticated thresholding converges slower to σ2. However, it might be useful

to take a closer look on small coefficients S, since one expect most uncorrupted

signal wavelet coefficients to be zero or almost zero for piecewise smooth functions.

Hence, risk contribution for small S might be much more important than the risk

contribution of larger S.

ρsoft(λ, 0) = 2σ2 + 2λ2 − 2Φ(λ)(σ2 + λ2)− 2φ(λ)(σ2λ)

ρhard(λ, 0) = 2σ2 − 2Φ(λ)(σ2) + 2φ(λ)(σ2λ)

ρsoph(λ, 2.867λ, 0) = ρhard(2.867λ, 0) + 2

∫ 2.867λ

λ

soph2λ(x)φ(x)dx

Indeed, figure 9.5 indicates that

ρsoft(λ, 0) ≤ ρsoph(λ, 2.867λ, 0) ≤ ρhard(λ, 0).

Following the horizontal lines in figure 9.5, one can see that hard and sophisticated

thresholding require larger thresholds to attain the same risk as soft thresholding.

Indeed experiments confirm this assumption. For figure 9.6, the threshold value

has been fixed and the risk contribution is plotted as a function of S. The graphs

on the left side show the risk evolution for S ∈ [0, 10σ], the graphs on the right side

show only risk for very small S. For the construction of figures 9.6(a) and 9.6(b),

CHAPTER 9. SOPHISTICATED THRESHOLDING 101

0 2 4 6 8 10
0

1

2

3

4

5

6

(a) S ∈ (0, 10σ)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

risksoft(2σ, S)

riskhard(2σ, S)

risksoph(2σ, S)

(b) S ∈ (0, σ)

0 2 4 6 8 10
0

1

2

3

4

5

6

(c) S ∈ (0, 10σ)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

 risksoft(2σ, S)

riskhard(2.4σ, S)

risksoph(2.4σ, S)

(d) S ∈ (0, σ)

Figure 9.6: risk contribution for fixed λ, where σ = 1, λ = α = 2σ in (a) and (b),
λ = α = 2.4σ for hard and soph, λ = 2σ for soft in (c) and (d)

the same threshold λ = 2σ has been used for all methods, whereas in figures

9.6(c) and 9.6(c) a 20% larger threshold has been used for hard and sophisticated

thresholding. One can see that for small values of S (which is expected to be

the case for most signal coefficients) the risk contribution is much smaller for soft

thresholding. Especially hard thresholding performs bad. However, in the second

case the difference between soft and soph risk contribution became much smaller,

at the expense of a larger risk in the interval approximately [σ, 8σ] (compare red

lines). Hence, the optimal threshold clearly depends on the “distribution” of S,

i.e. the number (or percentage) of uncorrupted signal wavelet coefficients that

are very small versus the number of rather large ones and so on. One could use

histograms for an analysis.

Under the assumption that the majority of coefficients S is small, it might be

useful to try to shrink the risk for small coefficients even more without loosing

too much at larger coefficients. Sophisticated thresholding provides a second

parameter that can be modified, i.e. one increases β instead of α. An example is

provided by figure 9.7, where ρsoph(α, β, S), using α = 2σ and β = 6α is compared

with all previous versions of sophisticated thresholding and soft thresholding.

For very small S, it is still worse than the soph version with 20% larger α and

CHAPTER 9. SOPHISTICATED THRESHOLDING 102

0 2 4 6 8 10 12
0

1

2

3

4

5

6

(a) S ∈ (0, 12σ)

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

risksoph(2σ, S)

risksoph(2σ, 12σ, S)

risksoph(2.4σ, S)

risksoft(2σ, S)

(b) S ∈ (0, 0.27σ)

Figure 9.7: risk contribution with α = 2σ and β = 6α, σ = 1

β = 2.867α, but it became better for S in an interval of about [0.5σ, 4.5σ], then it

is again worse, so we don’t win much. Still, for small uncorrupted signal wavelet

coefficients soft thresholding remains the best choice. This leads to a further

generalization of sophisticated thresholding that also includes characteristics of

soft thresholding and is discussed in the next section.

9.5 Generalization and Improvement

The objective is to embed soft thresholding in sophisticated thresholding. For

the creation of this new thresholding function, I therefore change some of the

restrictions introduced in section 9.2. Now, we are looking for a concave function

sophα,β,γ such that

(i) sophα,β,0 = sophα,β

(ii) sophα,α,0 = hardα

(iii) sophα,α,α = softα

Similar to section 9.2, a good choice for sophα,β,γ seems to be

sophα,β,γ(x) =





0 , if x ∈ [0, α]

a1
a2−x + a3 , if x ∈ (α, β)

x− γ , if x ∈ [β,∞)

(9.12)

where 0 ≤ γ ≤ α ≤ β, and for continuity and differentiability reasons, coefficients

a1, a2 and a3 have to be adjusted such that

(iv) sophα,β,γ(α) = 0

CHAPTER 9. SOPHISTICATED THRESHOLDING 103

(v) sophα,β,γ(β) = β − γ

(vi) soph′α,β,γ(β) = 1.

This leads to coefficients

a1 = (a2 − β)2

a2 = (β2 − 2αβ + αγ)/(γ − α)

a3 = −(a2 − β)2/(a2 − α).

Two cases seem to need special treatment. First assume a2 = α, then a3 is not

computable. However, one can easily show that this occurs if and only if α = β.

Now, a computation of a3 is no more necessary since the second case x ∈ (α, β) of

equation (9.12) is impossible. For α = γ the value a2 does not exist. One could

of course restrict on cases where α 6= γ but this would not allow to embed soft

thresholding any more. Hence, another condition has to be introduced,

(vii) allow α = γ only if α = β.

As before, for α = β = γ, we have x /∈ (α, β) and one obtains soft thresholding.

Knowing the distribution of S, i.e. the amount of coefficients Sjk of a certain

value and for a fixed σ, one could minimize the risk in α, β, and γ that is given

by formula 9.13 below. However, the SURE and GCV formulas introduced in

section 9.3 and given by (9.6) and (9.7),(9.9), respectively, can be applied in

exactly the same way, just using the coefficients a1, a2 and a3 provided in this

section.

Table 9.1 compares soft with sophisticated thresholding. For β I used in all

cases β = 2.867α and tried 4 different values of γ, also dependent on α to enable

minimization with respect of only one parameter, α. GCV has been used for both,

soft and sophisticated thresholding, to attain the best threshold value. Gaussian

white noise with σ = 0.05 has been added to a speech signal with 217 samples an a

sampling rate of 44100 samples per second. Hence, MSE before thresholding has

been about 2.5e−3 and SNR has been 6.340dB. I used Daubechies wavelets with

8 vanishing moments, periodic boundary conditions, and resolution up to level

J = 8. One can see that sophisticated thresholding outperforms soft thresholding.

Here, γ = 0.18α seemed to be optimal, MSE obtained by soft thresholding is

about 26% larger in this case. As in the sections before, one can find a direct

formula for the risk contribution. In fact, it embeds again risk contribution

formulas for soft, hard and the previous version of sophisticated thresholding. It

CHAPTER 9. SOPHISTICATED THRESHOLDING 104

α β = 2.867α γ = c ∗ α MSE SNR

soph 0.133 0.381 0.00α = 0.000 3.45e-4 14.919
0.124 0.356 0.18α = 0.022 3.42e-4 14.963
0.120 0.344 0.36α = 0.043 3.54e-4 14.817
0.107 0.307 0.54α = 0.058 3.64e-4 14.687

soft 0.091 4.32e-4 14.063

Table 9.1: n = 217, σ = 0.05, SNR = 6.340

is given by

ρsoph(α, β, γ, S) = E
[
(sophα,β,γ(Y)− S)2

]

= 2σ2 + 2γ2 − S2

+ Φ(β − S)(−σ2 − γ2 + S2)

+ Φ(β + S)(−σ2 − γ2 + S2)

+ φ(β − S)(σ2(β − S − 2γ))

+ φ(β + S)(σ2(β + S − 2γ))

+

β∫

α

(
soph2α,β,γ(x)− 2Ssophα,β,γ(x)

)
φ(x− S)dx

+

−α∫

−β

(
soph2α,β,γ(x)− 2Ssophα,β,γ(x)

)
φ(x− S)dx(9.13)

Using the knowledge of the distribution of S (in fact some kind of histogram)

and applying these values on the risk distribution formula above, one obtains

optimal values α = 0.118, β = 3.208α and γ = 0.0582α that, for this example,

represent the optimal compromise between reducing risk for different values of

S. One can see that α is a little smaller than in the optimal case above while β

became larger. The value of γ is very small, only about 0.1σ.

Figure 9.8 compares the different risk contributions of soft (blue) and sophis-

ticated thresholding with thresholds given by GCV (red) and the optimal ones

(black). The optimal threshold choice leads to larger risk for small values, but

outperforms thresholds generated by GCV with fixed β = 2.867α and γ = 0.18α.

The total risk of the optimal thresholds, regarding the given coefficients Sjk, i.e.

the ideal risk for this specific example, is now given by

risksoph(α, β, γ) =
∑

(j,k)∈I
ρsoph(α, β, γ, Sjk)

= 2.96e− 4. (9.14)

CHAPTER 9. SOPHISTICATED THRESHOLDING 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.004

0.008

0.012

(a) S ∈ (0, 15σ)

0 0.004 0.008 0.012
0

0.5

1

1.5

2
x 10

−4

 risksoph(0.124, 0.356, 0.0223, S)

risksoph(0.118, 0.379, 0.0069, S)

risksoft (0.091, S)

(b) S ∈ (0, 0.25σ)

Figure 9.8: optimal risk contribution for example of table 9.1, σ = 0.05

This is only the expected MSE, though. Applying these values directly to

this particular noisy signal, we obtain a MSE value of only 3.36e − 4 and

SNR = 15.033 which is not so much better than the result produced by GCV .

So we already came very close to the optimal MSE achievable by this thresh-

olding method under the knowledge of the distribution of S. Since sophisticated

thresholding embeds hard and soft thresholding, no better MSE can be expected

for these methods. Table 9.2 summarizes the results for hard, soft and sophis-

thresholds risk MSE SNR

soph gcv α = 0.124, β = 0.356, γ = 0.0223 3.01e-4 3.42e-4 15.003
sure α = 0.115, β = 0.329, γ = 0.0207 2.99e-4 3.38e-4 15.008
best α = 0.118, β = 0.379, γ = 0.0069 2.96e-4 3.36e-4 15.033

soft gcv λ = 0.0914 3.84e-4 4.21e-4 14.063
sure λ = 0.0794 3.76e-4 4.10e-4 14.178
best λ = 0.0824 3.75e-4 4.10e-4 14.177

hard best λ = 0.1681 3.38e-4 3.88e-4 14.411

Table 9.2: n = 217, σ = 0.05, SNR = 6.340

ticated thresholding. For sophisticated thresholding, we used again β = 2.867α

and γ = 0.18α to make SURE and GCV applicable. Risk is obtained using for-

mula (9.13) and the knowledge of the distribution of S. In all cases, the achieved

MSE is worse than risk = E[MSE], even for optimal thresholds. This might be

due to approximations of the distribution of S that has been used, or noise that is

worse than expected. However, one can again see that sophisticated thresholding

outperforms even best possible thresholds for soft and hard thresholding. SURE

and GCV are very close to be optimal even though β and γ were given by a fixed

dependency on α. For more comparisons see chapter 11.

CHAPTER 9. SOPHISTICATED THRESHOLDING 106

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8
1

4

16

64

256

1024

4096

German "ch"

German "aa"

Figure 9.9: Histogram of transformed German “ch” and “aa”, Daubechies 16, J = 8

9.6 Perspectives

The examples provided in table 9.2 indicate that sophisticated thresholding pro-

duces better results than soft and hard thresholding, even for values β and γ

dependent on α. These results are supported by several additional tests provided

in chapter 11. Sophisticated thresholding has been used in combinations with

different threshold finders — GCV , SURE and different level dependent GCV

methods — almost always leading to better results than the corresponding finder

in combination with soft thresholding. It is however not clear if the chosen values

β = 2.867α and γ = 0.18α are appropriate for all signals. Especially if one would

try to use sophisticated thresholding for other denoising applications than speech.

As mentioned before and supported by risk analysis, optimal thresholds de-

pend on the distribution of the uncorrupted signal wavelet coefficients. Two such

distributions in wavelet domain, represented by histograms and plotted in log-

arithmic scale, are provided in figure 9.9. For both examples, 215 samples at a

rate of 44100 samples per second have been used. One can see that the sibilant

“ch” and the vowel “aa” lead to completely different numbers of zero coefficients

which have been proven to have crucial influence on the optimal threshold val-

ues. Vowel “aa” concentrates most energy in a small number of large coefficients

whereas “ch” produces many rather small coefficients.

In previous section, considering equation (9.14) and table 9.2, we have seen

that sophisticated thresholding comes very close to the optimal MSE that could

be obtained assuming free choice of α, β and γ. However, figure 9.9 indicates

that using constant thresholds for the whole signal might not be sufficient. Hence,

further research should concentrate on methods to adjust the threshold values in

signal time, always being optimal for the current speech part. SURE and GCV

CHAPTER 9. SOPHISTICATED THRESHOLDING 107

are not appropriate, though. First of all, they both need too many coefficients

to obtain good results. Common sampling rates of 22050 or 44100 samples per

second do not provide enough data to enable separate treatment of each voice

tones like different vowels and consonants. Furthermore, the length of such sounds

vary and it is not clear how many samples should be used. A solution might be

to use larger intervals, putting in some way more weight on current coefficients.

However, after all it would be desirable to adjust β and γ, too, to obtain much

better results. Therefore, it will be necessary to find new methods to approximate

the distribution of uncorrupted signal wavelet coefficients.

Chapter 10

Biased Risk Based Sound

Improvement

In chapter 7 and 9 the main objective was to minimize the risk function that has

been introduced in chapter 3. However, the reconstructed signals carry a lot of

disturbing noise artifacts, sounding in some way like slight rain on a roof. Before,

we studied the universal threshold that produces smooth functions, completely

removing noise with high probability, on the expense of very large bias which

produces some kind of blurred signals. I will now try to find another approach

to obtain a good compromise of both, small risk and smooth signals. The risk

contribution of a signal wavelet coefficient can be expressed similarly to (3.9) by

ρ(α, β, γ, S) = E
[
S − Ŝsoph

]2

=
(
EŜsoph − S

)2
+ E

[
EŜsoph − Ŝsoph

]2

=
(
EŜsoph − S

)2
+
(
E(Ŝsoph)2 − (EŜsoph)2

)
(10.1)

= bias2 + variance. (10.2)

Hence, risk minimizing can be understood as finding a best compromise between

bias and variance [19]. So far, both have been weighted the same. The idea is

now to put more weight on the variance to achieve better noise removal quality

(at the expense of bias). In fact, shrinking the variance directly leads to smoother

signals.

10.1 Biased Risk Contribution

Let’s first introduce the definition of biased risk.

108

CHAPTER 10. BIASED RISK BASED SOUND IMPROVEMENT 109

Definition 10.1.1. For t ∈ (0, 1), we call

ρt(S, Ŝ) = t · bias2 + (2− t) · variance
= t

(
(EŜ)2 − 2SEŜ + S2

)
+ (2− t)

(
EŜ2 − (EŜ)2

)

= (2− t)EŜ2 + 2(t− 1)(EŜ)2 − 2tSEŜ + tS2 (10.3)

biased risk contribution function.

For t = 1, one would obtain the original risk contribution function, whereas

values t > 1 lead to overweighted bias and hence the risk minimization results in

less biased but also less smooth estimated signal functions.

For the computation of biased risk we need the first and second moment of the

random variable Ŝsoph = sophα,β,γ(S + E). Simple calculations similar to those

done for the proofs of lemma 7.5.1 and lemma 7.5.2 lead to

EŜsoph = 2S

− Φ(β − S)(S − γ) + φ(β − S)(σ2)

− Φ(β + S)(S + γ) + φ(β + S)(−σ2)

+

β∫

α

sophα,β,γ(x)φ(x− S)dx+

−α∫

−β

sophα,β,γ(x)φ(x− S)dx(10.4)

and

E(Ŝsoph)2 = 2σ2 + 2γ2 + 2S2

− Φ(β − S)(σ2 + (S − γ)2) + φ(β − S)(σ2(β + S − 2γ))

− Φ(β + S)(σ2 + (S + γ)2) + φ(β + S)(σ2(β − S − 2γ))

+

β∫

α

soph2α,β,γ(x)φ(x− S)dx+

−α∫

−β

soph2α,β,γ(x)φ(x− S)dx(10.5)

Let’s now take a separated look at the squared bias and the variance, respectively.

Using equations (10.2), (10.4) and (10.5), with β = cα, γ = dα for some constants

c ≥ 1, d ≥ 0, one obtains

lim
α→∞

bias2(Ŝsoph) = |S|2

lim
α→0

bias2(Ŝsoph) = 0

lim
α→∞

var(Ŝsoph) = 0

lim
α→0

var(Ŝsoph) = σ2.

CHAPTER 10. BIASED RISK BASED SOUND IMPROVEMENT 110

0
1

2
3

4

0

1

2

3

4
0

10

20

30

coefficient S

threshold λ

(a) soft: bias2

0
1

2
3

4

0

1

2

3

4

0

10

20

30

coefficint S

threshold α

(b) soph: bias2

0
1

2
3

4

0

1

2

3

4
0

1

2

3

coefficient S

threshold λ

(c) soft: variance

0
1

2
3

4

0

1

2

3

4
0

1

2

3

coefficint S

threshold α

(d) soph: variance

Figure 10.1: bias2 and variance for soft and sophisticated thresholding, σ = 1, β =
2.867α, γ = 0.18α

This is also clear using equation (10.1), since for α → ∞ we have soph(Y) → 0

and for α = 0 it follows that Esoph(Y) = S and E(Ŝsoph)2 = S2 + σ2. Since the

best compromise between bias2 and variance is now shifted towards the variance

one expects the threshold value to become larger than before. Figure 10.1 shows

both, squared bias and variance, for soft and sophisticated thresholding. One can

see that sophisticated thresholding produces less bias but more variance. Hence,

for biased risk minimization we will have to adjust especially β and γ.

10.2 Minimization Problem

Table 10.1 shows optimal threshold values for a noisy speech example and dif-

ferent values of t. The optimal threshold values have been obtained using the

knowledge of the uncorrupted signal wavelet coefficients and the “Nelder and

Mead” minimization method. Orthogonal Daubechies wavelets with 8 vanishing

CHAPTER 10. BIASED RISK BASED SOUND IMPROVEMENT 111

moments have been used and, the corresponding detail coefficients have been

evaluated at J = 8 levels. One can see that small t leads to, as expected, larger

thresholds α and γ, whereas β does not change much. While α increases ap-

proximately 28% from t = 1 to t = 0.2, the corresponding factor to obtain β

decreases about 25%. In fact, for t = 0.2, the threshold α is already very close

to the universal threshold λuniv = σ
√

2 log (2J) = 0.1665. Table 10.2 provides

t α β γ riskt

1.00 0.1181 3.208α 0.0582α 2.961e-4
0.66 0.1317 2.987α 0.1628α 2.721e-4
0.50 0.1383 2.951α 0.2471α 2.489e-4
0.36 0.1457 2.810α 0.3916α 2.181e-4
0.20 0.1516 2.413α 0.6669α 1.791e-4

Table 10.1: Optimal thresholds for biased risk, n = 217, σ = 0.05, MSE = 3.5e − 3,
SNR = 6.340

the corresponding risk, bias and variance for the thresholds given in table 10.1.

For t = 0.2, one can indeed see that the actual risk is almost only influenced by

bias, leading however to much worse MSE values. Hence, a good compromise

might be a choice of t ≈ 0.5, where variance is already shrunken much more than

bias, leading however to risk and MSE not much worse than optimal. So far, I

t risk bias2 variance MSE SNR

1.00 2.961e-4 1.687e-4 1.274e-4 3.364e-4 15.033
0.66 3.088e-4 2.132e-4 9.562e-5 3.514e-4 14.844
0.50 3.279e-4 2.455e-4 8.240e-5 3.712e-4 14.606
0.36 3.661e-4 2.969e-4 6.921e-5 4.104e-4 14.170
0.20 4.564e-4 4.021e-4 5.418e-5 5.024e-4 13.291

Table 10.2: Bias and variance for biased risk, n = 217, σ = 0.05, MSE = 3.5e − 3,
SNR = 6.340

used the knowledge of the uncorrupted signal to find good threshold values. The

main problem is now to find good riskt minimization methods for t 6= 1. I tried

to develop generalizations of SURE and GCV , without success, though. Hence,

at the moment the best approximation of riskt minimization methods is to eval-

uate good thresholds using a known risk minimization method and adjusting the

results due to previous experiments. For the examples provided in chapter 11,

I performed a SURE minimizations, adjusting the results in the following way:

αt = 1.2α, βt = β, γt = 2γ. However, much more research need to be done to

improve biased risk minimization and replace the mentioned heuristic approach.

Chapter 11

Comparisons, Conclusions and

Outlook

Explanations: All speech examples of tables 11.2 to 11.7 are specified in ap-

pendix A and can be found on the attached CD. Table 11.1 provides the names

of the denoised speech files, where “example” stands for the corresponding speech

name, specified in appendix A. The first column provides the used denoising

Original example.wav

Noisy, σ = 0.0x example0x.wav

Diffusion FWT example0x diff fwt 4 6 1.0 80.wav
Soft VISU FWT example0x visu soft FWT 7 8
Soft MiMa FWT example0x minimax soft FWT 7 8
Soft SURE FWT example0x sure soft FWT 9 10.wav
Soph SURE FWT example0x sure soph FWT 9 10.wav
Soft GCV FWT example0x gcv soft FWT 9 10.wav
Soph GCV FWT example0x gcv soph FWT 9 10.wav
Soft LGCV FWT example0x lgcv soft FWT 9 10.wav
Soph LGCV FWT example0x lgcv soph FWT 9 10.wav
Cart VISU FWT example0x visu cart FWT 9 10.wav
Cart MiMa FWT example0x minimax cart FWT 9 10.wav
Cart SURE FWT example0x sure cart FWT 9 10.wav
Biased FWT example0x sure biased soph FWT 9 10.wav

Soft LGCV SWT example0x gcv soft SWT 5 8.wav
Soph LGCV SWT example0x gcv soph SWT 5 8.wav
Soft IGCV SWT example0x gcv inter SWT 6 6 l1.wav
Lipschitz SWT example0x lip 4 7.wav

Wiener FFT example0x sdd wf 1024.wav
PSF FFT example0x sdd psf 1024.wav
EMF FFT example0x sdd emf 1024.wav

Table 11.1: Explanations: σ = 0.0x

112

CHAPTER 11. COMPARISONS, CONCLUSIONS AND OUTLOOK 113

method. For all thresholding methods, the first word describes the threshold-

ing method, the second word for the threshold or threshold finder, respectively.

“VISU” refers to the universal threshold, “MiMa” to the miinimax threshold. An

“L” at the threshold finder indicates level dependent thresholding, i.e. at each

level, a threshold has been evaluated separately. “Cart” refers to the algorithm for

tree structured thresholding, CPRESS. Furthermore, for “Cart SURE”, I used a

threshold obtained using SURE for sophisticated thresholding. “ICGV” refers to

inter scale GCV, as described in section 7.10, using coefficients of two subsequent

levels, i.e. l = 1. Diffusion denoising performes 80 iterations with diffusion step

size τ = 1, starting with a threshold 50% larger than universal. At each iteration,

the threshold has been shrunken by a factor of 0.99. Thresholds for biased risk

thresholding are obtained using “Soph SURE” thresholds, increasing α by a factor

of 1.2 and doubling γ. For all methods, I used orthogonal Daubechies wavelets.

The number of vanishing moments is provided in the fourth column of tables 11.2

to 11.7. For Fourier based methods, windows with a sub-frame length of 1024

samples are used, 75% overlapping.

On each speech example, Gaussian white noise with standard deviation σ =

0.01, σ = 0.03 and σ = 0.05 has been added. Tables 11.2 to 11.7 list MSE and

SNR before and after denoising. For each example, the best FWT based method

— in terms of MSE and SNR minimization — is marked blue. If any SWT based

procedure produces better results it is additionally marked green. There is no

case where FFT based methods are better than the best wavelet based method.

In the following, I will first compare the methods based only on MSE and SNR,

and try to provide some conclusions about favorable methods. Then, I will com-

pare the methods based on auditory behavior. However, clear and indisputable

results are not possible here, since each method produces its own characteristic

noise artifacts and signal deformations, diversely evaluated by different persons.

Hence, I recommend to listen to some of the speech examples on the attached

CD to form an own view, too. However, I will also try to provide an evaluation

which methods might be best for which speech sound, i.e. different preferences

for vocals, sibilants and other consonants.

MSE and SNR Comparison: First, I will compare the methods in gen-

eral, i.e. I try to find results that are true for all speech examples. Later I will

consider some special examples an analyze the best method. Diffusion denois-

ing, Lipschitz denoising and VISU shrink are for almost all examples the worst

methods. Only Lipschitz denoising outperforms in few cases some of the other

CHAPTER 11. COMPARISONS, CONCLUSIONS AND OUTLOOK 114

methods. This is however not surprising since all these methods are not based on

MSE minimization but rather on smoothing. Only for large noise magnitudes, i.e.

large σ, Lipschitz denoising yields some good results. In fact, compared to other

methods, the obtained SNR does not change much for decreasing noise magni-

tude, i.e. the absolute result is less dependent on noise. Although CPRESS is not

based on risk minimization, either, for a given threshold, the idea and the actual

outcome is not so much different to thresholding. Hence, using risk minimization

thresholds also leads to good results. Another remark should be done on biased

risk thresholding. Even though it is not directly based on risk minimization, in

fact we explicitly adjust thresholds to obtain more bias, it yields good results, not

much worse than others. Let’s now take a closer look on sophisticated threshold-

ing. We can see that for most cases, sophisticated thresholding produces better

results than corresponding threshold finders based on soft thresholding. Espe-

cially for level dependent GCV and FWT, there are some examples with very

large differences to soft thresholding. E.g. for speech 2 and σ = 0.01, the differ-

ence is over 3dB, i.e. MSE doubles from soph to soft. Furthermore, as mentioned

in chapter 9, it would be possible to obtain even better results if we were not

restricted on in some way fixed β and γ. Considering inter scale dependencies, I

cannot support the assumption, postulated by Maarten Jansen [19], that inter-

scale GCV thresholding yields better results than ordinary GCV. In fact, only

for few examples better SNR is obtained.

Let’s now consider speech example 1 and 2. In contrast to the other examples,

both consist of only 216 samples. It is remarkable that, independent of the noise

magnitude, CPRESS produces the best results. Especially for σ = 0.03, no other

method comes close to the MSE of CPRESS. The differences between SURE and

Minimax threshold is however small. In most cases, Minimax is a little better.

For all other examples, the optimal method depends on the noise magnitude.

For σ = 0.01, sophisticated thresholding linked with SURE seems to be the best

choice. Whenever it is not optimal, it is at least very close to optimal. If SURE is

not applicable because σ is not known, sophisticated GCV is second-best, either

ordinary or level dependent based on SWT. FWT based level dependent GCV

yields to much worse results for σ = 0.01. However, for larger noise magnitudes

the tide turns and for σ = 0.03 it is already the best method for some of the speech

examples, whereas others still prefer sophisticated SURE or Cart. Finally, for

σ = 0.05, it clearly is the optimal choice. Besides speech example 1 and 2, there

is only one other speech example that would prefer Cart. However, the SNR

difference to LGCV is rather small. LGCV is only outdone by “itself”, based

on SWT though. It is remarkable that for SWT, no clear preference between

CHAPTER 11. COMPARISONS, CONCLUSIONS AND OUTLOOK 115

sophisticated and soft thresholding can bee determined. Finally, the used FFT

based methods are outperformed by almost all wavelet based methods!

In summary, for small n, Cart seems to be appropriate. Otherwise, we need a

rough noise estimation to find good methods. For large noise magnitude, the best

choice is LGCV, based on SWT or FWT. For small noise amplitudes however,

LGCV performs much worse than SURE and GCV. For medial noise magnitudes,

the differences are small, and furthermore, Cart might be a good choice, too.

Sound Quality Comparison: Let’s now take a look at (or rather a listen

to) sound quality. The following conclusions are mainly based on my personal

perception of noise, i.e. on the evaluation which noise artifact is most disturbing.

Other readers may come to different conclusions. Additionally, I’ve been listening

to so much noise recently, such that I’ve got the feeling to become more and more

noise resistant.

However, let’s start with reconstructed signals for σ = 0.01. My clear favorite

is the universal threshold, i.e. Soft VISU. We have seen in chapter 7 that with

high probability, all noise is removed. Indeed, I can not hear much noisy distur-

bances. At the same time, since σ and therefore λ is relatively small compared

to uncorrupted signal coefficients, the signal deformation is still small. If σ can’t

be approximated, Lipschitz denoising provides relatively good quality, too. For

my perceptual experience, the constant low frequency background noise, charac-

teristic for Lipschitz denoising and described in chapter 5, is less distracting than

permanently changing small disturbances. For larger σ, VISU shrink yields much

more signal deformation and other methods are preferable.

For σ = 0.03 it is very hard to state a preference. For some examples, VISU

shrink still sounds good. For most examples I prefer Lipschitz denoising, though.

Even though many important signal features are kept by Diffusion denoising,

noise is not really removed but in some way smoothed to a constant high tone

background beeping, as already mentioned in chapter 6. However, also LGCV and

biased risk denoising yield to good results for some examples. Especially biased

risk seems to become much better than SURE or GCV methods for increasing σ.

Finally, for large σ, I would prefer biased risk thresholding and in some cases

Lispchitz denoising. Similar to VISU shrink, almost all noise is removed (be-

sides the mentioned low frequency background, sounding in some way like a far

away highway), but there is less signal distortion. However, Lipschitz denoising

produces now some additional disturbing swishing sounds, occuring at “s” and

similar sounds.

For all noise magnitudes, sophisticated and soft thresholding risk minimization

CHAPTER 11. COMPARISONS, CONCLUSIONS AND OUTLOOK 116

methods lead to different characteristic chirping and twittering. In my opinion,

the residual noise of sophisticated thresholding is a little less disturbing. How-

ever, for large noise magnitude these methods are outperformed by biased risk

denoising, leading indeed as desired to less “chirping” and about the same sig-

nal quality. Cart methods produce typical keep or kill problems. Soft or soph

thresholding leads to an additional smoothing by shrinking even large coefficients

by a certain amount. Hard thresholding, or in this case a tree structured keep

or kill method, yields to abrupt changes of the signal, sounding indeed in some

way “hard”. Furthermore, cart processes coefficients in blocks. Each tree of coef-

ficients is treated separately, i.e. for one tree most coefficients might be kept, in

the following one most might be killed, enhancing the effect of abrupt changes.

Finally, some additional remarks about the optimal method for some different

speech sounds. As mentioned in chapter 1, one expects reconstruction problems

for sibilant sounds like “s”, “ch” or “z”, since they sound and look similar to noise.

One can see in figure 1.1 that smoothness assumptions do not apply. Hence, it

is not surprising that especially smoothness based methods produce bad results.

Diffusion and Lipschitz denoising produce additional swishing or soughing arti-

facts whenever such sounds occur. Similar artifacts can also be observed for Visu

Shrink, but not as strong. Indeed, thresholding often produces much better qual-

ity, i.e. less signal deformation, on the expense of more audible residual noise.

The best result is obtained using level dependent thresholds. Also hard conso-

nants like “t” or “k” are, similar to sibilants, better preserved by thresholding

methods, again especially level dependent ones. The difference is much less con-

spicuous, though. However, other sounds, especially vowels, or sounds like “m”,

“l” and “r” that produce smooth curves are much better preserved using Lipschitz

denoising or Visu Shrink. Smooth signals produce sparser wavelet representations

of the original signal, and therefore, only few important but very large coefficients

remain. Hence, Visu Shrink, using very large thresholds to remove all pure noise

coefficients, does not kill or deform many important coefficients. For Lipschitz

denoising, the same fact facilitates the detection of noise coefficients that need to

be removed. For all other thresholding methods there is not much signal defor-

mation either, but much more residual noise since the selected thresholds are too

small. In fact, these results also support the statement made in chapter 9 that

large original signal coefficients prefer larger thresholds, i.e. global thresholds can

not be optimal.

However, as mentioned, I recommend to listen to some examples and decide

for yourself. For a very quick overview and comparison of the different residual

CHAPTER 11. COMPARISONS, CONCLUSIONS AND OUTLOOK 117

noise artifacts and denoising results, I recommend to select only Lipschitz, VISU,

biased, Soph LGCV and Soft SURE. Then, most typical artifacts are covered and

the audible differences to other methods are rather small.

Outlook, Perspectives: I have shown that wavelet based denoising meth-

ods can outperform some of the existing and commonly used Fourier based meth-

ods. However, some further improvements are possible. I will now give a brief

overview of possible enhancements. First of all, different wavelets may lead to

better results, without even changing a lot of the actual methods. For example,

Yu, Bacry and Mallat recently proposed to use complex wavelets in audio signal

processing to protect the phase of the signal [38]. Furthermore, I developed two

new denoising methods, sophisticated thresholding and biased risk thresholding.

However, for both methods the threshold finding procedure should be improved.

For sophisticated thresholding, we adjust in fact only one out of three parameters

for risk minimization purpose. Biased risk thresholding lacks of any appropriate

method to find good thresholds, using a simple heuristic approach so far. Addi-

tionally, as mentioned in chapter 9, it will be better not to use constant thresholds

for the whole signal but adjust it in accordance to the current signal features. In

fact, this bridges to speech recognition methods. In summary, we see that further

research is necessary to obtain satisfactorily results.

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

118

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 19.866 21.411 22.778 22.672 24.019 24.692 22.720 22.808 24.255

Diffusion FWT 4 6 18.681 24.442 18.311 22.551 25.015 23.064 18.632 18.539 21.706
Soft VISU FWT 7 8 19.493 21.289 19.146 22.118 23.369 22.288 18.867 19.819 21.646
Soft MiMa FWT 7 8 22.735 24.444 22.617 25.304 26.558 25.611 22.239 23.222 25.008
Soft SURE FWT 9 10 23.621 25.354 24.747 26.311 27.620 27.209 24.423 25.039 26.685
Soph SURE FWT 9 10 24.242 25.940 24.894 26.746 28.026 27.447 24.400 25.226 26.933
Soft GCV FWT 9 10 23.569 25.245 24.696 26.186 27.450 26.978 24.091 24.703 26.559
Soph GCV FWT 9 10 24.117 25.840 24.443 26.682 27.797 27.201 24.042 24.904 26.559
Soft LGCV FWT 9 10 20.619 20.594 21.666 23.214 25.910 22.730 24.141 20.765 26.557
Soph LGCV FWT 9 10 22.488 23.647 23.199 25.869 27.605 25.572 23.196 23.483 26.245
Cart VISU FWT 9 10 22.872 24.788 21.409 25.194 23.955 24.936 21.583 23.090 24.726
Cart MiMa FWT 9 10 24.328 26.185 22.814 26.863 25.011 26.417 23.443 24.990 26.494
Cart SURE FWT 9 10 23.960 26.051 22.650 26.787 24.992 26.318 23.222 24.597 26.279
Biased FWT 9 10 23.946 25.554 24.556 26.273 27.647 27.033 24.137 24.974 26.597
Soft LGCV SWT 5 8 23.962 25.848 24.677 26.748 27.952 27.261 24.060 24.991 26.659
Soph LGCV SWT 5 8 24.163 25.892 24.326 26.717 27.994 27.018 23.846 24.933 26.596
Soft IGCV SWT 6 6 18.443 22.175 23.388 25.167 27.481 26.455 22.490 23.599 25.519
Lipschitz SWT 4 7 15.190 18.365 12.803 19.380 17.605 15.900 13.542 14.516 14.765

Wiener FFT - - 20.178 20.877 17.472 20.569 21.700 20.109 16.611 17.920 17.569
PSF FFT - - 21.422 22.055 18.652 21.622 22.572 21.243 17.652 19.030 18.703
EMF FFT 21.303 21.893 18.512 21.513 22.468 21.102 17.509 18.877 18.549

Table 11.2: SNR Comparison: σ = 0.01, *IGCV = Inter Scale GCV, *LGCV = Level Dependent GCV

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

119

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 9.999e-5 1.002e-4 1.001e-4 1.001e-4 1.001e-4 1.001e-4 1.001e-4 1.001e-4 1.002e-4

Diffusion FWT 4 6 1.314e-4 4.983e-5 2.798e-4 1.029e-4 7.955e-5 1.456e-4 2.565e-4 2.674e-4 1.803e-4
Soft VISU FWT 7 8 1.090e-4 1.030e-4 2.309e-4 1.137e-4 1.162e-4 1.740e-4 2.430e-4 1.991e-4 1.828e-4
Soft MiMa FWT 7 8 5.165e-5 4.982e-5 1.038e-4 5.458e-5 5.575e-5 8.097e-5 1.118e-4 9.096e-5 8.427e-5
Soft SURE FWT 9 10 4.212e-5 4.040e-5 6.358e-5 4.329e-5 4.366e-5 5.605e-5 6.761e-5 5.986e-5 5.728e-5
Soph SURE FWT 9 10 3.650e-5 3.530e-5 6.146e-5 3.916e-5 3.977e-5 5.305e-5 6.796e-5 5.734e-5 5.410e-5
Soft GCV FWT 9 10 4.262e-5 4.142e-5 6.432e-5 4.454e-5 4.541e-5 5.911e-5 7.298e-5 6.468e-5 5.896e-5
Soph GCV FWT 9 10 3.757e-5 3.612e-5 6.818e-5 3.974e-5 4.192e-5 5.615e-5 7.381e-5 6.176e-5 5.896e-5
Soft LGCV FWT 9 10 8.407e-5 1.209e-4 1.292e-4 8.832e-5 6.474e-5 1.572e-4 7.215e-5 1.602e-4 5.899e-5
Soph LGCV FWT 9 10 5.467e-5 5.985e-5 9.081e-5 4.792e-5 4.382e-5 8.171e-5 8.968e-5 8.565e-5 6.339e-5
Cart VISU FWT 9 10 5.005e-5 4.602e-5 1.371e-4 5.598e-5 1.015e-4 9.460e-5 1.300e-4 9.378e-5 8.993e-5
Cart MiMa FWT 9 10 3.580e-5 3.337e-5 9.922e-5 3.811e-5 7.962e-5 6.725e-5 8.472e-5 6.054e-5 5.985e-5
Cart SURE FWT 9 10 3.895e-5 3.441e-5 1.030e-4 3.879e-5 7.996e-5 6.881e-5 8.913e-5 6.628e-5 6.290e-5
Biased FWT 9 10 3.908e-5 3.858e-5 6.644e-5 4.366e-5 4.340e-5 5.836e-5 7.221e-5 6.076e-5 5.845e-5
Soft LGCV SWT 5 8 3.894e-5 3.605e-5 6.461e-5 3.914e-5 4.045e-5 5.538e-5 7.350e-5 6.053e-5 5.762e-5
Soph LGCV SWT 5 8 3.717e-5 3.569e-5 7.004e-5 3.942e-5 4.006e-5 5.857e-5 7.721e-5 6.135e-5 5.846e-5
Soft IGCV SWT 6 6 1.388e-4 8.400e-5 8.695e-5 5.633e-5 4.508e-5 6.667e-5 1.055e-4 8.340e-5 7.492e-5
Lipschitz SWT 4 7 2.935e-4 2.020e-4 9.948e-4 2.135e-4 4.381e-4 7.576e-4 8.282e-4 6.753e-4 8.913e-4

Wiener FFT - - 1.861e-4 2.265e-4 3.395e-4 1.624e-4 1.707e-4 2.875e-4 4.085e-4 3.083e-4 4.673e-4
PSF FFT - - 1.398e-4 1.727e-4 2.587e-4 1.274e-4 1.396e-4 2.214e-4 3.214e-4 2.388e-4 3.599e-4
EMF FFT 1.437e-4 1.792e-4 2.672e-4 1.306e-4 1.430e-4 2.287e-4 3.322e-4 2.474e-4 3.729e-4

Table 11.3: MSE Comparison: σ = 0.01, MSE = 1.000e − 4

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

120

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 10.323 11.870 13.234 13.128 14.475 15.148 13.177 13.265 14.712

Diffusion FWT 4 6 12.896 17.057 12.840 16.646 19.379 16.916 13.417 13.901 15.603
Soft VISU FWT 7 8 12.875 15.050 13.092 16.049 17.493 16.243 13.192 13.967 15.543
Soft MiMa FWT 7 8 15.780 17.696 16.060 18.759 20.150 19.127 15.959 16.756 18.468
Soft SURE FWT 9 10 16.116 18.037 16.929 19.094 20.415 19.713 16.801 17.439 19.114
Soph SURE FWT 9 10 16.761 18.695 17.192 19.827 21.148 20.100 16.886 17.618 19.540
Soft GCV FWT 9 10 16.096 18.010 16.868 19.010 20.423 19.690 16.566 17.364 19.032
Soph GCV FWT 9 10 16.741 18.676 17.157 19.826 21.128 20.087 16.707 17.547 19.347
Soft LGCV FWT 9 10 15.693 17.378 16.764 18.959 21.223 19.591 16.092 16.652 18.699
Soph LGCV FWT 9 10 15.529 18.701 17.005 19.975 21.356 20.205 16.615 17.266 19.188
Cart VISU FWT 9 10 15.240 17.734 14.948 18.685 19.454 18.506 14.691 15.489 17.846
Cart MiMa FWT 9 10 17.111 19.329 16.798 19.921 20.470 20.144 16.544 17.618 19.642
Cart SURE FWT 9 10 17.112 19.291 16.548 19.996 20.541 19.799 16.292 17.449 19.601
Biased FWT 9 10 16.280 18.476 16.945 19.460 20.765 19.965 16.697 17.382 19.137
Soft LGCV SWT 5 8 16.801 18.975 17.149 19.957 21.120 20.218 16.892 17.417 19.418
Soph LGCV SWT 5 8 16.882 18.988 17.021 19.946 21.376 20.193 16.692 17.592 19.475
Soft IGCV SWT 6 6 15.433 18.361 15.939 18.610 20.150 19.400 15.532 16.662 18.380
Lipschitz SWT 4 7 13.921 16.461 12.047 17.746 16.306 15.095 12.537 13.772 14.069

Wiener FFT - - 13.120 14.858 11.026 14.154 16.137 13.960 11.112 12.201 17.569
PSF FFT - - 14.160 15.681 11.879 15.077 17.027 14.734 11.775 12.908 18.703
EMF FFT 14.057 15.603 11.781 15.008 16.943 14.659 11.702 12.837 12.427

Table 11.4: SNR Comparison: σ = 0.03

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

121

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 9.001e-4 9.010e-4 9.007e-4 9.007e-4 9.007e-4 9.007e-4 9.008e-4 9.008e-4 9.022e-4

Diffusion FWT 4 6 4.977e-4 2.729e-4 9.863e-4 4.007e-4 2.912e-4 5.996e-4 8.522e-4 7.780e-4 7.348e-4
Soft VISU FWT 7 8 5.001e-4 4.333e-4 9.307e-4 4.597e-4 4.496e-4 7.001e-4 8.976e-4 7.663e-4 7.451e-4
Soft MiMa FWT 7 8 2.562e-4 2.356e-4 4.699e-4 2.463e-4 2.438e-4 3.604e-4 4.747e-4 4.032e-4 3.800e-4
Soft SURE FWT 9 10 2.371e-4 2.178e-4 3.846e-4 2.281e-4 2.294e-4 3.149e-4 3.910e-4 3.445e-4 3.274e-4
Soph SURE FWT 9 10 2.044e-4 1.872e-4 3.620e-4 1.926e-4 1.938e-4 2.880e-4 3.835e-4 3.306e-4 2.968e-4
Soft GCV FWT 9 10 2.382e-4 2.191e-4 3.901e-4 2.325e-4 2.290e-4 3.166e-4 4.127e-4 3.505e-4 3.336e-4
Soph GCV FWT 9 10 2.054e-4 1.880e-4 3.650e-4 1.927e-4 1.947e-4 2.889e-4 3.996e-4 3.360e-4 3.103e-4
Soft LGCV FWT 9 10 2.614e-4 2.535e-4 3.996e-4 2.352e-4 1.905e-4 3.239e-4 4.603e-4 4.130e-4 3.602e-4
Soph LGCV FWT 9 10 2.714e-4 1.869e-4 3.780e-4 1.862e-4 1.847e-4 2.812e-4 4.081e-4 3.585e-4 3.219e-4
Cart VISU FWT 9 10 2.901e-4 2.335e-4 6.071e-4 2.506e-4 2.862e-4 4.157e-4 6.356e-4 5.397e-4 4.385e-4
Cart MiMa FWT 9 10 1.886e-4 1.618e-4 3.964e-4 1.885e-4 2.265e-4 2.851e-4 4.148e-4 3.306e-4 2.899e-4
Cart SURE FWT 9 10 1.885e-4 1.632e-4 4.200e-4 1.853e-4 2.228e-4 3.087e-4 4.396e-4 3.437e-4 2.927e-4
Biased FWT 9 10 2.284e-4 1.969e-4 3.833e-4 2.096e-4 2.116e-4 2.971e-4 4.005e-4 3.491e-4 3.256e-4

Soft LGCV SWT 5 8 2.025e-4 1.755e-4 3.657e-4 1.869e-4 1.950e-4 2.803e-4 3.829e-4 3.463e-4 3.053e-4
Soph LGCV SWT 5 8 1.988e-4 1.750e-4 3.766e-4 1.874e-4 1.839e-4 2.819e-4 4.009e-4 3.326e-4 3.013e-4
Soft IGCV SWT 6 6 2.775e-4 2.021e-4 4.832e-4 2.549e-4 2.439e-4 3.384e-4 5.236e-4 4.119e-4 3.877e-4
Lipschitz SWT 4 7 3.930e-4 3.131e-4 1.184e-3 3.110e-4 5.909e-4 9.120e-4 1.044e-3 8.014e-4 1.046e-3

Wiener FFT - - 9.455e-4 9.056e-4 1.498e-3 7.112e-4 6.144e-4 1.184e-3 1.449e-3 1.151e-3 1.780e-3
PSF FFT - - 7.440e-4 7.493e-4 1.231e-3 5.751e-4 5.005e-4 9.910e-4 1.244e-3 9.778e-4 1.503e-3
EMF FFT - - 7.619e-4 7.628e-4 1.259e-3 5.842e-4 5.103e-4 1.008e-3 1.265e-3 9.939e-4 1.527e-3

Table 11.5: MSE Comparison: σ = 0.03, MSE = 9.000e − 4

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

122

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 5.922 7.424 8.801 8.696 10.043 10.716 8.744 8.832 10.278

Diffusion FWT 4 6 10.610 13.672 11.096 14.026 16.178 14.582 11.608 12.185 13.445
Soft VISU FWT 7 8 10.199 12.299 10.418 13.187 14.704 13.487 10.772 11.526 12.760
Soft MiMa FWT 7 8 12.771 14.675 13.138 15.738 17.219 16.163 13.260 13.994 15.453
Soft SURE FWT 9 10 12.896 14.816 13.636 15.837 17.356 16.509 13.712 13.647 15.865
Soph SURE FWT 9 10 13.632 15.323 13.714 16.882 18.285 17.030 13.843 14.577 16.350
Soft GCV FWT 9 10 12.812 13.947 13.510 15.807 16.289 16.433 13.647 13.647 15.804
Soph GCV FWT 9 10 13.596 15.262 13.714 16.845 18.276 16.932 13.829 14.517 16.282
Soft LGCV FWT 9 10 13.450 15.479 13.687 16.738 17.924 16.331 13.763 14.160 15.665
Soph LGCV FWT 9 10 13.172 15.917 13.964 17.226 18.714 17.162 14.001 14.589 16.400
Cart VISU FWT 9 10 12.105 14.575 11.872 15.819 17.229 15.442 12.165 12.715 14.392
Cart MiMa FWT 9 10 13.938 16.123 13.733 17.078 18.142 17.147 13.653 14.442 16.418
Cart SURE FWT 9 10 13.916 15.902 13.570 17.224 18.205 17.072 13.645 14.440 16.422
Biased FWT 9 10 13.183 14.534 12.997 16.459 17.703 16.845 13.320 14.239 15.988

Soft LGCV SWT 5 8 13.903 15.995 14.041 17.301 18.464 17.232 14.158 14.773 16.309
Soph LGCV SWT 5 8 13.971 16.030 13.999 17.314 18.667 17.211 13.961 14.608 16.433
Soft IGCV SWT 6 6 13.206 15.062 13.088 16.593 17.883 16.198 13.192 13.928 15.496
Lipschitz SWT 4 7 12.554 14.550 11.258 16.149 15.108 14.202 11.567 12.914 13.195

Wiener FFT - - 10.188 12.468 8.656 11.381 13.459 11.738 9.173 10.085 9.559
PSF FFT - - 11.233 13.337 9.467 12.396 14.413 12.539 9.808 10.858 10.332
EMF FFT - - 11.157 13.268 9.398 12.322 14.353 12.494 9.761 10.802 10.274

Table 11.6: SNR Comparison: σ = 0.05

C
H

A
P

T
E

R
1
1
.

C
O

M
P
A

R
IS

O
N

S
,
C

O
N

C
L
U

S
IO

N
S

A
N

D
O

U
T

L
O

O
K

123

Method J D Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex.7 Ex. 8 Ex. 9

START - - - 2.480e-3 2.508e-3 2.499e-3 2.499e-3 2.499e-3 2.499e-3 2.500e-3 2.499e-3 2.504e-3

Diffusion FWT 4 6 8.425e-4 5.951e-4 1.474e-3 7.325e-4 6.086e-4 1.026e-3 1.293e-3 1.155e-3 1.208e-3
Soft VISU FWT 7 8 9.262e-4 8.164e-4 1.723e-3 8.886e-4 8.546e-4 1.320e-3 1.567e-3 1.344e-3 1.414e-3
Soft MiMa FWT 7 8 5.122e-4 4.723e-4 9.209e-4 4.939e-4 4.788e-4 7.132e-4 8.836e-4 7.615e-4 7.607e-4
Soft SURE FWT 9 10 4.978e-4 4.573e-4 8.211e-4 4.828e-4 4.640e-4 6.585e-4 7.962e-4 8.248e-4 6.919e-4
Soph SURE FWT 9 10 4.202e-4 4.069e-4 8.064e-4 3.795e-4 3.746e-4 5.841e-4 7.727e-4 6.658e-4 6.187e-4
Soft GCV FWT 9 10 5.075e-4 5.586e-4 8.453e-4 4.861e-4 5.932e-4 6.701e-4 8.083e-4 8.248e-4 7.016e-4
Soph GCV FWT 9 10 4.237e-4 4.127e-4 8.064e-4 3.828e-4 3.754e-4 5.974e-4 7.751e-4 6.752e-4 6.285e-4
Soft LGCV FWT 9 10 4.381e-4 3.926e-4 8.115e-4 3.923e-4 4.071e-4 6.860e-4 7.870e-4 7.330e-4 7.244e-4
Soph LGCV FWT 9 10 4.671e-4 3.549e-4 7.613e-4 3.506e-4 3.394e-4 5.665e-4 7.451e-4 6.639e-4 6.116e-4
Cart VISU FWT 9 10 5.972e-4 4.833e-4 1.232e-3 4.848e-4 4.778e-4 8.419e-4 1.137e-3 1.022e-3 9.711e-4
Cart MiMa FWT 9 10 3.915e-4 3.384e-4 8.029e-4 3.627e-4 3.872e-4 5.685e-4 8.072e-4 6.868e-4 6.091e-4
Cart SURE FWT 9 10 3.935e-4 3.561e-4 8.337e-4 3.508e-4 3.816e-4 5.785e-4 8.087e-4 6.872e-4 6.085e-4
Biased FWT 9 10 4.659e-4 4.879e-4 9.512e-4 4.183e-4 4.284e-4 6.094e-4 8.716e-4 7.197e-4 6.725e-4

Soft LGCV SWT 5 8 3.947e-4 3.485e-4 7.480e-4 3.446e-4 3.595e-4 5.576e-4 7.186e-4 6.365e-4 6.245e-4
Soph LGCV SWT 5 8 3.885e-4 3.457e-4 7.552e-4 3.436e-4 3.431e-4 5.603e-4 7.520e-4 6.611e-4 6.070e-4
Soft IGCV SWT 6 6 4.634e-4 4.321e-4 9.315e-4 4.056e-4 4.110e-4 7.074e-4 8.977e-4 7.731e-4 7.532e-4
Lipschitz SWT 4 7 5.385e-4 4.861e-4 1.420e-3 4.493e-4 7.786e-4 1.120e-3 1.305e-3 9.764e-4 1.279e-3

Wiener FFT - - 1.857e-3 1.570e-3 2.585e-3 1.347e-3 1.138e-3 1.975e-3 2.265e-3 1.873e-3 2.955e-3
PSF FFT - - 1.460e-3 1.286e-3 2.144e-3 1.066e-3 9.136e-4 1.643e-3 1.957e-3 1.568e-3 2.473e-3
EMF FFT - - 1.485e-3 1.306e-3 2.179e-3 1.084e-3 9.264e-4 1.660e-3 1.978e-3 1.588e-3 2.507e-3

Table 11.7: MSE Comparison: σ = 0.05, MSE = 2.500e − 3

Appendix A

Sound Examples: Specifications

Sound Example 1 arbeit.wav

Speech Text: "Du versuchst zu arbeiten"

File Name: arbeit.wav

Samples: 2^16

Samples/sec: 44100

Bits/Sample: 16

Mode: Stereo

Sound Example 2 bursche.wav

Speech Text: "Ein hübscher Bursche"

File Name: bursche.wav

Samples: 2^16

Samples/sec: 44100

Bits/Sample: 16

Mode: Stereo

Sound Example 3 illustrierte.wav

Speech Text: "Kölner Illustierte. Jetzt für 2 Euro am Kiosk."

File Name: illustrierte.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

124

APPENDIX A. SOUND EXAMPLES: SPECIFICATIONS 125

Sound Example 4 ironie.wav

Speech Text: "Nein, irgendeine Ironie war nicht

herauszuhören."

File Name: ironie.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Sound Example 5 leer.wav

Speech Text: "Keine Idee. Nichts. Leer."

File Name: leer.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Sound Example 6 lieblingsmusik.wav

Speech Text: "Ihre Lieblingsmusik aus dem integrierten

MP3 Player."

File Name: lieblingsmusik.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Sound Example 7 muecken.wav

Speech Text: "Sämtliche Stechmücken Südfrankreichs

quälen dich."

File Name: muecken.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

APPENDIX A. SOUND EXAMPLES: SPECIFICATIONS 126

Sound Example 8 woche.wav

Speech Text: "Woche für Woche sitzt du auf deiner Terasse."

File Name: woche.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Sound Example 9 worte.wav

Speech Text: "Plötzlich hörst du sie, die Worte, die Reime,

die Sprüche, die du so gut kennst"

File Name: worte.wav

Samples: 2^18

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Sound Example 10 musicalnoise.wav

Noise: Musical Noise

File Name: musicalnoise.wav

Samples: 100 * 2^9

Samples/sec: 22050

Bits/Sample: 16

Mode: Mono

Sound Example 11 diffusionnoise.wav

Noise: Characteristic Diffusion Noise

File Name: diffusionnoise.wav

Samples: 2^17

Samples/sec: 44100

Bits/Sample: 16

Mode: Mono

Bibliography

[1] Paul Bao and Lei Zhang. Noise reduction for magnetic resonance images via

adaptive multiscale products thresholding. IEEE Transactions on Medical

Imaging, 22(9):1089 – 1099, Sept. 2003.

[2] Ronald R. Coifman and David L. Donoho. Translation-invariant de-noising.

Technical report, Stanford University, Department of Statistics, 1995.

[3] Ingrid Daubechies. The wavelet transform, time-frequency localization and

signal analysis. IEEE Trans. Inform. Theory, 36(5):961–1005, 1990.

[4] Ingrid Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Re-

gional Conference Series in Applied Mathematics. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[5] David L. Donoho. Cart and best-ortho-basis: A connection. Technical report,

Department of Statistics, Stanford University, October 1995.

[6] David L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform.

Theory, 41(3):613–627, 1995.

[7] David L. Donoho. CART and best-ortho-basis: a connection. Ann. Statist.,

25(5):1870–1911, 1997.

[8] David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet

shrinkage. Biometrika, 81(3):425–455, 1994.

[9] David L. Donoho and Iain M. Johnstone. Adapting to unknown smoothness

via wavelet shrinkage. J. Amer. Statist. Assoc., 90(432):1200–1224, 1995.

[10] David L. Donoho and Iain M. Johnstone. Minimax estimation via wavelet

shrinkage. Ann. Statist., 26(3):879–921, 1998.

[11] David L. Donoho and Iain M. Johnstone. Asymptotic minimaxity of wavelet

estimators with sampled data. Statist. Sinica, 9(1):1–32, 1999.

127

BIBLIOGRAPHY 128

[12] Yariv Ephraim and David Malah. Speech enhancement using a minimum-

mean square error short-time spectral amplitude estimator. Acoustics, Speech

and Signal Processing, IEEE Transactions on, 32(6):1109–1121, Dec 1984.

[13] Ningping Fan, Radu V. Balan, and Justinian Rosca. Comparison of wavelet-

and fft-based single-channel speech signal noise reduction techniques. volume

5607, pages 127–138. SPIE, 2004.

[14] Simon J. Godsill and Peter J.W. Rayner. Digital Audio Restoration - a

statistical model based approach. Springer-Verlag London, September 1998.

[15] Zenton Goh, Kah-Chye Tan, and T.G. Tan. Postprocessing method for

suppressing musical noise generated by spectral subtraction. Speech and

Audio Processing, IEEE Transactions on, 6(3):287–292, May 1998.

[16] A. Grossmann, M. Holschneider, R. Kronland-Martinet, and J. Morlet. De-

tection of abrupt changes in sound signals with the help of wavelet trans-

forms. In Inverse problems: an interdisciplinary study (Montpellier, ss1986),

Adv. Electron. Electron Phys., Suppl. 19, pages 289–306. Academic Press,

London, 1987.

[17] M. Holschneider. Wavelets. Oxford Mathematical Monographs. The Claren-

don Press Oxford University Press, New York, 1995. An analysis tool, Oxford

Science Publications.

[18] Matthias Holschneider and Philippe Tchamitchian. Régularite locale de la

fonction “non-différentiable” de Riemann. In Les ondelettes en 1989 (Or-

say, 1989), volume 1438 of Lecture Notes in Math., pages 102–124, 209–210.

Springer, Berlin, 1990.

[19] Maarten Jansen. Noise reduction by wavelet thresholding, volume 161 of

Lecture Notes in Statistics. Springer-Verlag, New York, 2001.

[20] Maarten Jansen and Adhemar Bultheel. Multiple wavelet threshold estima-

tion by generalized cross validation for images with correlated noise. IEEE

Trans. Image Process., 8(7):947–953, 1999.

[21] Maarten Jansen, Maurits Malfait, and Adhemar Bultheel. Generalized cross

validation for wavelet thresholding. Signal Processing, 56(1):33–44, 1997.

[22] Stephane Mallat. A Wavelet Tour of Signal Processing. Academic Press,

1998.

BIBLIOGRAPHY 129

[23] Stephane Mallat and Wen Liang Hwang. Singularity detection and processing

with wavelets. IEEE Trans. Inform. Theory, 38(2, part 2):617–643, 1992.

[24] Stephane Mallat and Sifen Zhong. Characterization of signals from multiscale

edges. IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(7):710–732, July 1992.

[25] Yves Meyer. Wavelets: Algorithms & Applications. SIAM, 1993.

[26] Guy P. Nason. Wavelet shrinkage using cross-validation. J. Roy. Statist.

Soc. Ser. B, 58(2):463–479, 1996.

[27] Guy P. Nason and Bernard W. Silverman. The stationary wavelet transform

and some statistical applications. In Anestis Antoniadis and Georges Op-

penheim, editors, Wavelets and Statistics, number 103 in Lecture Notes in

Statistics, pages 281–300. Springer-Verlag, 1995.

[28] Pietro Perona and Jitendra Malik. Scale-space and edge detection using

anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 12(7):629–639, Jul 1990.

[29] H. L. Resnikoff and R. O. Wells Jr. Wavelet Analysis, The Scalable Structure

of Information. Springer-Verlag, New York, 1998.

[30] Charles M. Stein. Estimation of the mean of a multivariate normal distribu-

tion. Ann. Statist., 9(6):1135–1151, 1981.

[31] Nathalie Virag. Single channel speech enhancement based on masking prop-

erties of the human auditory system. Speech and Audio Processing, IEEE

Transactions on, 7(2):126–137, March 1999.

[32] Martin Welk, Achim Bergmeister, and Joachim Weickert. Denoising of au-

dio data by nonlinear diffusion. In Ron Kimmel, Nir Sochen, and Joachim

Weickert, editors, Scale Space and PDE Methods in Computer Vision , 5th

International Conference, Scale-Space 2005, Hofgeismar, Germany, April 7-

9, 2005, Proceedings, volume 3459 of Lecture Notes in Computer Science,

pages 598–609. Springer Verlag Berlin / Heidelberg, 2005.

[33] Norman Weyrich and Gregory T. Warhola. Wavelet shrinkage and general-

ized cross validation for image denoising. Image Processing, IEEE Transac-

tions on, 7(1):82–90, Jan 1998.

[34] Mladen V. Wickerhauser. Adaptive Wavelet-Analysis: Theory and Software.

Vieweg & Sohn, 1993.

BIBLIOGRAPHY 130

[35] Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary

Time Series. With Engineering Applications. The Technology Press of the

Massachusetts Institute of Technology, Cambridge, Mass, 1949.

[36] Y. Xu, J. B. Weaver, D. M. Healy Jr., and J. Lu. Wavelet transform domain

filters: A spatially selective noise filtration technique. IEEE Transactions of

Image Processing, 3(6), November 1994.

[37] Kôsaku Yosida. Functional analysis. Second edition. Die Grundlehren der

mathematischen Wissenschaften, Band 123. Springer-Verlag New York Inc.,

New York, 1968.

[38] Guoshen Yu, Emmanuel Bacry, and Stephane Mallat. Audio signal denoising

with complex wavelets and adaptive block attenuation. Acoustics, Speech and

Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,

3:III–869–III–872, April 2007.

	Introduction and Motivation: Why Wavelets
	Preliminaries
	Some Notes on Speech Signals
	Motivation
	Outline and Structure

	Wavelet and Fourier Transform
	The Continuous Wavelet Transform
	The Discrete Fast Wavelet Transform
	The Stationary Wavelet Transform
	The Fourier Transform
	Comparison

	A General Noise and Speech Model
	Noisy Speech Signal Model
	Noise Transformation
	Some Definitions and Notations

	Spectral Domain Denoising
	Noise Reduction Filter Model
	Wiener Filter
	Spectral Subtraction and Power Subtraction Filter
	Ephraim-Malah Filter
	A priori SNR Estimation

	Lipschitz Denoising
	Lipschitz Regularity
	Lipschitz Regularity Detection with the Wavelet Transform
	Wavelet Transform Modulus Maxima
	Denoising Based on Wavelet Maxima

	Diffusion Denoising
	Introduction
	Diffusion of Wavelet Coefficients
	Choice of Parameters

	Thresholding Methods
	Hard and Soft Thresholding
	Selective Wavelet Reconstruction
	VisuShrink
	Adapting to unknown smoothness
	Minimax Threshold
	Stein Unbiased Risk Estimate
	Cross Validation
	Ordinary Cross Validation
	Generalized Cross Validation
	GCV Analysis

	SURE & GCV Minimization
	Level Dependent Thresholding
	Inter & Intra Scale Thresholding

	Tree Structured Thresholding
	Sophisticated Thresholding
	Optimal Thresholds
	Sophisticated Thresholding
	Sophisticated Thresholding, SURE and GCV
	Comparison
	Generalization and Improvement
	Perspectives

	Biased Risk Based Sound Improvement
	Biased Risk Contribution
	Minimization Problem

	Comparisons, Conclusions and Outlook
	Sound Examples: Specifications
	Bibliography

