Dr. Julian Seifert

Ehemalige Funktion

Wissenschaftlicher Mitarbeiter


Hover Pad: Interacting with Autonomous and Self-Actuated Displays in Space

In this work, we investigate the use of autonomous, self-actuated displays that can freely move and hold their position and orientation in space without the need for users holding them at all times. We illustrate various stages of such a display’s autonomy ranging from manual to fully autonomous, which – depending on the tasks – facilitate the interaction. Further, we discuss possible motion control mechanisms for these displays and present several interaction techniques made possible by such displays. We designed a toolkit – Hover Pad – that enables exploring five degrees of freedom of self-actuated and autonomous displays and the developed control and interaction techniques. Read more...

From the Private Into the Public

Interactive horizontal surfaces provide large semi-public or public displays for co-located collaboration. In many cases users want to show, discuss, and copy personal information or media, which are typically stored on their mobile phones, on such a surface. This paper presents three novel direct interaction techniques (Select&Place2Share, Select&Touch2Share, and Shield&Share) that allow users to select in private which information they want to share on the surface. All techniques are based on physical contact between mobile phone and surface. Users touch the surface with their phone or place it on the surface to determine the location for information or media to be shared. We compared these three techniques with the most frequently reported approach that immediately shows all media files on the table after placing the phone on a shared surface. 


MobiSurf: Improving Co-located Collaboration through Integrating Mobile Devices and Interactive Surfaces

In this work, we investigated how the combination of personal devices and a simple way of exchanging information between these and an interactive surface changes the way people solve collaborative tasks compared to an existing approach of using personal devices. Our study results clearly indicate that the combination of personal and a shared device allows users to fluently switch between individual and group work phases and users take advantage of both device classes.



We present the concept and design space of PointerPhone which enables users to directly point at objects on a remote screen with their mobile phone and interact with them in a natural and seamless way. We detail the design space and distinguish three categories of interactions including low-level interactions using the mobile phone as a precise and fast pointing device, as well as an input and output device. We detail the category of widgetlevel interactions. Further, we demonstrate versatile high-level interaction techniques and show their application in a collaborative presentation scenario. Based on the results of a qualitative study, we provide design implications for application designs.




Seifert, Julian; De Luca, Alexander; Conradi, Bettina
A context-sensitive security model for privacy protection on mobile phones
MobileHCI '09: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services , Seite 1--2.
Herausgeber: ACM, New York, NY, USA
ISBN: 978-1-60558-281-8
Export als: BibTeX, XML