Betreuung

 

Dozent: Prof. Dr. Anna Dall'Acqua


Übungsleiter: Frédéric Stoffers

Termine und Räume

 

Vorlesung:

Mo., 10-12 Uhr, Helmholtzstr. 18, E20 u.
Mi., 8-10 Uhr, Helmholtzstr. 22, E18

 

Übung:

Do., 14-16 Uhr, Helmholtzstr. 18, Zi. 220

Elementare Differentialgeometrie

Die Vorlesung beschäftigt sich mit der klassischen Differentialgeometrie: Das Studium von geometrischen Eigenschaften von Kurven und Flächen im euklidischen Raum. Wir werden zuerst die Theorie der Kurven entwickeln. Der wichtige Begriff der Krümmung taucht hier das erste Mal auf. Insbesondere werden folgende globale Resultate diskutiert: der Vier-Scheitel-Satz, der Satz von Fenchel und der Satz von Fáry-Milnor. Im zweiten Teil werden Flächen im R^3 studiert. Nach Betrachtung verschiedener Krümmungsbegriffe werden wir uns auf die "innere" Geometrie von Flächen konzentrieren. Damit bezeichnet man die geometrischen Größen, die nur durch Messungen innerhalb der Fläche definiert sind.

Die Veranstaltung wendet sich sowohl an Studenten aus dem Bachelorstudiengang als auch an Lehrämtler.

Aktuelles

08.07.: Es findet am Montag, 15.07. Übung statt Vorlesung statt, dafür wird am Donnerstag, 18.07. Vorlesung gehalten.

02.07.: Achtung Raumänderung: Die Vorlesung am 18.07. findet im Raum E20 (Helmholtzstraße 18) zur Zeit 14-16 Uhr statt.

19.06.: Am Mittwoch, 26.06. findet Übung statt Vorlesung, dafür aber am Donnerstag, 27.06. Vorlesung statt Übung statt.

05.06.: Am Mittwoch, 12.06. findet Übung statt Vorlesung, dafür aber am Donnerstag, 13.06. Vorlesung statt Übung statt. Die Räume und Zeiten bleiben dabei unverändert.

22.05.: Am Montag, 03.06. findet keine Vorlesung statt. Diese wird am Donnerstag, 06.06. im Raum 1.20 (Helmholtzstraße 18) von 10-12 Uhr nachgeholt.

15.04.: Am Donnerstag, 18.04. findet im Raum 2.20 von 14 bis 16 Uhr eine Vorlesung anstelle der Übung statt. Die erste Übung findet am Donnerstag, 25.04. statt.

Literatur

  • C. Bär, Elementare Differentialgeometrie
  • M. Do Carmo, Differential Geometry of curves and surfaces
  • W. Kühnel, Differentialgeometrie

Voraussetzungen

Grundvorlesungen in Analysis und der linearen Algebra

Prüfungsbedingungen

Die Abschlussprüfung zu dieser Vorlesung findet am Ende des Semsters in Form einer mündlichen Prüfung statt. Zulassungsvoraussetzung ist das Erreichen von mindestens 50% der Punkte der abzugebenden Aufgaben aus den wöchentlichen Übungsserien und das (erfolgreiche) Vorführen von Übungsaufgaben während der Übung.

Übungsbetrieb

Es findet im wöchentlichen Rhythmus eine Übung statt (Zeit und Ort siehe unten), in welcher die Übungsaufgaben besprochen werden. Gewisse speziell gekennzeichnete Aufgaben der Übungsserien sind abzugebende Aufgaben, bei welchen für die Zulassung zur Abschlussprüfung 50% der Punkte zu erreichen sind, andere sind Präsenzaufgaben, die in der Übungsstunde vorgeführt werden sollen. Im Laufe des Semesters sollte jeder Übungsteilnehmer einige Male eine Aufgabe erfolgreich vorgeführt haben. Die Übungsblätter werden in der Übungsstunde abgegeben.

Termine und Räume

 

Vorlesung:

Mo., 10-12 Uhr, Helmholtzstr. 18, E20 u.
Mi., 8-10 Uhr, Helmholtzstr. 22, E18

 

Übung:

Do., 14-16 Uhr, Helmholtzstr. 18, Zi. 220

Betreuung

 

Dozent: Prof. Dr. Anna Dall'Acqua


Übungsleiter: Frédéric Stoffers