Courses

Lecture Summer Term 2013

Financial Mathematics II

 

Lecturer:
Robert Stelzer

Class Teacher:

Marc Wittlinger


Type:
  • Master Mathematik (optional)
  • Master Wirtschaftsmathematik (optional)
  • Master of Finance-Major Financial Mathematics (obligatory)
  • Master of Finance-Major Financial Economics (optional)
Time and Venue:
  • Lecture: Thursday 10:15-12:00 in He 18 room 220 and Friday 8:30-10:00 in He 18 room 220
  • Exercises: Friday 12:15-14:00 in He 18 room 220
  • Tutorial with Carla Mereu for MSc Finance students Thursday 16:00-18:00 He 18 room E60

News:

Attention: There is a typo in Exercise 5.5. The corrected exercise sheet is online.

The lecture starts on 04/18/2013.

The exercises start on 04/26/13.

There are no achievements needed to be admitted to the final exam. 

Prerequisites:
Financial mathematics I, Stochastics II

Contents:
  • Stochastic analysis: Stochastic integration, stochastic differential equations, (semi-)martingales;
  • Continuous-time fi nancial market models:
  • Valuation and hedging of derivatives in complete and incomplete financial markets, stochastic volatility; 
  • Interest rate models: Term structure modeling, interest rate derivatives, LIBOR market models;
  • Basics of Lévy processes and Lévy based financial models.
Literature:
  • Bingham, N. H.; Kiesel, R.: Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives. (Springer) 2 edn., 2004.
  • Björk, T.: Arbitrage theory in continuous time. (Oxford University Press) 2.edn. 2003.
  • Cont, R.; Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, 2004.
  • Delbaen, F.; Schachermayer, W.: The Mathematics of Arbitrage, (Springer, Heidelberg), 2006.
  • Hunt; Kennedy: Financial Derivatives in Theory and Praxis, Wiley 2000.
  • Karatzas, I.; Shreve, S.: Methods of Mathematical Finance. (Springer). 1998
  • Korn, R.; Korn, E.: Option Pricing and Portfolio Optimization. (American Mathematical Society, Providence), 2001.
  • Lamberton, D.; Lapeyre, B.: Introduction to stochastic calculus applied to fi nance. Second edition. Chapman & Hall, 2008.
  • Musiela, M.; M. Rutkowski: Martingale methods in nancial modelling. (Springer), 2nd ed. 2004.
  • Øksendal, B.: Stochastic Di erential Equations. (Springer, Berlin), 5th edn., 1998
  • Shiryaev, A: Essentials of Stochastic Finance. (World Scienti c, Singapore), 1999.
  • S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.
Schedule:4 lectures + 2 exercises

Exercises:

Initiates file downloadSheet 1

Initiates file downloadSheet 2

Initiates file downloadSheet 3

Initiates file downloadSheet 4

Initiates file downloadSheet 5

Initiates file downloadSheet 6

Initiates file downloadSheet 7

 
Lecture Notes:

Initiates file downloadFinancial Mathematics I

Initiates file downloadFinancial Mathematics II