Selected Publications

Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Jayaraman S, Gantz, DL, Haupt C, Gursky O. Proc. Natl. Acad. Sci. U.S.A. 114, E6507-E6515 (2017)

Cellular mechanism of fibril formation from serum amyloid A1 protein. Claus S, Meinhardt K, Aumüller T, Puscalau-Girtu I, Linder J, Haupt C, Walther P, Syrovets T, Simmet T, Fändrich M. EMBO Rep. 18, 1352-1366 (2017)

Cellular mechanism of fibril formation from serum amyloid A1 protein. Claus S, Meinhardt K, Aumüller T, Puscalau-Girtu I, Linder J, Haupt C, Walther P, Syrovets T, Simmet T, Fändrich M. EMBO Rep. 2017 DOI 10.15252/embr.201643411

Common Fibril Structures Imply Systemically Conserved Protein Misfolding Pathways In Vivo. Annamalai K, Liberta F, Vielberg M-T, Close W, Lilie H, Gührs K-H, Schierhorn A, Koehler R, Schmidt A, Haupt C, Hegenbart U, Schönland S, Schmidt M, Groll M, Fändrich M Angew Chem Int Ed 56, 7618–7622 (2017)

Cell-to-cell transfer of SAA1 protein in a cell culture model of systemic AA amyloidosis. Claus S, Puscalau-Girtu I, Walther P, Syrovets T, Simmet T, Haupt C, Fändrich M. Sci Rep 7, 45683 (2017)

Amyloid plaque structure and cell surface interactions of beta-amyloid fibrils revealed by electron tomography. Han S, Kollmer M, Markx D, Claus S, Walther P, Fändrich M. Sci Rep 7, 43577 (2017)

Hydrostatic pressure increases the catalytic activity of amyloid fibril enzymes. Luong TQ, Erwin N, Neumann M, Schmidt A, Loos C, Schmidt V, Fändrich M, Winter R Angewandte Chemie Int. Ed. 2016, 55, 12412–12416                                         

Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Schmidt A, Annamalai K, Schmidt M, Grigorieff N, Fändrich M Proc Natl Acad Sci U.S.A. 2016, 113, 6200-6205                                                      

Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Kollmer M, Meinhardt K, Haupt C, Liberta F, Wulff M, Linder J, Handl L, Heinrich L, Loos C, Schmidt M, Syrovets T, Simmet T, Westermark P, Westermark GT, Horn U,  Schmidt V, Walther P, Fändrich M. Proc Natl Acad Sci U.S.A. 2016, 113, 5604-5609

Enhanced Fibril Fragmentation of N-Terminally Truncated and Pyroglutamyl-Modified Aβ Peptide. Wulff M, Baumann M, Thümmler A, Yadav JK, Heinrich L, Knüpfer U, Schlenzig D, Schierhorn A,  Rahfeld JU, Horn U, Balbach J, Demuth HU, Fändrich M Angewandte Chemie Int. Ed. 2016, 55, 5081-5084                                                             

Polymorphism of amyloid fibrils in vivo. Annamalai K, Gührs KH, Koehler R, Schmidt M, Michel H, Loos C, Gaffney PM, Sigurdson CJ, Hegenbart U, Schönland S, Fändrich M Angewandte Chemie Int. Ed. 2016, 55, 4822–4825                                                           

Solvent Removal Induces a Reversible beta-to-alpha Switch in Oligomeric Aβ Peptide. Kumar ST, Leppert J, Bellstedt P, Wiedemann C, Fändrich M, Görlach M J. Mol. Biol. 2016, 428, 268-273                                                                            

Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf WP, Bayer H, Kiechle M, Feiler MS, Freischmidt A, Brenner D, Witting A, Hengerer B, Fändrich M, Ludolph AC, Weishaupt JH, Gillardon F, Danzer KM Acta Neuropathol. 2016, 131, 379-391

Peptide Dimer Structure in an Aß(1-42) Fibril Visualized with Cryo-EM. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, Grigorieff N Proc Natl Acad Sci U.S.A. 2015, 112, 11858-11863

Impact of amyloid ß aggregate maturation on antibody treatment in APP23 mice. Balakrishnan K, Rijal Upadhaya A, Steinmetz J, Reichwald J, Abramowski D, Fändrich M, Kumar S, Yamaguchi H, Walter J, Staufenbiel M, Thal DR Acta Neuropathologica Communications 2015, 3:41

AA Amyloidosis: Pathogenesis and Targeted Therapy. Westermark GT, Fändrich M, Westermark P Annu. Rev. Pathol. Mech. Dis. 2015, 10, 321–344

Protein aggregation in Alzheimer’s disease: Aß and τ and their potential roles in the pathogenesis of AD. Thal DR, Fändrich M Acta Neuropathol 2015, 129, 163–165

Neuropathology and biochemistry of Aß and its aggregates in Alzheimer’s disease. Thal DR, Walter J, Saido TC, Fändrich M Acta Neuropathol 2015, 129, 167–182

Oligomer-targeting with a conformational antibody fragment promotes toxicity in Aβ-expressing flies. Wacker J, Rönicke R, Westermann M, Wulff M, Reymann KG, Dobson CM, Horn U, Crowther DC, Luheshi LM, Fändrich M Acta Neuropathologica Communications 2014, 2:43

Structure and biomedical applications of amyloid oligomer nanoparticles. Kumar ST, Meinhardt J, Fuchs AK, Aumüller T, Leppert J, Büchele B, Knüpfer U, Ramachandran R, Yadav JK, Prell E, Morgado I, Ohlenschläger O, Horn U, Simmet T, Görlach M, Fändrich M ACS Nano 2014, 25, 8(11), 11042-52

Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Usmani S, Zirafi O, Müller J, Sandi-Monroy N, Yadav JK, Meier C, Weil T, Roan NR, Greene WC, Walther P, Nilsson KPR, Hammerström P, Wetzel R, Gagsteiger F, Fändrich M, Kirchhoff F, Münch J Nature Communications 2014, 5, Article number: 3508

Protein chemistry: Catalytic amyloid fibrils. Aumüller T, Marcus F Nature Chemistry 2014, 6, 273–274

Biotechnologically engineered protein binders for applications in amyloid diseases. Haupt C, Fändrich M Trends in Biotechnology 2014, 32, 513–520

Biochemical stages amyloid β-protein aggregation and accumulation in the human brain and its association with symptomatic and preclinical Alzheimer's disease. Upadhaya AR, Kosterin I, Kumar S, von Arnim CAF, Yamaguchi H, Fändrich M, Walter J, Thal DR Brain 2014, 137, 887-903

Molecular Basis of β-Amyloid Oligomer Binding and Inhibition with a Conformation-Specific Antibody Fragment. Morgado I, Wieligmann K, Bereza M, Rönicke R, Meinhardt K, Wacker J, Hortschansky P, Malešević M, Parthier C, Schiene-Fischer C, Reymann KG, Stubbs MT, Görlach M, Horn U, Fändrich M, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 12503–12508

Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity (Review). Fändrich M J. Mol. Biol. 2012, 4, 427-40

SDS-denaturable high-molecular weight Aβ-aggregates are associated with dendritic degeneration in amyloid precursor protein-transgenic mouse models and with Alzheimer's disease.  Upadhaya AR, Capetillo-Zarate E, Lungrin I, Abramowski D, Kumar S, Yamaguchi H, Walter J, Fändrich M, Staufenbiel M, Thal DR Neurobiol. of Ageing 2012, 33, 2641–2660

An asymmetric dimer is the basic subunit in Alzheimer's disease β-amyloid fibrils. Lopez del Amo JM, Schmidt M, Fink U, Muralidar Dasari M, Fändrich M, Reif B Angewandte Chemie Int. Edt. 2012, 51, 6136-6139

Structural basis of Aβ-dependent synaptic dysfunctions. Christian Haupt C, Leppert J, Rönicke R, Meinhardt J, Yadav JK, Ramachandran R, Ohlenschläger O, Reymann KG, Görlach M, Fändrich M Angewandte Chemie Int. Edt. 2012, 51, 1576-1579

An orcein-related small molecule promotes the conversion of toxic oligomersto non-toxic, beta-sheet-rich amyloid fibrils. Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, Lopez de Vega JM, Grüning B, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank RF, Reif B, Günther S, Walsh DM, Wanker EE Nature Chem. Biol. 2012, 8, 93–101

Solid-State NMR of Aβ Protofibrils Implies a β-Sheet Remodelling upon Maturation into Terminal Amyloid Fibrils. Scheidt HA, Morgado I, Rothemund S, Huster D, Fändrich M. Angewandte Chemie Int. Edt. 2011, 50, 2837 –2840

Pattern recognition with a fibril-specific antibody fragment reveals the surface variability of natural amyloid fibrils. Haupt C, Bereza M, Kumar ST, Kieninger B, Morgado I, Hortschansky P, Fritz G, Röcken C, Horn U, Fändrich M J. Mol. Biol. 2011, 408, 529–540

Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. Haupt C, Morgado I, Kumar ST, Parthier C, Bereza M, Hortschansky P, Stubbs MT, Horn U, Fändrich M J. Mol. Biol. 2011, 405, 341–348

Recent progress in understanding Alzheimer’s β-amyloid structures (Review). Fändrich M, Schmidt M, Grigorieff N Trends in Biochem. Scie., 2011, 36, 338-345

Assembly of Alzheimer's Aβ peptide into nanostructured amyloid fibrils (Review). Morgado I, Fändrich M Current Opinion in Colloid and Interface Science, 2011, 16, 508–514

Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, Reiser G, Kreutz M, Reymann K Neurobiol. of Ageing 2011, 32 2219–2228

Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined using electron cryo-microscopy. Sachse C, Grigorieff N, Fändrich M Angewandte Chemie Int. Edt. 2010, 49, 1321 –1323

Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Friedrich RP, Tepper K, Rönicke R, Westermann M, Reymann K, Kaether C, Fändrich M Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1942–1947

Comparison between Alzheimer's Ab(1-40) and Ab(1-42) amyloid fibrils reveals similar protofilament structures. Schmidt M, Sachse C, Richer W, Xu C, Fändrich M, Grigorieff N Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19813–19818

Aβ(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. Meinhardt J, Sachse C, Hortschansky P, Grigorieff N, Fändrich M  J. Mol. Biol. 2009, 386, 869–877

Structural polymorphism of Alzheimer Aβ and other amyloid fibrils (Review). Fändrich M, Meinhardt J, Grigorieff N Prion 2009, 3, 89-93

Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy. Sachse C, Fändrich M, Grigorieff N Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 7462–7466

Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Ab protofibrils. Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J, Wieligmann K, Gellermann GP, Brodhun M, Götz J, Halbhuber KJ, Röcken C, Horn U, Fändrich M Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19232–19237

Absolute correlation between lag time and growth rate in the spontaneous formation of amyloid-like aggregates and fibrils. Fändrich M J. Mol. Biol. 2007, 365, 1266–1270

Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer's Ab(1-40) amyloid fibrils. Klement K, Wieligmann K, Meinhardt K, Hortschansky P, Richter W, Fändrich M  J. Mol. Biol. 2007, 373, 1321–1333

High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fändrich M, Grigorieff N J. Mol. Biol. 2007, 371, 812–835

Review: On the structural definition of amyloid fibrils and other polypeptide aggregates. Fändrich M Cell. Mol. Life Sci. 2007, 64, 2066-2078

Quaternary structure of a mature Alzheimer's b-amyloid fibril. Sachse C, Xu C, Wieligmann K, Diekmann S, Grigorieff N, Fändrich M J. Mol. Biol. 2006, 362, 347–354                    

Raft lipids as common components of human extracellular amyloid fibrils. Gellermann GP Appel TR, Tannert A, Radestock A, Hortschansky  P, Schroeckh V, Leisner C Lütkepohl T, Shtrasburg S, Röcken C, Pras M, Linke RP, Diekmann S, Fändrich M Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6297–6302                       

Thermodynamic analysis of the aggregation propensity of oxidized Alzheimer's ß-amyloid variants. Hortschansky P, Christopeit T, Schroeckh V, Fändrich M Protein Sci. 2005, 14, 2915-2918

The aggregation kinetics of Alzheimer's ß-amyloid peptide is controlled by stochastic nucleation. Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich M Protein Sci. 2005, 14, 1753-1759

FTIR reveals structural differences between native b-sheet proteins and amyloid fibrils. Zandomeneghi G, Krebs MRK, McCammon MG, Fändrich M  Protein Sci. 2004, 13, 3314-3321