Molecular Genetics of Blood Groups

Jill R. Storry Ph.D.

Blood Centre University Hospital Lund

Dept. of Transfusion Medicine Lund University

Sweden

Blood Groups on the RBC

Blood Groups Are Inherited As The Products of Genes

RBC Antigens are the Products of Genes

- Antigens carried on proteins are encoded directly by the gene, e.g. *RH, KEL, FY*
- Carbohydrate antigens are under the control of genes that encode glycosyltransferases, e.g. ABO, P1, H

Generate Diversity

- Single nucleotide polymorphism (SNP)
 - Silent
 - Missense
 - Nonsense
- Insertions and deletions
- Crossover and recombination
- Gene conversion

Single Nucleotide Polymorphisms

SNPs occur every 100 to 300 bases

- Silent SNPs do not alter the amino acid sequence
- Missense SNPs encode a change of one amino acid to another
- Nonsense SNPs cause the change of an encoded amino acid to a stop codon (TAA, TAG, TGA)
- SNPs in the conserved splice site sequences may cause altered splicing
- **Useful database:**

http://www.ncbi.nlm.nih.gov/SNP/index.html

SNP – Missense Mutations

A change of one nucleotide can alter the amino acid encoded Example: S and s antigens on Glycophorin B

Most Blood Group Antigens Are the Result of SNPs

Common antigen pairs encoded by SNPs:

RH	C/c, E/e
MNS	S/s
Kell	K/k, Kp ^a /Kp ^b , Js ^a /Js ^b
Duffy	Fy ^a /Fy ^b , (GATA)
Kidd	Jk ^a /Jk ^b
Lutheran	Lu ^a /Lu ^b
Dombrock	Do ^a /Do ^b
Many other exam	ples of high incidence and low
incidence antigen	IS

Generate Diversity

- Deletion/addition of nucleotides will alter the open reading frame
 - May result in generation of a premature stop codon e.g. O gene

O¹ allele encodes an inactive protein of 117 amino acids

Genetic Mechanisms That Generate Diversity

Deletion/addition of nucleotides will alter the open reading frame

May result in a longer open reading frame e.g. A² gene

A2 transferase is 375 amino acids long compared with A1 transferase, which is 354 amino acids in length. The A2 enzyme is not as active. JR Storry

Homology Between Genes Creates Diversity

Generate Diversity

Genes with high sequence identity can misalign during meiosis e.g. in the MNS system

Exchange of DNA by unequal crossover

Different Mechanisms Can Produce The Same Antigen

Genetic Mechanisms That Generate Diversity

Promoter Mutations Affect RBC Antigen Expression: T>C mutation in the *GATA* box prevents transcription of the *FY* gene

§In Fy(a–b–) persons of African descent, the FY gene encodes FY*B

Analysis of Blood Group Polymorphisms

Different PCR strategies

PCR with sequence- (or allele-) specific primers (PCR-SSP or PCR-ASP):

PCR followed by restriction endonuclease digestion (PCR-RFLP):

Possible reasons for ABO genotyping

Acquired weakness of A or B antigen expression

✓ *e.g.* in leukemia

Acquired A or B antigens

- ✓ e.g. gastrointestinal infection
- Inherited weakness of A and/or B antigen expression

$\checkmark e.g. A_3, B_x, cisAB...$

Mixed field pattern due to transfusion or chimerism

Possible reasons for ABO genotyping

• Fetal blood group determination!

- HDN: At least 5 documented cases of hydrops fetalis due to ABO-antibodies reported since 1988.
 Ethnic/geographic variation.
- NAITP: Samples from such a case have been referred to our lab
- Confirmation of A₂ status in A₂ to O kidney transplant

Major ABO alleles recognised in 1994

Olsson & Chester. Vox Sang 1995;69:242-7

Duplex PCR-RFLP method for ABO genotyping

Olsson & Chester. Vox Sang 1995;69:242-7

Identical genotyping patterns can result in completely different phenotypes

Hybrid-proof rapid PCR detection of common and rare ABO alleles

ABO PCR-ASP low-resolution typing across intron 6

- Fragment sizes: 1.3 1.9 kb
- I2 primer mixes: 3 screen for rare O and A/B subgroup alleles
- Numerous genotypes based on all known alleles interpretable in <3 hours</p>
- The following ABO alleles discriminated:
 A¹, A², A^{1(C467T)}, A^{subgr}, B, B^{subgr}, cisAB, B(A),
 O¹, O^{1v}, O^{1(C467T)}, O¹-B, O¹-A², O², O³, O⁴, O⁵
- FLEXIBILITY, i.e. primers detecting mutations in novel alleles can be added continuously

ABO PCR-ASP gels

Olsson et al. Transfusion 1998; 39:3S

Schematic model of the JK glycoprotein

JK Genotyping

- PCR-ASP
- Single PCR (10 uL)
- Validation:
 - 119 samples
 - 100% concordance
- Amniotic DNA OK

Irshaid NM, Thuresson B, Olsson ML. Br J Haematol 1998;102:1010-14

Current Genomic Testing for Blood Group Antigens

Testing performed:

- Foetal DNA to predict foetal RBC phenotype
- Prediction of RBC phenotype in multitransfused patients
- Resolution of serological discrepancies
 e.g. weak D, ABO subgroups
- Resolution of rare variants

Mostly single/few samples per analysis

Can We "Type" Blood Donors by Genotyping?

WHY?

- Limited selection of antisera
- Scarcity of source material
 - Few immunized donors with potent antibodies for reagent manufacture
 - Zero risk climate eliminated immunization and boosting programs
 - Monoclonal antibodies not available for all antigens

Should We "Type" Blood Donors by Genotyping?

- Use of donor RBCs for in-house antibody detection and identification reagents
- Quality Assurance of Reagent Test RBCs

 Determination of single/double dose antigens for D, Fy^a, Fy^b

Requirements for Large Scale Genomic Typing

- Automated DNA extraction
- Potential for automated PCR set-up
- Rapid, automated post-PCR analysis of numerous blood group polymorphisms
- Closed system to prevent contamination
- Positive sample identification and data correlation

Potential Technology for High Throughput Genomic Typing

- Oligonucleotide Microarray
- High Performance Liquid Chromatography (HPLC)
- Matrix-Assisted Laser Desorption /lonization Time-of-Flight Mass Spectrometry (MALDI-TOF)
- Pyrosequencing

None of these techniques are automated YET

Blood Grouping and Genotyping

Improving Patient Safety and Blood Transfusion Compatibility

Technical Objectives

- To demonstrate novel, nucleic acid based diagnostic tests to reduce the instance of alloimmunization
- To provide an innovative approach to blood group genotyping on a large scale, which is easily extended to other alleles of clinical significance

To provide a platform technology for future clinical approaches to genotyping

DNA Microarray Analysis

Primarily used for looking at gene expression in normal and disease states, e.g.

- Haematologic malignancies
- Solid organ tumours
- Increasing use in SNP analysis
- Potentially automated

Principle of Microarray Analysis

Microscope slide spotted with specific oligonucleotides

 Multiplex PCR products are labeled with red or green fluorescent dye

DNA is hybridised with synthetic oligonucleotide probes on slide

 Fluoresence measured by spectrophotometer

- Specific spots will fluoresce as the different DNAs bind
- •Image is produced by the computer analysis program
- Comparison is made between test and control patterns

Challenges of Using Microarray for SNP Analysis

- Homologous genes are difficult to analyse:
 - SNPS in RHD may be consensus sequence in RHCE
 - Must be amplified in separate multiplexes
 - Experimental procedure does not allow for identity of SNPs in *cis* or *trans*
- Data analysis is the biggest workload burden

Analysis files may be Gigabytes in size!

Advantages of Microarrays

- Enormous potential to gather data on known alleles and to detect new mutations
- Automation potential although many manual steps currently
 - Good platform for donor testing
 - Could be used for testing a wide variety of phenotypic and genotypic differences

Conclusions

- 28 of 29 blood group genes have been identified
 - Blood group polymorphisms can be explained at the genetic level
- Blood group genes provide insights into gene processing and rearrangement
- Molecular analysis of blood group genes is clinically useful and has potential in the Blood Center
- Understanding of molecular basis permits exploration of protein function

Some Reviews from the BloodGen Group 1997-2004

- 1. Storry JR, Olsson ML. Genetic basis of blood group diversity. Brit J Haem, 2004;759-71
- 2. Daniels G. Molecular blood grouping.Vox Sang. 2004;87 Suppl1:63-6.
- 3. Storry JR. Molecular basis of erythrocyte blood group antigens and applications in transfusion medicine.Vox Sang. 2002;83 Suppl 1:81-4.
- 4. Northoff, Flegel WA. Genotyping and phenotyping: the two sides of the coin. Infusionsther Transfusionsmed 1999;26:5
- Avent ND. Molecular genetic methods: principles and feasibility in transfusion medicine. Vox Sang 1998;74:275-84
- 6. Avent ND. Human erythrocyte antigen expression: its molecular bases. Brit J Biomed Sci 1997;54:16-37