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1 Introduction - Wave mechanics

We will start by recalling some fundamental concepts of quantum wave mechanics
based on the correspondence principle.

1.1 Postulates of Wave Mechanics

1. The state of a system is described by its wave function Ψ(x, t) The probability
density is defined as

ρ(x, t) ≡ |Ψ(x, t)|2 (1.1)

|Ψ(x, t)|2 d3x describes the probability to find the particle at time t in the volume
element d3x at x.

2. Physical observables correspond to operators that act on the wave function. For
example, the momentum p and the energy E are represented by the following
derivatives

p → ~
i
∇ , (1.2)

E → i~
∂

∂t
. (1.3)

3. Starting from the Hamilton functionH of classical mechanics, the time-dependent
Schrödinger equation is given by

E =
p2

2m
+ V (x)→ i~

∂

∂t
Ψ(x, t) =

(
− ~2

2m
∇2 + V (x)

)
Ψ(x, t) , (1.4)

i.e.

i~
∂

∂t
Ψ(x, t) = H Ψ(x, t) (1.5)

with the Hamiltonian

H =
(
− ~2

2m
∇2 + V (x)

)
(1.6)

4. Energy eigenstates are given by the time-independent Schrödinger equation

(H − E) Ψ(x, t) = 0 (1.7)

1



1 Introduction - Wave mechanics

Figure 1.1: Illustration of a piecewise constant potential.

1.2 Simple problems

Although the time-dependent and the time-independent Schrödinger equations look
rather simple, their solution is often not trivial. They correspond to second-order
partial differential equations. Here we will consider some simple problems. For the
sake of simplicity, we consider piecewise continuous potentials. Nevertheless, we will
be show the variety of different solutions that are possible in quantum mechanics, such
as bound states, scattering and tunneling. In spite of the fact that the chosen potentials
are rather simple, we will see that the solutions of corresponding time-independent
Schrödinger equation can be quite involved. Later we will learn other techniques such
as algebraic formulations that make the solution much easier.

1.2.1 Piecewise constant potentials

Here we will derive the general form of the solution of the time-independent Schrödinger
equation for a piecewise constant potential, i.e., potentials that have steps but that are
otherwise flat. Such a potential is illustrated in Fig. 1.1. For every flat region of the
potential labeled by the index i in Fig. 1.1, the time-independent Schrödinger equation
(1.7) in one dimension can be rewritten as(

− ~2

2m
d2

dx2
+ Vi

)
Ψi(x) = EΨi(x), xi−1 < x ≤ xi

⇔ d2Ψi(x)
dx2

= −2m
~2

(
E − Vi

)
Ψi(x) (1.8)

We now assume that E > Vi. Then we can define the wave vector

k =

√
2m(E − Vi)

~
, (1.9)

so that the Schrödinger equation simply becomes

d2Ψi(x)
dx2

= −k2Ψ(x) . (1.10)

This is a well-known differential equation in physics and chemistry. Its solution just
corresponds to a plane wave

Ψi(x) = e±ikx , (1.11)

2



1.2 Simple problems

where the + sign presents a wave traveling to the right, i.e., in positive x-direction,
and the − sign a wave traveling to the left in negative x-direction.

For E < Vi, the wave vector (1.12) becomes purely imaginary, i.e. k = iκ with

κ =

√
2m(Vi − E)

~
. (1.12)

The Schrödinger equation is given by

d2Ψ(x)
dx2

= κ2Ψ(x) . (1.13)

Now the solutions correspond to exponentially rising and exponentially vanishing
functions

Ψ(x) = e±κx . (1.14)

Finally we need to know how the solutions are connected at the steps. If the poten-
tial step is finite, then the second derivative Ψ′′ makes a finite jump at xi, so that both
Ψ and the first derivative Ψ′ are continuous at xi. In other words,

Ψi(xi) = Ψi+1(xi)
Ψ′

i(xi) = Ψ′
i+1(xi) (1.15)

for |Vi − Vi+1| < ∞. For an infinite jump in the potential, i.e., for an infinitely high
potential wall, Ψ′ makes a finite jump, but Ψ is still continuous.

1.2.2 A simple atom: square well potential

Now we consider a particle in one dimension that can move freely for |x| < a, but is
confined by infinite potential walls. This means that the potential is given by

V (x) =

{
0 , |x| < a

∞ , |x| ≥ a
. (1.16)

This potential is usually refered to as the “particle in a box”. It can also be regarded
as a very simple model for the electron of the hydrogen atom that is kept close to the
proton. Since the potential is constant for |x| < a, the solution just corresponds to
a superposition of plane waves (1.11). For |x| > a, the wave function has to vanish
because of the infinite potential. At |x| = a, the first derivative of the wave function
makes a jump, but the wave function itself is continuous, i.e.,

Ψ =

{
c1e

+iqx + c2e
−iqx , |x| ≤ a

0 , |x| > a
(1.17)

For |x| ≤ a, the solutions correspond to a superposition of waves travelling to the right
and to the left. Such a superpsoition leads to standing waves which can be written as
sine and cosine functions, sin qx and cos qx, respectively. On the otherhand, the fact
that the wave functions have to vanish for |x| > a means that Ψ(x) has also to vanish

3



1 Introduction - Wave mechanics

Figure 1.2: Square-well potential

at |x| = a, or in other words, they sine and cosine functions have to have a node there.
This leads to the following conditions for the allowed wave vectors q:

cos qa = 0 ⇒ qa =
nπ

2
, n = 2k + 1 (1.18)

sin qa = 0 ⇒ qa =
nπ

2
, n = 2k (1.19)

Hence the allowed eigenfunctions are given by

Ψn =

{
cos nπ

2a x n = 2k + 1
sin nπ

2a x n = 2k
(1.20)

The corresponding eigenenergies are

En =
~2q2n
2m

=
~2

2m

(nπ
2a

)2

(1.21)

The ground state function is given by cosine function that has no node between −a
and a. The further eigenstates alternate between sine and cosine function, and each
higher eigenstate has one more node than the directly lower lying state. Note that the
eigenenergies (1.21) grow with the quantum number n as En ∝ n2. This is differ-
ent from the case of the hydrogen atom where the eigenenergies are proportional to
−1/n2.

Now we will make the system a little bit more realistic by considering walls of finite
height. The square well potential is then given by

V (x) = V0 θ(|x| − a) =

{
0 , |x| < a

V0 , |x| ≥ a
V0 > 0 real number . (1.22)

where θ(x) is the Heaviside step function which is defined as

Θ(x) =

{
0 , x < 0
1 , x ≥ 0

(1.23)

The resulting potential is shown in Fig. 1.2. Bound states exist for 0 < E < V0. Now
we are confronted with a typical quantum phenomenon. Classically, particles can not
penetrate into potential regions that are higher than their energy. However, quantum

4



1.2 Simple problems

mechanically, there is a non-zero probability to find a particle in potential regions that
are finite but larger than the energy of the particle. The particles can still move freely
for |x| ≤ a, but now they penetrate into the potential walls. The time-independent
Schrödinger equation becomes

Ψ′′ = −q2Ψ q ≡
√

2mE
~

|x| ≤ a (1.24)

Ψ′′ = κ2Ψ κ ≡
√

2m(V0 − E)
~

|x| > a (1.25)

For |x| ≤ a, the solutions are again oscillatory, i.e., the are plane waves that can be
represented by exponential functions with purely imaginary exponent or as a combi-
nation of sine and cosine functions. In contrast, for |x| > a the basic solutions are a
linear combination of exponentially rising and vanishing functions

Ψ =

{
c1e

+iqx + c2e
−iqx , |x| ≤ a

c+e
+κx + c−e

−κx , |x| > a
(1.26)

The solutions have to vanish for x→ ±∞, or in other words
∞∫

−∞

|Ψ(x)|2dx <∞ . (1.27)

Therefore one can only have the exponentially decreasing part for x > a and the
exponentially increasing component for x < −a. One can only say that e+κx is not
normalizable for x > a and analogously e−κx not for x < −a. Furthermore, since V (x)
is an even potential, the solutions can be characterized according to their symmetry,
i.e., the solutions are either even or odd as we will see in later chapters. This means
that they can be represented by cosine or sine functions, respectively. If we have even
symmetry, the solution will be

Ψ(x) =

{
A cos qx |x| ≤ a
e−κ|x| |x| > a

(1.28)

For odd symmetry, we get

Ψ(x) =

{
B sin qx |x| ≤ a
±e−κ|x| |x| > a

(1.29)

It is interesting to note that even such a simple example as the square well potential
is not that easy to solve. We will illustrate this in the following. Assume first that Ψ
has even symmetry. Continuity at x = a requires

A cos qa = e−κa (1.30)

Ψ′ has to be continuous, too. From that, we get

= (1.31)

If we devide (1.31) by (1.30), we obtain

tan aq =
κ

q
(1.32)

5



1 Introduction - Wave mechanics

Now we introduce the dimensionless parameter

λ = a

√
2mV0

~
, (1.33)

so that Eq. (1.32) becomes

tan aq =
κ

q
=
κa

qa
=

=

=

√
λ2 − (qa)2

qa
(1.34)

This is a transcendental equation that cannot be solved analytically.
Now assume odd symmetry.

B sin qa = | Bq cos qa =

⇒ − cot qa =
κ

q
=

√
λ2 − (qa)2

qa
(1.35)

Again a transcendental equation that can only be solved graphically. For the graphical
solution we first not that κ/q behaves likes 1/q for small q. Furthermore:

κ

q
= 0 for qa =

a

~
√

2mV0 = λ (1.36)

In Fig. 1.3 the graphical solution is sketched. For three different values of V0 κ/q
is plotted as a function of qa together with tan qa and − cot qa. Every crossing point
of the curves corresponds to a solution. Since κ/q diverges for qa → 0, there is at
least one crossing point with tan qa. The lowest energy state is always even. When
λ increases by π/2, there is another crossing point and hence one additional state.
Hence the total number of states is given by

NS =
[
2λ
π

]
=
[
2a
√

2mV0

π~

]
(1.37)

with [α] nearest integer greater than α. Even and odd states alternate.
It is always instructive to look a limiting cases whose solution is exactly known. If

the potential wall V0 grow to infinity, we recover the particle-in-a-box problem. First
of all, we see from (1.37) that NS ∝ V0, i.e., for inifinite potential walls we also
get infinitely many states, as is also reflected in Eq. (1.21). Furthermore, when V0

increases, the curves for λ in Fig. 1.3 become higher and more flat. This means that
they will cross tan qa and − cot qa at values closer and closer to qa = nπ/2, which also
corresponds to the case of the particle in a box.

1.2.3 Transmission-Reflection Problems

Transmission-reflection problems occur in chemistry when two particles meet each
other. Here we treat such a problem as an one-dimensional potential step

V (x) = V0 θ(x) (1.38)

6



1.2 Simple problems

λ1 λ2
λ3

0 π/2 3π/2 7π/2π 2π 5π/2 3π qa

λ1 λ2
λ3

0 π/2 3π/2 7π/2π 2π 5π/2 3π qa

Figure 1.3: Graphical solution for the even and odd solutions of the square well prob-
lem

For x < 0, the potential is 0, for x > 0, the potential is V0 (see Fig. 1.4). The
Schrödinger equation for x < 0 and x > 0 is given by

d2Ψ
dx2

= −2mE
~2

Ψ = −k2Ψ x < 0 (1.39)

d2Ψ
dx2

= −2m(E − V0)
~2

Ψ = −k′2Ψ x > 0 (1.40)

Let E > V0. Suppose a particle is incident from the left.

ΨI(x) = e+ikx + re−ikx (1.41)

ΨII(x) = te+ik′x (1.42)

r and t are the reflection and transmission amplitudes. We will now discuss the so-
called probability flux which is given by

j(x) =
~
m
=
(
Ψ∗ d

dx
Ψ
)

(1.43)

7



1 Introduction - Wave mechanics

j in

V

x = 0
x

0

j

j

trans

refl

Figure 1.4: Potential step and transmission coefficient T (E) for a potential step of
height V0 = 0.5.

For the particular problem of the potential step, we obtain

jI(x) =
~
m
=
(
Ψ∗

I
d

dx
ΨI
)

=
~
m
=
[
(e−ikx + r∗eikx)ik(eikx − re−ikx)

]
=

~
m
=
[
ik
(
1− |r|2−re−i2kx + r∗ei2kx︸ ︷︷ ︸

=purely imaginary

)]
=

~k
m

(1− |r|2) ≡ jin − jrefl (1.44)

jII(x) =
~
m
=
[
t∗e−ik′x(ik′)teik′x

]
=

~k′

m
|t|2 ≡ jtrans (1.45)

We will now define R and T , the reflection and transmission coefficient.

R ≡ jref
jin

= |r|2 (1.46)

T ≡ jtrans

jin
=
k′

k
|t|2 (1.47)

Due to particle conservation we have jin − jrefl = jout, which leads to

~k
m

(1− |r|2) =
~k′

m
|t|2 jI = jII

⇒R+ T = 1 (1.48)

If the potential is Hermitian, then the number of particles is conserved. If it is non-
Hermitian, the potential must have an imaginary part not identically to zero. Imagi-
nary potentials can describe the annihilation of particles.

It is left as an exercise to calculate the transmission coefficient for the potential step.

8



1.2 Simple problems

The result is given by

T (E) =
4
√

(E − V0)E(√
E +

√
(E − V0)

)2 , (1.49)

which is also plotted in Fig. 1.4. There is another typical quantum phenomenon visible
in Fig. 1.4: For energies slightly larger than the step height, the transmission coefficient
is less than one. This means that there is reflection above the barrier. Although the
energy higher than the potential step, a certain fraction of the incoming beam will
still be reflected. Classically, there is no reflection above the barrier. It is true that the
particles will be slowed down, but they will all propagate along the potential step.

1.2.4 A simple reaction: transmission through a potential barrier

The transmission through a potential barrier is a typical process in chemistry that oc-
curs in any activated chemical reaction. However, the following considerations are also
relevant for the understanding of the scanning tunneling microscope (STM), which has
become one of the standard tools in surface chemistry. If the potential barrier has a
finite width, then particles can be transmitted even with energies below the barrier
height. This is again a typical quantum phenomenon called tunneling that is not pos-
sible in classical mechanics.

The potential we consider is again piecewise constant:

V (x) = V0 θ(a− |x|) (1.50)

This looks like the square well of Fig. 1.2, but just inverted.
The general solution for 0 < E < V0 can be written as

Ψ(x) =


Aeikx +Be−ikx x < −a
Ce−κx +Deκx − a ≤ x ≤ a
Feikx +Ge−ikx x > a

(1.51)

where the quantities k = 1
~
√

2mE and κ = 1
~
√

2m(V0 − E) are again the wave num-
bers.

The solution of the transmission problem is straightfoward but still tedious. We
derive the explicit solution in the appendix of this chapter. Here we just consider the
most important results.

Consider a particle incident from the left, i. e. G = 0. The incoming wave amplitude
is then given by A, the reflected wave amplitude is given by B and the transmitted flux
is given by F . For E < V0, the transmission coefficient is given by

T (E) ≡ |t(E)|2 = |F/A|2 =
1

1 +

{(
k2 + κ2

)2
4k2κ2

}
sinh2 2κa

=
1

1 +
{
V 2

0 /4E(V0 − E)
}

sinh2
(
2a
√

2m(V0 − E)/~2
) (1.52)

9



1 Introduction - Wave mechanics

Figure 1.5: Transmission coefficient T (E) for a square barrier of height V0 = 0.5 eV,
width d = 2a = 4 Å, and m = 2 amu.

For energies larger than the barrier, i.e., E > V0, the transmission probability is given
by

T (E) =
1

1 +
{
V 2

0 /4E(E − V0)
}

sin2
(
2a
√

2m(E − V0)/~2
) (1.53)

Note that Eq. (1.53) also decribes the transmission across the square-well potential
(1.22) with V0 replaced by −V0.

The transmission coefficient T (E) for a square barrier of height V0 = 0.5 eV, width
d = 2a = 4 Å, and m = 2 amu corresponding to a H2 molecule has been plotted in
Fig. 1.5 using Eqs. (1.52) and (1.53). ForE < V0 = 0.5 eV, there is already a significant
transmission probability of up to 20%. For E > V0, the transmission probability is in
general less than unity. Note that there is an oscillatory structure in the transmission
probability with resonances where the probability is one. An inspection of Eq. (1.53)
shows that these resonances occur when

2a

√
2m(E − V0)

~2
= nπ, n = 1, 2, 3, . . . (1.54)

Now we consider the limiting case of a very high and wide barrier, e. g. κ · a � 1
which also corresponds to 0 < E � V0. Under these conditions, we can expand the
sinh 2κa ≈ 1

2e
2κa � 1. Then the transmission coefficient is approximately equal to

T (E) ≈ 16(κk)2

(κ2 + k2)2
e−4κa

=
16E(V0 − E)

V 2
0

exp
(
−4

~
√

2m(V0 − E)a
)

⇒ T (E) ∝ exp
(
−4

~
√

2m(V0 − E)a
)

(1.55)
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1.2 Simple problems

-a 0 a x

Ce
-κx

De
κx

Figure 1.6: Wave function in the potential barrier

Thus, for large and high barriers, tunnelling is suppressed exponentially. The transmis-
sion probability decreases exponentially with the width a of the barrier and the square
root of the difference between the energy and the energetic height of the barrier. This
is a purely quantum mechanical process.

Let us have a look inside the barrier. From the boundary conditions, we can derive
that

C = F · 1
2

(
1− i k

κ

)
e(κ+ik)a

D = F · 1
2

(
1 + i

k

κ

)
e(−κ+ik)a (1.56)

Now we use the fact that the coefficient F is proportional to the transmission ampli-
tude t(E) (see (1.52)). Then in the case of a high and wide barrier, i. e. κa � 1, we
get from Eq. (1.55)

F ∝
√
T (E) ∝ e−2κa (1.57)

and

C ∝ e−κa+ika

D ∝ e−3κa+ika

⇒ Ce−κx
∣∣
x=a
∝ e−2κa ∝ Deκx

∣∣
x=a

(1.58)

In the end, F consists of two parts – an exponentially decreasing part, Ce−κx and an
exponentially increasing part, Deκx, which add up to F at x = a (see Fig. 1.6).

Continuous Potential Barrier

If we have a continuous potential, then we approximate V (x) by individual square
barriers of width dx (see Fig. 1.7), which means that we replace the step width 2a
in Eq. (1.55) by dx. In the limiting case of a high and wide barrier, the transmission
probability can then be derived by multiplying the transmission probabilities of each

11



1 Introduction - Wave mechanics

a b

V(x)

x
dx

Figure 1.7: Decomposition of a continuous barrier into rectangular barriers

segment:

T (E) = Πn
i=1e

− 2
~

√
2m(V (xi)−E)dx = exp

(
−2

~

n∑
i=1

√
2m(V (xi)− E)dx

)
n→∞−−−−→ exp

(
−2

~

∫ b

a

√
2m(V (x)− E) dx

)
(1.59)

1.2.5 Appendix: Transmission through a potential barrier

Here we show the explicit solution of the transmission through a square potential
barrier. For the potential barrier V (x) = V0 θ(a−|x|) of Eq. (1.50), the general solution
for 0 < E < V0 can be written as

Ψ(x) =


Aeikx +Be−ikx x < −a
Ce−κx +Deκx − a ≤ x ≤ a
Feikx +Ge−ikx x > a

(1.60)

where the quantities k = 1
~
√

2mE and κ = 1
~
√

2m(V0 − E) are again the wave num-
bers.

First of all, we write down the matching conditions at x = −a.

Ae−ika +Beika = Ceκa +De−κa (1.61)

ik
[
Ae−ika −Beika

]
= −κ

[
Ceκa −De−κa

]
(1.62)

In matrix notation, this is easier to solve.(
e−ika eika

e−ika −eika

)(
A
B

)
=

(
eκa e−κa

iκ

k
eκa − iκ

k
e−κa

)(
C
D

)

M(a)
(
C
D

)
=
(
A
B

)
(1.63)

Here M(a) is given by

M(a) =
1
2


(
1 +

iκ

k

)
eκa+ika

(
1− iκ

k

)
e−κa+ika

(
1− iκ

k

)
eκa−ika

(
1 +

iκ

k

)
e−κa−ika

 (1.64)
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1.2 Simple problems

The matching conditions at x = a are similar.

M(−a)
(
C
D

)
=
(
F
G

)
(1.65)

M(a)M−1(−a)
(
F
G

)
=
(
A
B

)
(1.66)

where M−1(−a) is given by

M−1(−a) =
1
2


(
1− ik

κ

)
eκa+ika

(
1 +

ik

κ

)
eκa−ika

(
1 +

ik

κ

)
e−κa+ika

(
1− ik

κ

)
e−κa−ika

 (1.67)

The solution for the coefficients is

(
A
B

)
=


(
cosh 2κa+

iε

2
sinh 2κa

)
ei2ka iη

2
sinh 2κa

− iη
2

sinh 2κa
(
cosh 2κa− iε

2
sinh 2κa

)
e−i2ka

(F
G

)
(1.68)

with ε = κ
k −

k
κ and η = κ

k + k
κ .

Consider a particle incident from the left, i. e. G = 0. The incoming wave amplitude
is then given by A, the reflected wave amplitude is given by B and the transmitted flux
is given by F . Thus we get from the matrix equation (1.68)

A = F

(
cosh 2κa+

iε

2
sinh 2κa

)
ei2ka

B = F ·
(
− iη

2

)
sinh 2κa (1.69)

The transmission amplitude is given by t(E) ≡ F
A .

t(E) =
F

A
=

F

F

(
cosh 2κa+

iε

2
sinh 2κa

)
ei2ka

=
e−i2ka

cosh 2κa+ i
ε

2
sinh 2κa

(1.70)

Now we want to calculate the transmission coefficient.

T (E) ≡ |t(E)|2 =
1(

cosh 2κa+ i
ε

2
sinh 2κa

)(
cosh 2κa− i ε

2
sinh 2κa

)
=

1

1 +
(

1 +
ε2

4

)
sinh2 2κa

(1.71)
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1 Introduction - Wave mechanics

This can be rewritten to give

T (E) ≡ |t(E)|2 = |F/A|2 =
1

1 +

{(
k2 + κ2

)2
4k2κ2

}
sinh2 2κa

=
1

1 +
{
V 2

0 /4E(V0 − E)
}

sinh2
(
2a
√

2m(V0 − E)/~2
) (1.72)
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2 Fundamental Concepts of Quantum
Mechanics

2.1 Introduction

Let us start with first discussing the Stern-Gerlach experiment performed in 1922.

Figure 2.1: Diagram of the Stern-Gerlach-Experiment

The magnetic moment of the silver atoms is proportional to the magnetic moment
of the 5s1 electron, the inner electron shells do not have a net magnetic moment. The
Force in z-direction in an inhomogeneous magnetic field is given by

Fz =
∂

∂z

(
µ ·B

)
≈ µz

∂Bz

∂z
(2.1)

We expect from classical mechanics that the atoms are distributed randomly with a
peak in the middle. But we observe two different peaks; if we calculate the magnetic
moment from the data obtained, we get that the magnetic moment is either S = +~/2ez

or S = −~/2ez – the electron spin is quantitized.
Historically, more sophisticated experiments followed. Instead of using just one

magnet, several magnets are used in series, so that sequential Stern-Gerlach experi-
ments can be performed:

They show that the spin is quantized in every direction by the amount above, ±~/2.
It also suggests that selecting the Sx+ component after a Stern-Gerlach experiment
in x-direction completely destroys any previous information about Sz. There is in
fact an analogon in classical mechanics – the transmission of polarized light through
polarization filters.
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2 Fundamental Concepts of Quantum Mechanics

The following correspondence can be made

Sz ± atoms↔ x−, y − polarized light
Sx ± atoms↔ x′−, y′ − polarized light (2.2)

where x′ and y′-axes are x and y axes rotated by 45◦.

Notation. We write the Sz+ state as |Sz; +〉 or |Sz; ↑〉; similarly, the Sz− state corre-
sponds to |Sz; ↓〉. We assume for Sx states superposition of Sz states

|Sx; ↑〉 ?=
1√
2
|Sz; ↑〉+

1√
2
|Sz; ↓〉 (2.3)

|Sx; ↓〉 ?= − 1√
2
|Sz; ↑〉+

1√
2
|Sz; ↓〉 (2.4)

This really is a two-dimensional space! What about the Sy states – it should be a linear
combination of the Sz states, too. However, all possible combinations seem to be used
up. The analogy is circular polarized light. Right circularly polarized light can be
expressed as

E = E0

[
1√
2
exe

i(kz−ωt) +
i√
2
eye

i(kz−ωt)

]
(2.5)

Can we use this analogy to define the Sy states?

|Sy; ↑〉 ?=
1√
2
|Sz; ↑〉+

i√
2
|Sz; ↓〉 (2.6)

|Sy; ↓〉 ?= − 1√
2
|Sz; ↑〉 −

i√
2
|Sz; ↓〉 (2.7)

We already note here that only the “direction” in the vector space is of significance,
not the “length” of the vectors.

2.2 Kets, Bras, and Operators

Consider a complex vector space of dimension d which is related to the nature of the
physical system.

The space of a single electron spin is two-dimensional whereas for the description
of a free particle a vector space of denumerably infinite dimension is needed.

2.2.1 Kets

The vector space is called Hilbert Space. The physical state is represented by a state
vector. Following Dirac, a state vector is called ket and denoted by |α〉.

They suffice the usual requirements for vector spaces (commutative, associative ad-
dition, existence of null ket and inverse ket, and scalar multiplication).

One important postulate is that |α〉 and c · |α〉 with c 6= 0 correspond to the same
physical state. Mathematically this means that we deal with rays rather than vectors

A physical observable can be represented by an operator. Operators act on kets from
the left.

A(|α〉) = A |α〉 (2.8)
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2.2 Kets, Bras, and Operators

In general, applying an operator to a ket cannot be expressed as a scalar multiplication,
i.e.,

A(|α〉) 6= c |α〉 in general (2.9)

with c any complex number.
Analogously to eigenvectors, there are eigenkets

A(|α〉) = a |α〉 , A(|α′〉) = a′ |α′〉 , (2.10)

with eigenvalues a, a′, . . ..

Example

Spin 1/2 System. Sz |Sz, ↑〉 = +~
2 |Sz, ↑〉, Sz |Sz, ↓〉 = −~

2 |Sz, ↓〉

2.2.2 Bra space and inner product

The Bra space is the vector space dual to the ket space. It is spanned by the eigenbras
{〈a′|} which correspond to the eigenkets {|a′〉}. There is an isomorphism that assigns
each ket onto its bra.

〈α| ↔ |α〉 cα 〈α|+ cβ 〈β| ↔ c∗α |α〉+ c∗β |β〉 (2.11)

Note the complex-conjugated coefficients.
Now we introduce the inner or scalar product1.

〈�|�〉 : V ∗ × V ⇒ C
(〈β| , |α〉) 7−→ 〈β|α〉 (2.12)

It is Hermitian and positive definite, i.e.,

〈β|α〉 = 〈α|β〉∗

〈α|α〉 ≥ 0 . (2.13)

Two kets |α〉 and |β〉 are said to be orthogonal if

〈α|β〉 = 0 . (2.14)

We can explicitly normalize a ket |α̃〉 by

(2.15)√
〈α̃|α̃〉 is known as the norm of |α̃〉.

1bra)(ket
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2 Fundamental Concepts of Quantum Mechanics

2.3 Operators

X and Y are said to be equal, X = Y , if X |α〉 = Y |α〉. for arbitrary |α〉. Then we
write X = Y . Operator addition is commutative and associative,

X + Y = Y +X ; X + (Y + Z) = (X + Y ) + Z . (2.16)

Operators are usually linear, that is,

X(a1 |α1〉+ a2 |α2〉) = a1X |α1〉+ a2X |α2〉 (2.17)

An exception is for example the time-reversal operator which is antilinear.
An operator acts on a bra from the right side.
Note. X |α〉 and 〈α|X are in general not dual to each other. The correspondence is

X |α〉 ↔ 〈α|X† (2.18)

The operator X† is called the Hermitian adjoint, or simply the adjoint of X. By defini-
tion, an operator is said to be Hermitian, if and only if X† = X.

2.3.1 Multiplication of operators

The multiplication of operators corresponds to the successive application of operators.
It is in general non-commutative, i. e.

XY 6= Y X (2.19)

but associative.

X(Y Z) = (XY )Z (2.20)

Furthermore, the usual rules of a non-Abelian group apply. The Hermitian adjoint of
a product of operators is given by

(XY )† = Y †X† (2.21)

2.3.2 Outer Product

The outer product of |β〉 and 〈α| is defined as

(|β〉)(〈α|) = |β〉 〈α| (2.22)

It is to be regarded as an operator.

|β〉 〈α| |γ〉︸︷︷︸
ket

= |β〉︸︷︷︸
ket

〈α|γ〉︸ ︷︷ ︸
∈C

(2.23)

Some more rules. Let X be an operator.(
|β〉 〈α|

)† = |α〉 〈β| (2.24)(
|β〉
)(
X 〈α|

)
=
(
|β〉X

)(
〈α|
)

= |β〉X 〈α| (2.25)

〈β|X|α〉 =
〈
α|X†|β

〉∗
X Hermitian⇔ 〈β|X|α〉 = 〈α|X|β〉∗ (2.26)
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2.3 Operators

2.3.3 Base Kets and Matrix Representations

Theorem
The eigenvalues of a Hermitian operator A are real; the eigenkets of A
corresponding to different eigenvalues are orthogonal.

Proof

�

Usually, we will assume that eigenkets are normalized, i. e. 〈αi|αj〉 = δij . Thus, the
eigenkets form an orthogonal set.

2.3.4 Eigenkets as Base Kets

Normalized eigenkets of A form a complete orthonormal set, i. e. an arbitrary ket |β〉
can be expressed as a linear combination of eigenkets.

|β〉 =
∑

k

ck |αk〉 (2.27)

If we multiply by 〈αj | we get that 〈αj |β〉 = cj . Thus, we get

|β〉 =
∑

k

|αk〉 〈αk|β〉 (2.28)

⇒
∑

k

|αk〉 〈αk| = 1 (2.29)

2.3.5 Resolution of the Identity, Completeness Relation, or Closure

(2.29) can be extremely useful.

(2.30)

If 〈β| is normalized, then
∑

k |ck|
2 = 1. Each summand |αk〉 〈αk| selects the portion of

|β〉 parallel to |αk〉. Thus, it is a projection operator; it is denoted by Λk = |αk〉 〈αk|.
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2 Fundamental Concepts of Quantum Mechanics

Therefore, every operator can be represented in a matrix via X = 1X1; the bra index
is the row index, the ket index is the column index.

X =
∑
k,j

(
|αk〉 〈αk|︸︷︷︸

row

X |αj〉︸︷︷︸
column

〈αj |
)

=̂

〈α1|X|α1〉 〈α1|X|α2〉 . . .
〈α2|X|α1〉 〈α2|X|α2〉 . . .

...
...

. . .

 (2.31)

The Hermitian adjoint of an operator corresponds to the complex conjugate transposed
matrix.

The successive application of operators corresponds to matrix multiplication.

Proof

�

Thus, state kets are represented by column vectors and bras by row vectors.

|β〉=̂


〈α1|β〉
〈α2|β〉
〈α3|β〉

...

 , 〈γ| =̂ (〈γ|α1〉 , 〈γ|α2〉 , 〈γ|α3〉 , . . .)
=

(
〈α1|γ〉∗ , 〈α2|γ〉∗ , 〈α3|γ〉∗ , . . .

) (2.32)

2.4 Spin 1/2 System

As base kets |Sz; +〉 = |Sz; ↑〉 = |↑〉 and |Sz;−〉 = |↓〉 are used. Since nothing is special
about the z-axis, this just corresponds to a convention. The base kets can also be
written as a column matrix

|↑〉 ≡
(

1
0

)
, |↓〉 ≡

(
0
1

)
, (2.33)

The simplest operators is the identity operator 1. In the basis given above, the operator
Sz is diagonal.

1 = |↑〉 〈↑|+ |↓〉 〈↓| ≡
(

1 0
0 1

)
(2.34)

Sx =
~
2

(|↑〉 〈↓|+ |↓〉 〈↑|) ≡ ~
2

(
0 1
1 0

)
(2.35)

Sy =
i~
2

(− |↑〉 〈↓|+ |↓〉 〈↑|) ≡ i~
2

(
0 −1
1 0

)
(2.36)

Sz =
~
2
(
|↑〉 〈↑| − |↓〉 〈↓|

)
≡ ~

2

(
1 0
0 −1

)
(2.37)
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2.5 Measurements, Observables And The Uncertainty Relation

Nearly all operators we deal with are Hermitian operators. However, there are some
important non-Hermitian operators, e. g. the so-called lowering and raising operator,
S− and S+ respectively.

S+ = ~ |↑〉 〈↓| =̂~
(

0 1
0 0

)
(2.38)

S− = ~ |↓〉 〈↑| =̂~
(

0 0
1 0

)
(2.39)

S± raise and lower the spin by one unit of ~, respectively. As we will see later, they
can be expressed as

S± = Sx ± iSy (2.40)

2.5 Measurements, Observables And The Uncertainty Relation

Consider a state |α〉 =
∑

k ck |αk〉 =
∑

k |αk〉 〈αk|α〉. According to the quantum theory
of measurement, after a measurement of the observable A the system is ’thrown’ into
an eigenstate of A, for example |αk〉. We measure A to be αk.

The Result of a measurement yields one of the eigenvalues of A.

Theorem Postulate

The probability for a state αk to be measured is

P (αk) = |〈αk|α〉|2 (2.41)

provided that |α〉 normalized.

These probabilities P (αk) can be determined with a large number of experiments
performed on an ensemble of identically prepared physical systems, a so-called pure
ensemble.

If the system already is in an eigenstate αk, then the probability to measure αk is 1.
The expectation value of an operator A with respect to state α is

〈A〉 ≡ 〈A〉α ≡ 〈α|A|α〉 (2.42)

This corresponds to the average measured value which can be derived from

〈A〉 =

(2.43)

which corresponds to a sum over the measured values aj which are weighted by the
probabilities P (αj) = |〈αj |α〉|2.

Note. In general, expectation values do not coincide with eigenvalues, e.g. in the
spin 1/2 system, the expectation value is a number that ’arbitrarily’ lies between ±~/2.

21



2 Fundamental Concepts of Quantum Mechanics

2.5.1 Compatible Observables

We define the commutator and the anti-commutator as follows:

[A,B] ≡ AB −BA {A,B} ≡ AB +BA (2.44)

Note that the commutator and the anti-commutator also represent oeprators. If A
and B are Hermitian, then the commutator [A,B] is anti-Hermitian:

([A,B])† = (AB −BA)† = (B†A† −A†B†)
= (BA−AB) = −[A,B] . (2.45)

Equivalently, if A and B are Hermitian, then {A,B} is also Hermitian.

Definition Compatible Observables

Observables A and B are defined to be compatible, if the corresponding
operators commute, i. e.

[A,B] = 0 (2.46)

and incompatible, if [A,B] 6= 0.

If the observablesA andB are compatible, thenAmeasurements andB measurements
do not interfere, as we will see below.

An important example for incompatible observables are Sx and Sy. In detail, the
spin operators obey the commutation relations

[Si, Sj ] = i~
∑

k

εijkSk , (2.47)

and the anti-commutation relations

{Si, Sj} =
~2

2
δij , (2.48)

where the total anti-symmetric Levi-Civita tensor εijk is defined via the unit basis-
vectors ~e1, ~e2, ~e3 of a right-handed Cartesian coordinate system as

~ei × ~ej =
∑

k

εijk~ek. (2.49)

Note that Sz and S2 ≡
∑

k S
2
k are in fact compatible.

Theorem Representation of Compatible Observables
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2.5 Measurements, Observables And The Uncertainty Relation

Suppose that A and B are compatible observables and the eigenvalues of
A are nondegenerate, i. e. ai 6= aj ∀i 6= j, then the matrix elements
〈αi|B|αj〉 are all diagonal.

Thus, both operators have a common set of eigenkets, their corresponding matrix
representations can be diagonalized simultaneously.

Proof
Simple.

�

Immediately we see that A and B are diagonalized simultaneously. Suppose B acts on
an eigenket of A.

B |αi〉 =
∑

k

|αk〉 〈αk|B|αk〉 〈αk|αi〉

= (〈αi|B|αi〉) |αi〉 (2.52)

This is just an eigenvalue equation for the operator B with eigenvalue

βi = 〈αi|B|αi〉 (2.53)

The ket |αi〉 is therefore a simultaneous eigenket of A and B which might be charac-
terized by |αi, βi〉.
Remark. The theorem also holds for degenerate eigenvalues.

Example

Orbital Angular Momentum.
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Assume that A,B,C, . . . with

[A,B] = [A,C] = [B,C] = . . . = 0 (2.54)

form a maximal set of compatible observables which means that we cannot add any
more observables to our list without violating (2.54). Then the (collective) index
Ki = (ai, bi, ci, . . .) uniquely specifies the eigenket

|Ki〉 = |ai, bi, ci, . . .〉 (2.55)

The completenes relation implies that∑
i

|Ki〉 〈Ki| =
∑
ai

∑
bi

∑
ci

. . . |ai, bi, ci, . . .〉 〈ai, bi, ci, . . .| = 1 . (2.56)

As an example, we consider again the angular momentum

1 =
∑

l

∑
|m|≤l

|lm〉 〈lm| (2.57)

What does it mean when two operators are compatible or not?
Consider a successive measurement of compatible observables.

|α〉 A−→ |ai, bi〉
B−→ |ai, bi〉

A−→ |ai, bi〉 (2.58)

Thus, A and B measurements do not interfere, if A and B are compatible observables.
Now, imagine an experiment with a sequential selective measurement of incompati-

ble observables.

|α〉 A−→ |ai〉
B−→ |bj〉

C−→ |ck〉 (2.59)

The probability to find |ck〉 (provided that |ck〉 is normalized) is given by

P bj (ck) = |〈ck|bj〉|2 · |〈bj |ai〉|2 (2.60)

We sum over all bj to get the total probability for going through all possible bj routes.

P (ck) =
∑

j

|〈ck|bj〉|2 |〈bj |ai〉|2 =
∑

j

〈ck|bj〉 〈bj |ai〉 〈ai|bj〉 〈bj |ck〉 (2.61)

What happens when the filter B is switched off, i.e., when the measurement of the
observable B is not performed?

P ′(ck) = |〈ck|ai〉|2 =
∣∣∣∑

j

〈ck|bj〉 〈bj |ai〉
∣∣∣2

=
∑

j

∑
l

〈ck|bj〉 〈bj |ai〉 〈ai|bl〉 〈bl|ck〉 (2.62)

P (ck) and P ′(ck) are different (double sum vs. single sum)! The important result is
that it matters whether or not B is switched on.
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2.5 Measurements, Observables And The Uncertainty Relation

2.5.2 Uncertainty Relation

First, we derive the more general uncertainty relation, then – later on – Heisenberg’s
Uncertainty-Relation as a special case of this uncertainty relation.

Given an observable A, we define ∆A as

∆A ≡ A− 〈A〉 (2.63)

Then we can define the dispersion〈(
∆A
)2〉 =

〈(
A2 − 2A 〈A〉+ 〈A〉2

)〉
=
〈
A2
〉
− 〈A〉2 (2.64)

which is sometimes also called variance or mean square deviation in accordance with
probabilistic theory.
Remark. Sometimes ∆A denotes

∆A ≡
√
〈(A− 〈A〉)2〉 (2.65)

Example

Theorem Uncertainty Relation

〈
(∆A)2

〉 〈
(∆B)2

〉
≥ 1

4
|〈[A,B]〉|2 (2.68)

If the observables do not commute, then there is some inherent “fuzziness” in the
measurements.

For the proof, we need two lemmas.

Theorem Schwarz Inequality

〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2 (2.69)
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2 Fundamental Concepts of Quantum Mechanics

Proof

�

Theorem

The expectation value of a Hermitian operator is purely real. The expecta-
tion value of an anti-Hermitian operator is purely imaginary.

The proofs are trivial.

Now we are in a position to prove the Uncertainty Relation.

Proof
We use the Schwarz Inequality.

|α〉 = ∆A |�〉 |β〉 = ∆B |�〉 (2.72)

In conjunction with the Hermiticity of A and B, we get〈
(∆A)2

〉 〈
(∆B)2

〉
≥ |〈∆A∆B〉|2 (2.73)

We can decompose ∆A∆B as the sum of half the commutator plus half of the anti-
commutator of both operators2, i.e. an anti-Hermitian part and a Hermitian part.

∆A∆B =
1
2
[∆A,∆B] +

1
2
{∆A,∆B} (2.74)

⇒ 〈∆A∆B〉 =
1
2
〈[∆A,∆B]〉+ 1

2
〈{∆A,∆B}〉 (2.75)

=
1
2

〈[A,B]〉︸ ︷︷ ︸
purely imaginary

+
1
2
〈{∆A,∆B}〉︸ ︷︷ ︸

purely real

(2.76)

2similarly, we can decompose any real function in an odd and an even part
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2.5 Measurements, Observables And The Uncertainty Relation

In order to get the last line, we have used that [∆A,∆B] = [A,B]. Now let us take the
square modulus

|〈∆A∆B〉|2 =
1
4
|〈[A,B]〉|2 +

1
4
|〈{∆A,∆B}〉|2

≥ 1
4
|〈[A,B]〉|2 (2.77)

That leads to the uncertainty relation. �

In the next section (sect. 2.6.3) we will see that the Heisenberg Uncertainty Prin-
ciple is just a special case of the uncertainty relation (2.68) for the position and the
momentum operator.

2.5.3 Change of basis

Consider two incompatible observables A and B (if both are compatible, they have
a common spectrum of eigenkets!). The ket space may either be spanned by the
eigenkets {|ai〉} and {|bi〉}.

How are these basis related? We want to find the operator that connects the repre-
sentation of A with the representation of B.

Theorem

Given two sets of base kets, both satisfying orthonormality (and complete-
ness), there exists an unitary operator U such that

|bi〉 = U |ai〉 ∀i (2.78)

Unitary means that the Hermitian of the operator is the inverse.

U†U = 1 = UU† (2.79)

As a proof, we will explicitly construct this operator.

Proof
We prove this theorem by explicit construction. Let us assume that U is the operator
defined by

U ≡
∑

i

|bi〉 〈ai| (2.80)

(2.81)

27
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Now we still have to prove the unitarity.

(2.82)

The other direction UU† = 1 can be shown analogously.
�

The matrix representation of U in the old {|ai〉} basis is

〈ai|U |aj〉 = 〈ai|bj〉 , (2.83)

i.e. it corresponds to the inner product of old base bras and new base kets.
Let us consider an arbitrary ket |α〉.

|α〉 =
∑

k

|ak〉 〈ak|α〉 (2.84)

The coefficients in the new basis are given by

〈bl|α〉 =
∑

k

〈bl|ak〉 〈ak|α〉

=
∑

k

〈
al|U†|ak

〉
〈ak|α〉 , (2.85)

i.e., the column matrix for |α〉 in the new basis can be obtained by applying the square
matrix U† to the column matrix in the old basis:

(new) = U†(old) (2.86)

In order to understand why U† appears in eq. (2.86), one should note that if for
example the coordinate system is rotated in real space, then the coordinates of vectors
can be obtained by effectively rotating the vector by the same angle in the opposite
direction which is represented by the transposed rotation matrix.

It is equally simple to show that the matrix elements of an operator X transforms
according to

X ′ = U†XU (2.87)

Quantities that are invariant under transformations are of special importance in
physics. The trace of the operator is such an invariant quantity.

trX ≡
∑

i

〈ai|X|ai〉 . (2.88)

Proof
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2.5 Measurements, Observables And The Uncertainty Relation

trX ≡
∑

i

〈ai|X|ai〉

=

=

=

=
∑

k

〈bk|X|bk〉 (2.89)

�

Further properties of the trace:

tr (XY ) = tr (Y X) (2.90)

tr (U†XU) = trX (2.91)

tr (|ai〉 〈aj |) = δij , tr (|bi〉 〈aj |) = 〈aj |bi〉 (2.92)

The determinant is also such an invariant quantity.

detX := . . . = Πiλi , (2.93)

where λi are the eigenvalues of the operator.

2.5.4 Diagonalization

A matrix in its eigenbasis is diagonalized. Finding the eigenvalues and the eigenkets
of an operator B is equivalent to finding the unitary matrix U that diagonalizes B. In
fact, U consists of the eigenkets of B, as we will show explicitly.

Consider the eigenvalue equation

B |bi〉 = bi |bi〉 . (2.94)

This can be rewritten as

〈aj |B|bi〉 =
∑

k

〈aj |B|ak〉 〈ak|bi〉 = bi 〈aj |bi〉 . (2.95)

|bi〉 in (2.94) stands for the ith eigenket of operator B. Thus we can write (2.95) in
matrix notation using the {|ai〉} basis asB11 B12 . . .

B21 B22 . . .
...

...
. . .



c
(i)
1

c
(i)
2
...

 = (2.96)
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with

Bnm = 〈an|B|bm〉 , (2.97)

and

c(i)n = 〈an|bi〉 . (2.98)

From linear algebra one knows that nontrivial solutions for c(i)n are only possible if the
characteristic equation

det(B − λ1) = 0 (2.99)

is satisified. The roots of (2.99) can be identified with the eigenvalues bi. The cor-
responding eigenvectors with the coefficients c(i)n can then be determined up to an
overall constant that can be derived from the normalization condition. Comparing
(2.96) with (2.83) we see that the elements of the unitary matrix U performing the
transformation are just given by the coefficients c(i)n , i.e., U can be constructed from
the column vectors formed by the eigenvectors of B:

U =


U11 U12 U13 . . .
U21 U22 U23 . . .
U31 U32 U33 . . .

...
...

...
. . .

 =


c
(1)
1 | c

(2)
1 | c

(3)
1 | . . .

c
(1)
2 | c

(2)
2 | c

(3)
2 | . . .

c
(1)
3 | c

(2)
3 | c

(3)
3 | . . .

... |
... |

... |
. . .

 (2.100)

2.6 Position, Momentum, and Translation

The observables so far have been assumed to exhibit discrete eigenvalue spectra. How-
ever, in quantum mechanics observable can have a continuous spectrum (i.e. a contin-
uous set of eigenvalues). An example is pz, the z component of the momentum.

Consider the eigenvalue equation with a continuous spectrum.

W |w〉 = w |w〉 , (2.101)

where W is an operator and w is simply a number. What is the analogy to discrete
spectra? A vector space spanned by eigenkets with a continuous spectrum has an
infinite dimension. Many of the results derived for a finite-dimensional vector space
with discrete eigenvalues can be generalized. Replace the Kronecker symbol δij by
the Dirac function δ(w). Replace the sum over the eigenvalues by an integral over a
continuous variable.

〈ai|aj〉 = δij ⇐⇒ 〈w′|w′′〉 = δ(w′ − w′′) (2.102)∑
i

|ai〉 〈ai| = 1 ⇐⇒
∫
|w′〉 〈w′| dw′ = 1 (2.103)
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x

δ(x)

x’

large

small

delta function

λ

λ

 λ → 0

Figure 2.2: Delta function as a limit of Gaussian functions (2.114) for λ→ 0.

There are further analogies:

|α〉 =
∑

i

|ai〉 〈ai|α〉 ⇐⇒ |α〉 =
∫
|ω〉 〈ω|α〉 dω (2.104)

∑
i

|〈ai|α〉|2 = 1 ⇐⇒
∫
〈α|ω〉 〈ω|α〉 dω =

∫
|〈α|ω〉|2 dω = 1 (2.105)

〈β|α〉 =
∑

i

〈β|ai〉 〈ai|α〉 ⇐⇒ 〈β|α〉 =
∫
〈β|ω〉 〈ω|α〉 dω (2.106)

〈ai|A|aj〉 = aiδij ⇐⇒ 〈ω′|W |ω′′〉 = ω′δ(ω′ − ω′′) (2.107)

2.6.1 Digression on the Dirac Delta function

The Dirac δ function is in fact a distribution with the properties

δ(x− x′) = 0 x 6= x′ (2.108)∫
R
δ(x− x′)f(x′) dx′ = f(x) f arbitrary function (2.109)∫

R
δ(x− x′) dx = 1 (2.110)

The dimension of δ is given by the inverse dimension of its argument, so if for example
x is a length, then δ(x) has the dimension 1/length. Furthermore, by doing partial
integration, we get an expression for the derivative.∫

R
f(x′)δ′(x− x′) dx′ = −

∫
R
f ′(x′)δ(x− x′) dx′ = −f ′(x) (2.111)

δ(ax) =
1
|a|
δ(x) (2.112)

δ(g(x)) =
∑

g(a)=0
g′(a) 6=0

δ(x− a)
|g′(x)|

(2.113)

The δ function can be expressed as a limit of a real (in the sense of existing) function.
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For example, the Gaussian function (see Fig. 2.2)

fλ(x′) =
1

λ
√

2π
exp

(
− (x′ − x)2

2λ2

)
. (2.114)

is peaked around x′ = x with a width ≈ λ and unit area under the curve. The delta
function can be regarded as the limit of the Gaussion function for λ→ 0.

2.6.2 Position and momentum eigenkets

We will now consider specific operators with a continuous eigen spectrum, namely the
position and the momentum operators. To avoid confusion, we will denote operators
with a hat, e. g. x̂. We will first derive the properties of the operators in one dimension
and then later generalize the results for three dimensions.

The eigenkets |x′〉 of the position operator x̂ satisfy

x̂ |x′〉 = x′ |x′〉 (2.115)

The eigenkets |x′〉 are postulated to form a complete set which means that any physical
state can be decomposed into an integral over the eigenstates.

|α〉 =
∫

R
|x〉 〈x|α〉 dx (2.116)

Now, the probability to find the particle in an intervall dx is

|〈x|α〉|2 dx = 〈x|α〉 〈α|x〉 dx (2.117)

In this formalism, the wave function is identified with the inner product.

〈x|α〉 ≡ ψα(x) (2.118)

This is the function ψα(x) of the state |α〉; in this formalism based on Dirac it can be
regarded as an expansion coefficient.

The comparison of (2.118) with the orthogonality relation (2.102) for the position
eigenkets,

〈x′|x′′〉 = δ(x′ − x′′) , (2.119)

leads to the conclusion, that the δ function can be regarded as the position operator
eigenfunctions.

The inner product 〈β|α〉 now becomes the overlap between two wave functions;
equivalently, it can be interpreted as the probability amplitude to find |β〉 in |α〉.

〈β|α〉 =
∫

R
〈β|x〉 〈x|α〉 dx =

∫
R
ψ∗β(x)ψα(x) dx (2.120)

Now we introduce the momentum operator p̂.

p̂ |p′〉 = p′ |p′〉 〈p′|p′′〉 = δ(p′ − p′′) (2.121){
|p〉
}

span the ket space in much the same way as
{
|x〉
}

:

|α〉 =
∫
|p′〉 〈p′|α〉 dp′ (2.122)
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with the momentum space function

〈p′|α〉 = φα(p′) . (2.123)

In fact, momentum can be regarded as a generator for translations. We define the
infinitesimal translation operator T .

T (dx) |x〉 = |x+ dx〉 (2.124)

T (dx) ≡ 1− ip · dx
~

(2.125)

Here we have in fact already used the generalisation to three dimensions. For a finite
translation ∆x, we can subsequently apply infinitesimal translations. The result is
given by

T (∆x) = lim
n→∞

T n(∆x/n)

=

= exp
(
− i

~
p ·∆x

)
(2.126)

2.6.3 Canonical Commutation Relations

Recall the Poisson brackets in classical mechanics:{
A(q, p), B(q, p)

}
=
∑

s

∂A

∂qs

∂B

∂ps
− ∂B

∂qs

∂A

∂ps
(2.127)

where qs and ps are the generalized space and momentum coordinates of a s-dimen-
sional configuration space. Note thate the dimension of the Poisson bracket is the
dimension of A times B devided by the dimension of action.

The fundamental Poisson brackets for canonical coordinates (i. e. coordinates that
satisfy the following relations) in R3 are{

xi, xj

}
= 0

{
pi, pj

}
= 0

{
xi, pj

}
= δij (2.128)

In quantum mechanics the Poisson brackets become the commutator between opera-
tors. [

x̂i, x̂j

]
= 0

[
p̂i, p̂j

]
= 0

[
x̂i, p̂j

]
= i~δij (2.129)

Using the Uncertainty Relation, the Heisenberg Uncertainty Principle follows:

〈
(∆x)2

〉 〈
(∆px)2

〉
≥ 1

4
|〈[x, px]〉|2 =

~2

4
(2.130)

It is often written as

∆x∆px ≥
~
2

(2.131)

Either 2.129 or the Uncertainty Relation has to be postulated to get the uncertainty
principle – one follows from the other.
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In general

〈β|A|α〉 =
∫ ∫

〈β|x〉 〈x|A|x′〉 〈x′|α〉 dx dx′

=
∫ ∫

ψ∗β(x) 〈x|A|x′〉ψα(x′) dx dx′ (2.132)

Consider for example A = x̂2:〈
β|x̂2|α

〉
=

= (2.133)

For an arbitrary function f(x̂) of the operator x̂, we have

〈β|f(x̂)|α〉 =
∫
ψ∗β(x)f(x)ψα(x) dx (2.134)

As far as the momentum operator is concerned, it follows that the matrix element
〈β|f(p̂)|α〉 in the position representation is expressed as

〈β|f(p̂)|α〉 =
∫
φ∗β(p)f(p)φα(p) dp (2.135)

However, how does the momentum operator, i.e. 〈β|p̂|α〉, look like in the position
representation?

In order to answer this question, we will first consider 〈x′|p̂|x′′〉. By using the funda-
mental commutation relation [x̂, p̂] = i~, it can be shown, as derived in the appendix
on page 37, that

〈x′′|p̂|x′〉 =
~
i

∂

∂x′′
δ(x′′ − x′) (2.136)

It immediately follows that

〈x|p̂|α〉 =
∫
〈x|p̂|x′〉 〈x′|α〉 dx′

=
~
i

=
~
i

=
~
i

∂

∂x
ψα(x) (2.137)

This shows that the momentum operator in the position space representation corre-
sponds to performing the partial derivative with respect to x and multiplication by
−i~.
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2.7 Momentum-Space Wave Function

We list some matrix elements of the momentum operator in the position represen-
tation:

⇒ 〈x|p̂|α〉 =
~
i

∂

∂x
ψα(x) (2.138)

⇒ 〈β|p̂|α〉 =
∫
ψ∗β(x′)

~
i

∂

∂x′
ψα(x′) dx′ (2.139)

⇒ 〈x|p̂n|α〉 =
(

~
i

)n
∂n

∂xn
ψα(x) (2.140)

⇒ 〈β|p̂n|α〉 =
∫
ψ∗β(x′)

(
~
i

)n
∂n

∂x′n
ψα(x′) dx′ (2.141)

This means that in this derivation we do not postulate the correspondence p → ~
i∇,

we simply require that the fundamental canonical commutation relations hold. We
still obtain the same representation of the momentum operator.

2.7 Momentum-Space Wave Function

Instead of the position representation we can work equally well in the momentum
representation. Haw are the wave functions in both representations related? To make
a long story short, the answer is that both are the Fourier transform of each other.

Let’s start by considering the basis of position space. The δ functions are the eigen-
functions of the position operator in position space. There must also be an eigenfunc-
tion for the position operator.
〈x′|p′〉 induces a transformation function from the x representation to the p repre-

sentation.

〈x′|p̂|p′〉 =
~
i

∂

∂x′
〈x′|p′〉

= p′ 〈x′|p′〉 |p′〉 is eigenfunction (2.142)

This is a differential equation for p. The solution is an exponential function.

〈x′|p′〉 = Ce
i
~ p′x′ , (2.143)

where C is a normalization constant.

δ(x′ − x′′) =

= (2.144)

⇒ |C|2 =
1

2π~
(2.145)

C can be a complex number; but we can choose any phase that we want, so we set C
to be a real positive number.

C =
1√
2π~

⇒ 〈x′|p′〉 =
1√
2π~

e
i
~ p′x′ (2.146)
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0

f(x)

x

Figure 2.3: A Gaussian wave packet as described by eq. (2.149).

This is just a plane wave.
We will now consider the consequences of this particular form of the momentum

eigenfunction for the representation of the wave functions. The wave function ψα(x′)
in position space can be rewritten as

ψα(x′) = 〈x′|α〉 =
∫
〈x′|p′〉 〈p′|α〉 dp′

=
1√
2π~

∫
e

i
~ p′x′φα(p′) dp′ (2.147)

Equivalently, the momentum space representation of |α〉 can be decomposed as

φα(p′) = 〈p′|α〉 =
∫
〈p′|x′〉 〈x′|α〉 dx′

=
1√
2π~

∫
e−

i
~ p′x′ψα(x′) dx′ (2.148)

This shows that representations ψα and φα are just related by a Fourier transformation!
A very important kind of wave functions are the Gaussian wave packets.

2.7.1 Gaussian Wave Packets

A very important kind of wave functions are the Gaussian wave packets. They can be
regarded as a plane wave characterized by a wave number k = 2π/λ that is enveloped
by a Gaussian (see Fig. 2.3).

〈x′|α〉 =
1

π1/4
√
d
eikx− x′2

2d2 (2.149)

The expectation value

〈x〉 =
∫

R
〈α|x′〉x′ 〈x′|α〉 dx′ =

∫
R
|〈x′|α〉|2 x′dx′ = 0 . (2.150)

vanishes for symmetry reasons since 〈x′|α〉 is an even function. Furthermore,

〈
x2
〉

=
∫

R
|〈x′|α〉|2 x′2 dx′ =

1√
πd

∫
R
x′2e−

x′2
d2 dx′ =

d2

2
. (2.151)
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Now we can determine the variance of the wave packet.

〈
(∆x)2

〉
=
〈
x2
〉
− 〈x〉2 =

d2

2
(2.152)

It is left to the student as an exercise to confirm the result that〈
p2
〉

= (2.153)

〈
(∆p)2

〉
=
〈
p2
〉
− 〈p〉2 = (2.154)

The uncertainty relation now reads as follows:

〈
(∆x)2

〉 〈
(∆p)2

〉
=

~2

4
(2.155)

This shows that the Gaussian wave packet is a minimum uncertainty wave packet, i.e.,
it has the smallest possible uncertainty.

Let us now take a look at the Gaussian wave packet in momentum space:

〈p′|α〉 =
1√
2π~

1
π1/4
√
d

∫
R
e−

i
~ p′x′+ikx′− x′2

2d2 dx′

=
1√
2π~

1
π

1
4
√
d

∫
R
e
− 1

2

“
x′
d +id p′−~k

~

”2
− (p′−~k)2d2

2~2 dx′

=

√
d

~
√
π
e−

(p′−~k)2d2

2~2 (2.156)

It follows that the Fourier transformation of the Gaussian function in real space is a
Gaussian in momentum space! It is centered at ~k which is the mean momentum of
the wave packet. Furthermore, the widths of Gaussian wave packets in real space and
momentum space are inversely proportional.

2.7.2 Generalization to three dimensions

The position and momentum operator can be generalized to three dimensions as fol-
lows.

x̂ |x′〉 = x′ |x′〉 p̂ |p′〉 = p′ |p′〉 (2.157)

〈x′|x′′〉 = δ(x′ − x′′) (2.158)

〈β|p̂|α〉 =
∫
ψ∗β(x′)

~
i
∇ψα(x′) d3x′ (2.159)

〈x′|p′〉 =
1

(2π~)3/2
e

i
~ p′·x′ (2.160)

2.7.3 Appendix: Position representation of the momentum operator

Here we will derive Eq. (2.162) which is important to determine the momentum op-
erator, i.e. 〈β|p̂|α〉, in the position representation. We will first consider 〈x′|p̂|x′′〉 and
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use [x̂, p̂] = i~.

〈x′′|[x̂, p̂]|x′〉 = 〈x′′|i~|x′〉 = i~δ(x′ − x′′)
= 〈x′′|x̂p̂− p̂x̂|x′〉 = x′′ 〈x′′|p̂|x′〉 − 〈x′′|p̂|x′〉x′ (2.161)

This shows that 〈x′′|[x̂, p̂]|x′〉 vanishes for x′′ 6= x′. Note that p̂ still acts on both, |x′〉
and x′. A possible solution is

〈x′′|p̂|x′〉 =
~
i

∂

∂x′′
δ(x′′ − x′) (2.162)

Proof
From (2.161) follows that

x′′ 〈x′′|p̂|x′〉 − 〈x′′|p̂|x′〉x′ = i~δ(x′ − x′′) , (2.163)

i.e. in order to proove (2.162) we have to show that

−x′′ ∂

∂x′′
δ(x′′ − x′) +

∂

∂x′′
δ(x′′ − x′)x′′ = δ(x′ − x′′) . (2.164)

Note that this looks like the product rule of differentation:

∂

∂x′′
δ(x′′ − x′)x′′ = x′′

∂

∂x′′
δ(x′′ − x′) + δ(x′ − x′′) . (2.165)

However, since we have not proved yet that the usual differentiation rules also apply
to Dirac’s Delta function, we will now introduce an arbitrary function f(x′′) that is
supposed to be differentiable in x′′. We will then insert (2.164) and show that this
leads to a correct result:

⇒ f(x′) =
∫
f(x′′)δ(x′ − x′′)dx′′

(2.164)
=

∫
f(x′′)

[
−x′′ ∂

∂x′′
δ(x′′ − x′) +

∂

∂x′′
δ(x′′ − x′)x′′

]
dx′′

part. int.
=

∫ [(
∂

∂x′′
f(x′′)x′′

)
δ(x′′ − x′)−

(
∂

∂x′′
f(x′′)

)
δ(x′′ − x′)x′′

]
dx′′

=
(
∂

∂x′
f(x′)x′

)
−
(
∂

∂x′
f(x′)

)
x′

product rule
= f(x′) (2.166)

Since f(x′) is arbitrary, this means that (2.164) is correct. �

Note that

〈x′′|p̂|x′〉 =
~
i

(
∂

∂x′′
+ f(x′′)

)
δ(x′′ − x′) (2.167)

is also a possible solution of 2.161. But one can show that this only causes a different
overall phase for the wave function which still leads to the same state.
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3 Quantum Dynamics

3.1 Time Evolution and the Schrödinger Equation

3.1.1 Time Evolution Operator

We first specify the notation. Assume that a physical system is in state α at a point in
time t0. Then the time evolution of the state is denoted by

|α, t0〉 = |α〉 time evolution−−−−−−−−→ |α, t0; t〉 (3.1)

The change of the system can be described by the time evolution operator U(t, t0).

|α, t0; t〉 = U(t, t0) |α, t0〉 (3.2)

We expand α into state kets.

|α, t0〉 =
∑

i

ci(t0) |ai〉

|α, t〉 =
∑

i

ci(t) |ai〉 (3.3)

However, we require that the state |α, t0; t〉 remains normalized at all times. Thus,

〈α, t0|α, t0〉 = 1 =
∑

i

|ci(t0)|2

=
∑

i

|ci(t)|2 = 〈α, t0; t|α, t0; t〉 =
〈
α, t0|U†U |α, t0

〉
(3.4)

This can only be satisfied if U is a unitary operator (U(t, t0)†U(t, t0) = 1), i.e., we
require U to be unitary.

Furthermore, we require the so-called composition property:

U(t2, t0) = U(t2, t1)U(t1, t0) t2 > t1 > t0 (3.5)

Consider first the infinitesimal time evolution operator:

|α, t0; t0 + dt〉 = U(t0 + dt, t0) |α, t0〉 (3.6)

This operator must reduce to the unity operator as dt goes to zero; furthermore, it
should be of first order in dt. These requirements are fulfilled by

U(t0 + dt, t0) : = 1− iΩdt , (3.7)

where Ω is a Hermitian operator.
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Let’s take a look at the composition property.

U(t0 + dt1 + dt2, t0 + dt1)U(t0 + dt1, t0) =
(
1− iΩdt2

)(
1− iΩdt1

)
=
≈
= U(t0 + dt1 + dt2, t0) (3.8)

Since we deal with infinitesimal time evolutions dti, terms of order (dt)2 can be ig-
nored. If Ω depends explicitly on time, it must be evaluated at t0.

Now we check the unitarity:

U†(t0 + dt, t0)U(t0 + dt, t0) =
(
1 + iΩ†dt

)(
1− iΩdt

)
= 1 + Ω2dt2 ≈ 1 (3.9)

In order to further specify Ω we refer to classical mechanics. The Hamiltonian is the
generator of time evolution. So, we will use the ansatz

Ω =
H

~
(3.10)

U(t0 + dt, t0) = 1− iHdt

~
(3.11)

3.1.2 Derivation of the Schrödinger Equation

Use the composition property (3.5).

U(t+ dt, t0) = U(t+ dt, t)U(t, t0) =
(
1− iHdt

~

)
U(t, t0) (3.12)

U(t+ dt, t0)− U(t, t0) = − iHdt
~

U(t, t0)

=⇒ i~
U(t+ dt, t0)− U(t, t0)

dt
= i~

∂

∂t
U(t, t0) = HU(t, t0) (3.13)

This is the Schrödinger Equation for the time evolution operator. If we multiply (3.13)
by |α, t0〉, we obtain

i~
∂

∂t
U(t, t0) |α, t0〉 = HU(t, t0) |α, t0〉 (3.14)

Since |α, t0〉 does not depend on t, this can be rewritten (using (3.2)) as

i~
∂

∂t
|α, t0; t〉 = H |α, t0; t〉 (3.15)

This is the Schrödinger Equation for a state ket. Any time evolution of a state ket is
given by the time evolution operator U(t, t0). In order to determine U(t, t0), we have
to first consider the formal solutions of the Schrödinger equation for the time evolution
operator (3.13).

3.1.3 Formal Solution for U(t, t0)

There are three cases.
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3.1 Time Evolution and the Schrödinger Equation

Case 1 H is independent of time. Then U is

U(t, t0) = e−
i
~ H(t−t0) (3.16)

Proof
Note that we have not introduced yet what the meaning of a function of an operator
is. We simply use the series expansion of the function where only products of the
operator appear. For example,

expA = (3.17)

Thus we also expand the exponential function in eq. (3.16).

Alternative proof: We regard U as a compound of infinitesimal time-evolution oper-
ators.

lim
n→∞

[
1− (iH/~)(t− t0)

n

]n

= e−
i
~ H(t−t0) (3.20)

�

Case 2 The Hamiltonian is time-dependent, but [H(t1),H(t2)] = 0 for all t1 and t2.
Now the time evolution operator becomes

U(t, t0) = e
−i/~

R t
t0

H(t) dt (3.21)

The proof is similar to case 1, simply replace H(t− t0) by
∫ t

t0
H(t) dt.

Case 3 We have a time-dependent evolution and the Hamiltonians do not commute
at different points in time. Now we are facing the problem that we cannot simply use
the integral

∫ t

t0
H(t) dt in the exponential since in general exp(A) exp(B) 6= exp(A+B)

if A and B do not commute. In fact, one can show that if the commutator of the two
operators A and B commutes with these operators, i.e. [[A,B], A] = [[A,B], B] = 0,
then

eA+B = eAeBe−[A,B]/2 . (3.22)
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For the time-evoluation operator, the general solution, if [H(t1),H(t2)] 6= 0 for t1 6= t2,
is given by

U(t, t0) = 1 +
∑
n∈N

(
− i

~

)n ∫ t1

t0

∫ t2

t1

. . .

∫ tn

tn−1

H(t1)H(t2) · · ·H(tn) dt1 dt2 · · · dtn

(3.23)

This is the so-called Dyson series; the proof will be provided later.

Energy Eigenkets

In classical mechanics, the Hamiltonian H corresponds to the total energy of a system.
Consequently, the eigenvalues of the Hamiltonian can be regarded as energy eigenval-
ues. Consider now the base kets of an observable A with

[A,H] = 0 (3.24)

Then the eigenkets of A are also the energy eigenkets of H.

H |ai〉 = Ei |ai〉 (3.25)

Expand the time-evolution operator.

e−
i
~ Ht =

∑
i,j

|aj〉 〈aj | e−iHt/~ |ai〉 〈ai| =
∑

i

|ai〉 e−iEit/~ 〈ai| (3.26)

We can decompose an arbitrary ket |α, t0 = 0〉 into eigenkets,

|α, t0 = 0〉 =
∑

i

ci |ai〉 , (3.27)

with ci = 〈ai|α〉. When applying the time evolution operator, we get

|α, t0 = 0; t〉 = e−iHt/~ |α, t0 = 0〉 =
∞∑

n=0

1
n!

(
−iHt

~

)n

|α, t0 = 0〉

=
∑

i

∞∑
n=0

1
n!

(
−iHt

~

)n

|ai〉 〈ai|α〉

=
∑

i

ci

∞∑
n=0

1
n!

(
−iEit

~

)n

|ai〉 = (3.28)

⇒ ci(t) = ci(t = 0)e−iEit/~ (3.29)

Thus, the expansion coefficients change in time with their modulus unchanged.
Now let us assume that the initial state is an eigenstate of A:

|α, t0 = 0〉 = |aj〉 (3.30)

Then the time evolution is simply given by

|α, t0 = 0; t〉 = e−iEjt/~ |aj〉 (3.31)

Thus, the system remains in the state |aj〉 at all times, just the phase is modulated. If
an observable is compatible with the Hamiltonian H, then it is a constant of motion.
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3.1 Time Evolution and the Schrödinger Equation

Time Dependence of Expectation Values

It is easy to show that the expectation value of any observable with respect to an
eigenket does not change under time evolution:

〈B〉 = 〈α, t0 = 0; t|B|α, t0 = 0; t〉

=
〈
aj |eiEjt/~Be−iEjt/~|aj

〉
= 〈aj |B|aj〉 (3.32)

Therefore eigenkets of H are also called stationary kets.
Consider now the decomposition of a ket into stationary kets.

|α, t0 = 0〉 =
∑

j

cj |aj〉

⇒ 〈B〉 =
[∑

i

c∗i 〈ai| e+iEit/~
]
B
[∑

j

cj |aj〉 e−iEjt/~
]

=
∑
i,j

c∗i cj 〈ai|B|aj〉 e−i(Ej−Ei)t/~ (3.33)

This is a sum over oscillatory terms with frequency

ωij =
Ej − Ei

~
(3.34)

Example: Spin Precession

Consider a spin-1/2 system in an external magnetic field.

H = − e

mec
S ·B (3.35)

Here, e < 0 for the electron, B = Be3.

H = − eB

mec
Sz (3.36)

As we can directly see, Sz commutes with H, they have simultaneous eigenkets.

E± = ∓ e~B
2mec

(3.37)

Define the cyclotron frequency ω = |e|B
mec . From that, the Hamiltonian simplifies to

H = ωSz. This means that the time-evolution operator is simply given by

U(t, 0) = exp
(
−iωSzt

~

)
. (3.38)

Any general state can now be decomposed into the two spin eigenkets. How does it
change under time-evolution?

|α〉 = c+ |+〉+ c− |−〉
⇒ |α, t0 = 0; t〉 = c+e

−iωt/2 |+〉+ c−e
+iωt/2 |−〉 (3.39)
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Let |α〉 be the |Sx,+〉 state, i.e.,

|α〉 = |Sx,+〉 = 1√
2

(
|+〉+ |−〉

)
(3.40)

Then the probability to find the Sx± states as a function of time can be obtained via

|〈Sx,±|α, t0 = 0; t〉|2 =
∣∣∣ 1√

2

(
〈+| ± 〈−|

)
1√
2

(
e−iωt/2 |+〉+ e+iωt/2 |−〉

)∣∣∣2
=
∣∣∣ 12(e−iωt/2 ± e+iωt/2

)∣∣∣2 =

{
cos2 ω

2 t for Sx+
sin2 ω

2 t for Sx−
(3.41)

According to Eq. (2.43) (〈A〉 =
∑

j aj |〈αj |α〉|2), the expectation value of Sx as a
function of time can be expressed as

〈Sx〉 =
~
2
|〈Sx,+|α, t0 = 0; t〉|2 − ~

2
|〈Sx,−|α, t0 = 0; t〉|2

=
~
2
(
cos2

ω

2
t− sin2 ω

2
t
)

=
~
2

cosωt (3.42)

Analogously, we get for the other two expectation values

〈Sy〉 =
~
2

sinωt (3.43)

〈Sz〉 = 0 (3.44)

Thus the spin precesses in the xy plane with an angular frequency ω.

3.1.4 Schrödinger versus Heisenberg Picture

Recall that the time evolution operator is unitary. Thus it preserves the inner product
although the state kets change in time.

〈β, t0 = 0; t|α, t0 = 0; t〉 =
〈
β|U†(t, 0)U(t, 0)|α

〉
= 〈β|α〉 (3.45)

However, operators are not affected by these unitary transformations. Since the state
kets change in time, 〈β|X|α〉 will also change in time:

〈β, t0 = 0; t|X|α, t0 = 0; t〉 =
〈
β|U†(t, 0)X U(t, 0)|α

〉
(3.46)

This suggests that the unitary transformations can be regarded in two different ways:
first, the Schrödinger picture: the state kets change, but the operators are unchanged.

|α〉 −→ U(t, 0) |α〉 (3.47)

In the second one, the Heisenberg picture, the operators evolve in time but the state
kets remain unchanged:

X −→ U†(t, 0)X U(t, 0) (3.48)

This second approach is in fact closer to classical mechanics where we do not introduce
state kets but consider observables such as the position of the particle that changes
with time.
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3.1 Time Evolution and the Schrödinger Equation

In the following, a Heisenberg picture observable is

A(H)(t) = U†(t)A(S) U(t) (3.49)

As we can see, Heisenberg and Schrödinger observables coincide at t = 0. The corre-
sponding states in the two pictures are given by

|α, t0 = 0; t〉H = |α, t0 = 0〉
|α, t0 = 0; t〉S = U(t) |α, t0 = 0〉 (3.50)

The expectation values do not depend on the picture used as can be shown very
easily:

S

〈
α, t0 = 0; t|A(S)|α, t0 = 0; t

〉
S

=
〈
α, t0 = 0|U†(t)A(S) U(t)|α, t0 = 0

〉
=H

〈
α, t0 = 0; t|A(H)(t)|α, t0 = 0; t

〉
H

(3.51)

Heisenberg Equation of Motion

As we have seen, in the Heisenberg picture the operators evolve in time. Now we
would like to derive an equation of motion for the operators. To do so, we start with
Schrödinger equation of motion for U :

i~
∂

∂t
U = HU ⇔ −i~ ∂

∂t
U† = U†H (3.52)

⇒ dA(H)

dt
=
∂U†

∂t
A(S)U + U†A

∂U

∂t
=

=
1
i~
[
A(H), U†HU

]
(3.53)

For a time-independent Hamiltonian H(t) ≡ H: U†HU = H.

⇒ dA(H)

dt
=

1
i~
[
A(H),H

]
(3.54)

This is called the Heisenberg equation of motion.
Compare the commutator in quantum mechanics with the Poisson bracket!

dA

dt
=
{
A,H

}
cl
⇔ dA(H)

dt
=

1
i~
[
A(H),H

]
(3.55)[

. . . , . . .
]
qm

i~
⇔
{
. . . , . . .

}
(3.56)

So far, we have introduced the Hamiltonian as the generator of time evolution, but we
have not explicitly specified how the Hamiltonian looks like in quantum mechanics.
Hence we now address how to construct the appropriate Hamiltonian operator. We
simply assume that the classical x and p coordinate can be replaced by their corre-
sponding operators in quantum mechanics. Furthermore, we require the Hamiltonian
to be Hermitian. Therefore we perform the replacement

xp −→ 1
2
(
x̂p̂+ p̂x̂

)
(3.57)
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Furthermore note that which it is rather easy to show[
xi, F (p)

]
= +i~

∂F

∂pi
(3.58)[

pi, G(x)
]

= −i~ ∂G
∂xi

, (3.59)

if F and G can be expanded in powers of p and x, respectively.
With that, we can construct the Hamiltonian. For a free particle, we will convert the

Hamiltonian from classical mechanics to an operator in quantum mechanics, and then
solve the Heisenberg equation of motion.

H =
p2

2m
(3.60)

dp̂i

dt
=

1
i~
[
p̂i,H

]
=

dx̂i

dt
=

1
i~
[
x̂i,H

]
= (3.61)

⇒ x̂i(t) = x̂i(0) +
p̂i(0)
m

t (3.62)

So the solution is like a classical trajectory.
For t = 0, the fundamental commutation relations hold. But for t 6= 0, they do not

commute anymore. [
x̂i(0), x̂j(0)

]
= 0 (3.63)[

x̂i(t), x̂i(0)
]

=
[
x̂i(0) + p̂i(0)

m t, x̂i(0)
]

= − i~
m
t (3.64)

The uncertainty relation for the measurements of the position (and analogously for
the momentum) is

〈
(∆xi)2

〉
t

〈
(∆xi)2

〉
t=0
≥ ~2

4m2
· t2 (3.65)

Thus, the position of the particle becomes more and more uncertain with time if it was
well-localized at time t = 0.

Now, consider additionally a potential V (x).

H =
p̂2

2m
+ V (x̂)

dp̂i

dt
=

1
i~
[
p̂i, V (x̂)

]
= − ∂

∂xi
V (x̂) (3.66)

dx̂i

dt
=
p̂i

m
(3.67)

The last equation still holds, because [x̂i, V (x̂)] = 0. Now we take the second deriva-
tive with respect to time by applying the Heisenberg equation of motion to the first
derivative:

d2x̂i

dt2
=

1
i~

[
dx̂i

dt
,H

]
=

1
i~

[
p̂i

m
,H

]
=

1
m

dp̂i

dt
=
−1
m

∂

∂xi
V (x̂) (3.68)
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3.1 Time Evolution and the Schrödinger Equation

Finally we obtain in vectorial form

⇒ m
d2x̂
dt2

= −∇V (x̂) (3.69)

Equation 3.69 is the quantum mechanical analogue of Newton’s second law of motion
for the Heisenberg picture operators. By taking the expectation value of (3.69) with
respect to a Heisenberg state ket, we obtain

⇒ m
d2 〈x̂〉
dt2

=
d 〈p̂〉
dt

= −〈∇V (x̂)〉 (3.70)

This is the so-called Ehrenfest theorem which is in fact independent of the picture since
expectation values are the same in both pictures:

Theorem Ehrenfest

The center of a wave packet (i.e. the expectation value of its position)
moves like a classical particle subjected to V (x).

3.1.5 Base Kets and Transition Amplitudes

Let’s take a look at the Schrödinger picture where we have an observable A acting on
a state ket.

A |ai〉 = ai |ai〉 (3.71)

In the Heisenberg picture, the operator changes with time.

A(H)(t) = U†A(0)U (3.72)

t = 0 : A(0) |ai〉 = ai |ai〉 = A(0) · UU†︸︷︷︸
=1

|ai〉

⇒ U†A(0)U︸ ︷︷ ︸
=A(H)(t)

·U† |ai〉 = aiU
† |ai〉 (3.73)

This is an eigenvalue equation for A(H).

A(H)(t)
(
U† |ai〉

)
= ai

(
U† |ai〉

)
(3.74)

Thus,
{
U† |ai〉

}
form the base kets in the Heisenberg picture which in fact move in

time

|ai, t〉H = U† |ai〉 (3.75)

The base kets satisfy the wrong-sign Schrödinger equation.

i~
∂

∂t
|ai, t〉 = −H |ai, t〉 (3.76)
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The Heisenberg picture base kets rotate oppositely compared to Schrödinger picture state
kets.

That corresponds to the two points of view in a coordinate transformation.
We expand A(H)(t).

A(H)(t) =
∑

i

|ai, t〉 ai 〈ai, t| =
∑

i

U† |ai〉 ai 〈ai|U

= U†A(S)U (3.77)

This is consistent with our previous discussion.
What are the expansion coefficients in the Schrödinger picture (left) and in the

Heisenberg picture (right)?

ci(t) = 〈ai|︸︷︷︸
base bra

U |α, t0 = 0〉︸ ︷︷ ︸
state ket

= 〈ai|U︸ ︷︷ ︸
base bra

|α, t0 = 0〉︸ ︷︷ ︸
state ket

(3.78)

The expansion coefficients are the same, as are the transition amplitudes.

bij(t) = 〈bj |︸︷︷︸
base bra

U |αi〉︸ ︷︷ ︸
state ket

= 〈bj |U︸ ︷︷ ︸
base bra

|αi〉︸︷︷︸
state ket

(3.79)

3.1.6 Summary

Schrödinger Picture Heisenberg Picture
state ket moving stationary
observable stationary moving
base kets stationary moving oppositely

3.2 Schrödinger’s Wave Equation

In the first chapter we have introduced the wave equation approach. We will show now
that it is absolutely equivalent to the approach presented here.

Keep in mind that x is an operator and x′ is the eigenvalue to the state |x′〉 with
respect to the position operator.

A wave function is defined as the inner product of a state and an operator – ψα(x′, t) ≡
〈x′|α, t0; t〉. The Hamiltonian operator is given by

H ≡ H(p,x) =
p2

2m
+ V (x) (3.80)

V (x) is a local operator

〈x′′|V (x)|x′〉 = V (x′) δ3(x′ − x′′) , (3.81)

where V (x′) is a function of the eigenvalue, not of the operator. The Schrödinger
equation for a state ket in the x-representation is given by

i~
∂

∂t
〈x′|α, t0; t〉 = 〈x′|H|α, t0; t〉 (3.82)
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3.2 Schrödinger’s Wave Equation

The kinetic energy and the potential energy can also be described by inner products.〈
x′| p

2

2m |α, t0; t
〉

= − ~2

2m
∇2 〈x′|α, t0; t〉 (3.83)

〈x′|V (x) |α, t0; t〉 = V (x′) 〈x′|α, t0; t〉 (3.84)

The result is the time-dependent Schrödinger equation of motion in wave mechanics.

i~
∂

∂t
〈x′|α, t0; t〉 = − ~2

2m
∇2 〈x′|α, t0; t〉+ V (x′) 〈x′|α, t0; t〉

i~
∂

∂t
ψα(x′, t) = − ~2

2m
∇2ψα(x′, t) + V (x′)ψα(x′, t) (3.85)

Suppose |ai, t0; t〉 is an energy eigenfunction.

〈x′|ai, t0; t〉 = 〈x′|ai〉 e−
i
~ Eit

− ~2

2m
∇2 〈x′|ai〉+ V (x′) 〈x′|ai〉 = Ei 〈x′|ai〉 (3.86)

− ~2

2m
∇2ψi(x′) + V (x′)ψi(x′) = Eiψi(x′) (3.87)

This is the time-independent Schrödinger equation (for stationary states). This shows
that the approach using kets and bras is entirely equivalent to the wave mechanics.

Let us consider solutions of (3.87) in general. For bound states we have

E < lim
‖x‖→∞

V (x) ⇒ lim
‖x‖→∞

ψ(x′) = 0 (3.88)

From the theory of partial differential operators, we know that we have a discrete
eigenvalue spectrum.

The interpretation of the wave function is not that the particle is ’smeared out’, but
it is rather a probability distribution. We introduce the probability density.

ρ(x, t) := |ψ(x, t)|2 = |〈x|α, t0; t〉|2 (3.89)

Now we take the time derivative of this expression.

∂

∂t
ρ(x, t) =

∂

∂t

[
ψ∗(x, t)ψ(x, t)

]
= ψ̇∗ψ + ψ∗ψ̇

=
1
−i~

(Hψ∗)ψ +
1
i~
ψ∗(Hψ) (3.90)

Terms with the potential V (x) vanish:

⇒ ∂

∂t
ρ(x, t) =

~
2im

[
(∇2ψ∗)ψ − ψ∗(∇2ψ)

]
(3.91)

Now we define the probability flux.

j(x, t) =
~

2im
[
ψ∗∇ψ∗ − (∇ψ)ψ

]
=

~
m
=
[
ψ∗(∇ψ)

]
(3.92)

⇒ ∂ρ

∂t
+∇ · j = 0 (3.93)
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3 Quantum Dynamics

This is a continuity equation!
We rewrite the wave equation in terms of the probability density.

ψ(x, t) =
√
ρ(x, t) · e i

~ S(x,t) , (3.94)

where ρ and S are real functions, ρ > 0. ρ has already been defined. In order to derive
the meaning of S, we note that

ψ∗∇ψ =
√
ρe−

i
~ S ·

(
∇√ρ+

i

~
√
ρ∇S

)
e

i
~ S

=
√
ρ∇
(√
ρ
)

+
i

~
ρ∇S (3.95)

Now the the probability flux can be simplified to

j =
ρ∇S
m

(3.96)

The spatial variation of the phase characterizes the probability flux. For instance, for
a plane wave (a momentum eigenfunction) we have

ψ(x, t) ∝ e i
~ (px−Et) (3.97)

⇒ ∇S = ∇(px) = p (3.98)

Now we will take the classical limit: insert 3.97 into the time-dependent Schrödinger
equation.

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t)

⇒ i~
(
∂

∂t

√
ρ+

i

~
√
ρ
∂

∂t
S

)
e

i
~ S = − ~2

2m
∇ ·
[
(∇√ρ+

i

~
√
ρ∇S)e

i
~ S
]
+
√
ρV e

i
~ S

=

(3.99)

Taking the classical limit (usually) means ~ → 0. In this case, we neglect all terms
containing ~. The following terms survive:

1
2m
|∇S(x, t)|2 + V (x) +

∂S

∂t
= 0 (3.100)

This is the analogue to the Hamilton-Jacobi equation in classical mechanics! Here,
S(x, t) is Hamilton’s principle function (i.e. action). A stationary state has the time
dependence e−

i
~ Et, i.e. S is separable. It follows that

S(x, t) = W (x)− Et , (3.101)

where W is Hamilton’s characteristic function. As time goes on, a surface of constant
S advances.
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3.3 Harmonic Oscillator

3.3 Harmonic Oscillator

The harmonic oscillator is very important from both a pedagogical as well as a practical
point of view. One important point is that it can be solved analytically. Furthermore,
every system behaves like a harmonic oscillator for small displacements or vibrations
about the energy minimum positions.

The Hamiltonian of a harmonic oscillator in one dimension is given by

H ≡ H(p, x) =
p2

2m
+

1
2
mω2x2 (3.102)

First, some terminology. We define the annihilation operator a as

a ≡
√
mω

2~

(
x+

i

mω
p

)
(3.103)

and the creation operator a† as

a† ≡
√
mω

2~

(
x− i

mω
p

)
(3.104)

The operators a and a† are both non-Hermitian, which is clear since the are the Hermi-
tian adjoint of each other and different. Their specific names will soon become clear.
These operators have a simple commutation relation:

[
a, a†

]
=
mω

2~

[(
x+

i

mω
p

)
,

(
x− i

mω
p

)]
=

1
2~
(
−i[x, p] + i[p, x]

)
=

1
2~

(~ + ~) = 1 (3.105)

We next define the number operator N

N ≡ a†a (3.106)

N = a†a =

=
H

~ω
− 1

2
(3.107)

Thus we can re-write the Hamiltonian of the harmonic oscillator as

H = ~ω
(
N +

1
2
)

(3.108)

N is a Hermition operator. We will call its eigenkets |n〉 which satisfy the eigenvalue
equation N |n〉 = n |n〉. Because of (3.108), the eigenkets of the number operator are
also eigenkets of the Hamiltonian.

H |n〉 = ~ω
(
n+

1
2
)
|n〉 (3.109)

The energy eigenvalues are En = ~ω
(
n + 1

2

)
. We will show below that n must be a

nonnegative integer.
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3 Quantum Dynamics

Properties of a. Let us start with the commutator of N and a and a† respectively.[
N, a

]
=
[
a†a, a

]
= a† [a, a]︸︷︷︸

=0

+ [a†, a]︸ ︷︷ ︸
=−1

a = −a (3.110)

Equivalently, [
N, a†

]
= . . . = +a† (3.111)

In order to find out why a† is called creation operator we let Na† act on eigenkets of
N .

Na† |n〉 =
(
[N, a†]︸ ︷︷ ︸

=a†

+a†N
)
|n〉 = (n+ 1)a† |n〉 (3.112)

Thus, a† |n〉 is an eigenket of N with eigenvalue (n + 1). This means that acting with
a† on a state |n〉 leads to an higher excited state |n+ 1〉, i.e., we have created a state
with an additional quantum unit of energy ~ω.

Likewise, a |n〉 is an eigenket of N with eigenvalue (n− 1).

Na |n〉 = . . . = (n− 1)a |n〉 , (3.113)

which corresponds to a lower excited state, i.e., a quantum unit of energy ~ω has
been annihilated. This is the reason why a† and a are called creation and annihilation
operators, respectively.

Eq. (3.113) implies that there is a constant c with

a |n〉 != c |n− 1〉 (3.114)

By convention, we require that c is real and positive.〈
n|a†a|n

〉
= |c|2 = 〈n|N |n〉 = n

⇒ c =
√
n (3.115)

Analogously for a†. Thus, the result can be summarized as follows.

a |n〉 =
√
n |n− 1〉 (3.116)

a† |n〉 =
√
n+ 1 |n+ 1〉 (3.117)

Successive application of a gives us

a2 |n〉 =
√
n(n− 1) |n− 2〉

a3 |n〉 =
√
n(n− 1)(n− 2) |n− 3〉

If n is an integer, the squence terminates at a certain point.
Assume that n is not an integer.

〈n|N |n〉 = n =
(
〈n| a†

)(
a |n〉

)
≥ 0 (3.118)

Thus, nmust be positive integer so that the sequence terminates. Since the eigenvalues
of N are integers, it is called number operator. The smallest value of n is 0.
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3.3 Harmonic Oscillator

The smallest possible value of n, zero, corresponds to the ground state |0〉1, which is
the lowest possible eigenstate with energy E0 = 1

2~ω. A very important consequence
is that the ground energy is not 0! The non-zero ground state energy, the so-called
zero-point energy, is a consequence of the uncertainty principle.

Excited states can be obtained by applying the creation operator to the ground state.

|1〉 = a† |0〉 |2〉 =
a†√
2
|1〉 =

(
a†
)2

√
2!
|0〉 , |n〉 =

(
a†
)n

√
n!
|0〉 (3.119)

These are the eigenkets of H and N with energy eigenvalues

En = ~ω
(
n+

1
2
)

(3.120)

The matrix elements with respect to a and a† are

〈m|a|n〉 =
√
nδm,n−1〈

m|a†|n
〉

=
√
n+ 1δm,n+1 (3.121)

Now the matrix elements of the x and p operators follow:

〈m|x|n〉 =

√
~

2mω
(√
nδm,n−1 +

√
n+ 1δm,n+1

)
(3.122)

〈m|p|n〉 = i

√
m~ω

2
(
−
√
nδm,n−1 +

√
n+ 1δm,n+1

)
(3.123)

where

x =

√
~

2mω
(
a+ a†

)
(3.124)

p = i

√
m~ω

2
(
−a+ a†

)
(3.125)

How do the eigenfunctions look like? We know that if we apply the annihilation
operator to the ground state, we get the zero ket, a |0〉 = 0.

〈x′|a|0〉 =
√
mω

2~

〈
x′
∣∣∣∣x+ i

p

mω

∣∣∣∣0〉 = 0 (3.126)

Introducing x0 :=
√

~
mω and using 〈x′|p|α〉 = −i~ d

dx 〈x
′|α〉 leads to a differential

equation: (
x′ + x2

0

d

dx′

)
〈x′|0〉 = 0 (3.127)

The (normalized) solution is a Gaussian function.

〈x′|0〉 =: Ψ0(x′) =
1

π
1
4
√
x0

e
− 1

2

“
x′
x0

”2

(3.128)

1it is not the zero-ket, but rather the ground state by convention
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3 Quantum Dynamics

The excited states are also Gaussian functions multiplied with polynomials of x′.

〈x′|1〉 =
〈
x′|a†|0

〉
=

1√
2x0

(
x′ − x2

0

d

dx′

)
〈x′|0〉

〈x′|2〉 =
1√
2

〈
x′|(a†)2|0

〉
=

1√
2!

(
1√
2x0

)2(
x′ − x2

0

d

dx′

)2

〈x′|0〉 (3.129)

In general, we have

〈x′|n〉 =
1

π
1
4
√

2nn!xn+ 1
2

0

(
x′ − x2

0

d

dx′

)n

e
− 1

2

“
x′
x0

”2

(3.130)

These solutions are still normalized.
Expectation Values of x2 and p2 in the ground state.

x2 =
~

2mω
(
a2 + a†

2
+ a†a+ aa†

)
(3.131)〈

x2
〉
0

=
〈
0|x2|0

〉
=

~
2mω

=
x2

0

2
(3.132)

Just the last term in the bracket survives, due to the orthonormality.

p2 =
m~ω

2
(
−a2 − a†

2
+ a†a+ aa†

)
(3.133)〈

p2
〉
0

=
m~ω

2
(3.134)

Thus we obtain the expectation values of the kinetic and the potential energy.〈
p2

2m

〉
0

=
~ω
4

=
1
2
〈H〉〈

mω2x2

2

〉
0

=
~ω
4

=
1
2
〈H〉 (3.135)

This complies with the result in classical mechanics (virial theorem or equipartition
theorem).

Furthermore, because of symmetry we have

〈x〉 = 0 = 〈p〉 (3.136)

Plugged into the uncertainty relation, we see that the ground state is a minimum
uncertainty product.〈

(∆x)2
〉
0

〈
(∆p)2

〉
0

=
〈
x2
〉
0

〈
p2
〉
0

=
~

2mω
· m~ω

2
=

~2

4
(3.137)

Analogously, excited states fulfill〈
(∆x)2

〉
n

〈
(∆p)2

〉
n

=
(
n+

1
2
)2~2 ≥ ~2

4
(3.138)

Note: in a classical harmonic oscillator, we encounter the particle most probably at the
turning points. In quantum mechanics, we will most probably find it in the middle!
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3.3 Harmonic Oscillator

3.3.1 Time Development of the Harmonic Oscillator
Heisenberg Picture

According to the Heisenberg equation of motion, we get

dp

dt
=

1
i~
[
p,H

]
= −∂H

∂x
= −mω2x (3.139)

dx

dt
=

1
i~
[
x,H

]
=
∂H

∂p
=

p

m
(3.140)

Instead of the usual way in classical mechanics of solving that problem, we take a
different approach here. By writing the equations of motion in terms of a and a†, we
obtain two uncoupled differential equations:

=⇒ d

dt
a† = iωa†

d

dt
a = −iωa (3.141)

The solutions are simply exponentials.

a(t) = a0e
−iωt a†(t) = a†0e

iωt (3.142)

Note that N = a†a and H = ~ω(N + 1
2 ) are time-independent in the Heisenberg

picture, as they should be, since they commute with the Hamiltonian so that they have
to constant according to the Heisenberg equation of motion.

We rewrite the last formula and express a and a† in terms of x and p.

x(t) +
i

mω
p(t) = x(0)e−iωt +

i

mω
p(0)e−iωt (3.143)

x(t)− i

mω
p(t) = x(0)eiωt − i

mω
p(0)e+iωt (3.144)

We equate the Hermitian and the anti-Hermitian part of this equation – they have to
be equal (corresponds to real and imaginary part of a number, but we are dealing with
operators here)!

x(t) = x(0) cosωt+
p(0)
mω

sinωt (3.145)

p(t) = −mωx(0) sinωt+ p(0) cosωt (3.146)

These equations for the operators look like the classical equations of motion. But
although x(t) and p(t) oscillate, their expectation values still vanish, 〈x(t)〉n = 0 =
〈p(t)〉n, with respect to any eigenstate |n〉 because both x(0) and p(0) change n by ±1,
and |n〉 and |n± 1〉 are orthogonal.

In order to obtain oscillations, we must in fact consider a superposition of two eigen-
states, say |0〉 and |1〉:

|α〉 = c0 |0〉+ c1 |1〉 (3.147)

⇒ 〈x(t)〉α = 〈x(t)〉α (t) (3.148)
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This motivates the question whether or not there are states that imitate classical oscil-
lators. It turns out that the so-called coherent states behave like a classical oxcillator.
They can be expressed as eigenstates of the non-Hermitian annihilation operator a;
they obey the eigenvalue equation, a |λ〉 = λ |λ〉, λ ∈ C.

Properties.

1. |λ〉 =
∞∑

n=0
f(n) |n〉 with

|f(n)|2 = n̄n

n! e
−n̄ ≥ 0 (3.149)

where n̄ = 〈N〉λ =
∑

n∈N0

|f(n)|2 n which is the mean value of the occupation

number. The distribution of |f(n)|2 with respect to n corresponds to a Poisson
distribution.

2. It can be obtained by translating the oscillator ground state.

3. It satisfies the minimum uncertainty product relation at all times2.

3.4 Harmonic Oscillator using Wave Mechanics

We will revisit the harmonic oscillator. The eigenstates of the harmonic oscillators are

ψn(x) =
1

π
1
4
√

2nn!
1

x
n+ 1

2
0

(
x− x2

0

d

dx

)n

e−
1
2

(
x

x0

)2
(3.150)

We introduce the dimensionless variable y := x
x0

.

ψn(y) =
1

π
1
4
√

2nn!

(
y − d

dy

)n

e−
y2

2 (3.151)

Consider the following operator identity.

e−
y2

2

(
y − d

dy

)
e

y2

2 = − d

dy

e−
y2

2

(
y − d

dy

)n

e
y2

2 = (−1)n dn

dyn
(3.152)

Now the equations simplify to(
y − d

dy

)n

e−
y2

2 = e−
y2

2 ey2
e−

y2

2

(
y − d

dy

)n

e
y2

2 e−y2

= e−
y2

2 ey2
(−1)n dn

dyn
e−y2

︸ ︷︷ ︸
=:Hn(y)

= e−
y2

2 Hn(y) (3.153)

2the proof is left as an excercise
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⇒ ψn(y) =
1

π
1
4
√

2nn!
e−

y2

2 Hn(y) (3.154)

The functions Hn are called Hermite polynomials. They satisfy the following equations∫
R
e−y2

Hn(y)Hm(y) dy =
√
π2nn!δmn (3.155)[

d2

dy2
− 2y

d

dy
+ 2n

]
Hn(y) = 0 (3.156)

The first Hermite polynomials are:

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, . . . (3.157)

3.4.1 Symmetry of the Wave Function

We define the parity operator π.

πf(x) ≡ f(−x) (3.158)

π is an involution, i. e. π2 = id. Even and odd functions are eigenfunctions of π with
eigenvalues ±1.

f(−x) =

{
+f(x) even parity
−f(x) odd parity

(3.159)

Let V (x) be an even potential, πV (x) = V (x). The kinetic energy operator is always
even, since it only contains second derivatives. Hence the Hamiltonian with an even
potential is even. Consequently, [H,π] = 0.

Theorem

Suppose H commutes with the parity operator, i. e. [H,π] = 0, and |n〉 is
a nondegenerate eigenket of H with eigenvalue En

H |n〉 = En |n〉 (3.160)

Then |n〉 is also a parity eigenket.

Proof
The two operators commute and En is a nondegenerate eigenvalue. We have already
proved that they have a mutual set of eigenkets.

Let us specifically consider the parity operator.
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1. We first show that 1
2 (1± π) |n〉 is a parity eigenket:

π
(1
2
(1± π)

)
|n〉 = ±1

2
(1± π) |n〉 (3.161)

2. Furthermore, 1
2 (1 ± π) |n〉 is an energy eigenket with eigenvalue En because,

since H and π commute, we get

H(
1
2
(1± π)) |n〉 =

1
2
(En ± πEn) |n〉 = En ·

1
2
(1± π) |n〉 (3.162)

Since En is nondegenerate, |n〉 and 1
2 (1±π) |n〉 can only differ by a multiplicative

constant⇒ |n〉 is a parity eigenket.

�

An example is the harmonic oscillator: its parity is (−1)n.

3.5 Ensembles and the density operator

So far we discussed measurements where we have performed the same experiment on
identically prepared particles which can all be specified by the same state ket |α〉. We
denote such a system as a pure ensemble in the following. How do we describe a beam
where for example 50% of the particles are in a particular state |a1〉, the other 50% in
a state |a2〉? Is the correct description |α〉 = (|a1〉+ |a2〉)/

√
2?

To answer, let us consider a spin state

|α〉 = (|↑〉+ |↓〉)/
√

2 . (3.163)

As we have already shown, this state does certainly not correspond to a 50-50 mixture
of spin up and spin down states but rather to a spin eigenstate of the Sx operator with
eigenvalue ~/2. In the linear superposition (3.163), there is crucial phase relation
between |↑〉 and |↓〉 states determining the spin orientation. In contrast, in a mixture
there is in general not specific phase relation between the different parts; therefore,
we will call it more precisely an incoherent mixture.

In order to deal with such a situation, we introduce the fractional populations or
probability weights wi that give the population of a particular state |ai〉. For a 50-50
mixture, we have

w1 = 0.5 , w2 = 0.5 . (3.164)

The wi are real numbers. These fractional populations satisfy the typical normalization
condition of probability weights, namely∑

i

wi = 1 . (3.165)

If only one wi is non-zero, i.e., our mixture only contains one state, then we call it
a pure ensemble. However, if more than one wi are non-zero, then we have a mixed

58



3.5 Ensembles and the density operator

ensemble. If we measure some observable B on a mixed ensemble, the average value
of an observable B is given by the so-called ensemble average

[B] ≡
∑

i

wi 〈ai|B|ai〉 =
∑

i

∑
j

wi| 〈bj |ai〉 |2bj , (3.166)

where |bj〉 is an eigenket of B.
Using a general basis {cj}, the ensemble average can be written as

[B] =
∑

i

wi

∑
j

∑
k

〈ai|cj〉 〈cj |B|ck〉 〈ck|ai〉

=
∑

j

∑
k

(∑
i

wi 〈ck|ai〉 〈ai|cj〉

)
〈cj |B|ck〉 . (3.167)

The expression in the brackets in eq. (3.167) does not depend on the specific observ-
able B but only on properties of the ensemble. This information can be expressed in
form of the density operator ρ

ρ =
∑

i

wi |ai〉 〈ai| . (3.168)

The elements of the corresponding density matrix are given by

〈ck|ρ|cj〉 =
∑

i

wi 〈ck|ai〉 〈ai|cj〉 . (3.169)

Comparing (3.169) with (3.167), we see that the ensemble average can be written in
terms of the density operator as

[B] =
∑

j

∑
k

〈ck|ρ|cj〉 〈cj |B|ck〉 =
∑

k

〈ck|ρB|ck〉

= tr(ρB) (3.170)

Since the trace is independent of the representation, any convenient basis can be used
to evaluate tr(ρB).

There are important properties of the density operator. First of all, it is Hermitian,
which follows from its definition in (3.168). Second, it satisfies the normalization
condition

tr(ρ) =
∑

i

∑
j

wi 〈cj |ai〉 〈ai|cj〉 =

=
∑

i

wi 〈ai|ai〉 =
∑

i

wi = 1 . (3.171)

A pure ensemble is characterized by wi = 1 for some state |ai〉 and wj = 0 for all other
kets |aj〉. Hence the density operator for a pure ensemble can ber written just as

ρ = |ai〉 〈ai| . (3.172)

Thus the density operator for a pure ensemble just corresponds to a projection oper-
ator. Operating twice with the same projection operator on a state does not change
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anything compared to performing the projection just once. Consequently, a projection
operator and thus also the density operator is idempotent which means that

ρ2 = ρ , (3.173)

and thus also tr(ρ2) = 1. Therefore one eigenvalue of the density operator for a pure
ensemble is one, the rest is zero. When diagonalized, the density matrix for a pure
ensemble has one eigenvalue one on the diagonal, all other matrix elements are zero.

Let us look at some examples of spin 1
2 systems. If the system is completely polarized

in the Sz ↓ state, the density matrix is given by

ρ = |↓〉 〈↓| =
(

0
1

)(
0 1

)
=
(

0 0
0 1

)
(3.174)

A completely polarized beam in the Sx ↑ state:

ρ = |Sx ↑〉 〈Sx ↑| =
(

1√
2

)
(|↑〉+ |↓〉)

(
1√
2

)
(〈↑|+ 〈↓|)

= (3.175)

An unpolarized beam can be regarded as a fifty-fifty mixture of a spin-up ensemble
and a spin-down ensemble:

ρ =
1
2
|↑〉 〈↑| +

1
2
|↓〉 〈↓|

=
(

1
2 0
0 1

2

)
(3.176)

It is an easy exercise to show that the same matrix results if we consider the unpolar-
ized beam to be made up of either Sx ↑ and Sx ↓ or Sy ↑ and Sy ↓ states, as it should
be. Thus ρ for an unpolarized beam is just the identity operator divided by 2 which is
the dimensionality of the problem. Therefore,

tr(ρSx) = tr(ρSy) = tr(ρSz) = 0 , (3.177)

since the Si are traceless. And hence the ensemble average of S vanishes for a random
ensemble,

[S] = 0 . (3.178)

which means that there is no preferred direction for the spin. Finally, we will consider
an example for a partially polarized beam, for example a 75-25 mixture of a pure Sz ↑
and a pure Sx ↑ ensemble, i.e. w(Sz ↑) = 0.75 and w(Sx ↑) = 0.25. The corresponding
density matrix can be written as

ρ = (3.179)

Using this density matrix, the ensemble averages for the three spin components are
given by

[Sx] =
~
8
, [Sy] = 0 , [Sz] =

3~
8
. (3.180)
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It is of course desirable to be able to specify the degree of randomness of a given
ensemble. To this end, we introduce the quantity σ by

σ = −tr(ρ ln ρ) . (3.181)

It might not be immediately obvious how to obtain the logarithm of a matrix. Most
easily it is done in the basis in which ρ is diagonal because then

σ = −
∑

j

ρdiag
jj ln ρdiag

jj . (3.182)

For a pure ensemble such as (3.174), σ = 0 because of either ρdiag
jj = 0 or ln ρdiag

jj = 0
for each term in the sum (3.182). For a completely random ensemble such as (3.176),
the density matrix consists in any representation of diagonal elements that are all ρjj =
1/N , where N is the dimension of the system, whereas all non-diagonal elements
vanish. Hence σ is given by

σ = −
N∑

j=1

1
N

ln
(

1
N

)
= lnN . (3.183)

It can in fact be shown that lnN is the maximum value for σ under the normalization
condition (3.171). It is apparent that σ is a quantitative measure of disorder. For
an ordered (pure) system, σ vanishes while for a disordered (random) system it is
maximal. From thermodynamics we learn that the entropy is a measure for disorder.
In fact, the quantity σ is directly related to the entropy per particle s via

s = kBσ , (3.184)

where kB is the Boltzmann constant. Thus eq. (3.184) can be regarded as the defini-
tion of the entropy in quantum statistical mechanics.

Finally we want to address the questions how quantum ensembles evolve in time.
Let us assume that at the specific time t = 0 the density operator is given by

ρ(t = 0) =
∑

i

wi |ai〉 〈ai| . (3.185)

If the system is left undisturbed, then the fractional populations will not be changed.
Hence it is only the state kets that are evolving in time. Thus we have

∂

∂t
ρ(t) =

∑
i

wi

[(
∂

∂t
|ai, t〉

)
〈ai, t|+ |ai, t〉

(
∂

∂t
〈ai, t|

)]
=

1
i~
∑

i

wi

[
H |ai, t〉 〈ai, t| − |ai, t〉 〈ai, t|H

]
, (3.186)

where we have used the fact that the state kets evolve according to the Schrödinger
equation. Consequently, we have

i~
∂

∂t
ρ(t) = −[ρ,H] . (3.187)

This so-called Liouville-von Neumann equation looks like the Heisenberg equation of
motion except for the opposite sign. This should be not disturbing since ρ is not a
dynamical observable in the Heisenberg picture. It is rather constructed from state kets
and bras in the Schrödinger picture which evolve in time according to the Schrödinger
equation.
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4 Angular Momentum

In this chapter, we will discuss the quantum description of the angular momentum.
We will see that are angular momentum operators that have no analogue in classical
mechanics, namely the spin operators. We will present, how the energy levels of
the hydrogen atoms can be determined. The addition of spin and orbital angular
momentum presented at the end of the chapter is essentiell for the characterization of
electronic orbitals in chemistry.

4.1 Rotations and Angular Momentum

In analogy to the treatment of translations, we will here use the fact that angular
momentum is the generator of rotations.

Rotations are described by orthogonal operators, R ∈ O. This is a group of real
operators (that can be represented by real matrices). For rotation around the e3 axis
in R3 we get

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (4.1)

Note. Here we regard active rotations, i. e. the coordinate axes are kept fixed and the
physical system is rotated.

Let us specifically consider an infinitesimal rotation by δϕ where terms of higher
order are neglected.

R3(δϕ) =

1− δϕ2
/2 −δϕ 0

δϕ 1− δϕ2
/2 0

0 0 1

 (4.2)

Likewise, by cyclic permutation, we get the appropriate matrices for rotations around
e1 and e2.

R1(δϕ) =

1 0 0
0 1− δϕ2

2 −δϕ
0 δϕ 1− δϕ2

2

 (4.3)

R2(δϕ) =

1− δϕ2

2 0 δϕ
0 1 0
−δϕ 0 1− δϕ2

2

 (4.4)

This may be verified by the cyclic permutation x→ y, y → z, z → x.
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Successive infinitesimal rotations commute to first order but not to second order:

R1(δϕ)R2(δϕ)−R2(δϕ)R1(δϕ) =

 0 −δϕ2 0
δϕ2 0 0
0 0 0

 (4.5)

= R3(δϕ2)− 1 , (4.6)

where terms of order higher than δϕ2 have been ignored.

Rotations in Quantum Mechanics

Given a rotation operator R, we associate an operator D(R) in the appropriate ket
space such that |α〉R = D(R) |α〉.

Note. Let R ∈ O(3); D(R) acts on state vectors in ket space.
The matrix representation of D(R) depends on the dimensionality of the particular

ket space. We will now construct D(R).

Construction of D(R)

Recall the properties of infinitesimal operators:

Uε = 1− iGε (4.7)

For infinitesimal translations, G = p/~, ε→ dx. For time evolution G = H/~, ε→ dt.
In classical mechanics, angular momentum is the generator of rotation. In quantum

mechanics, we define the angular momentum operator Jk for infinitesimal rotation
around the k-th axis by

G→ Jk

~
ε→ dϕ (4.8)

Up to now we still do not know what Jk actually is. In general

D(n̂, dϕ) = 1− iJ · n̂
~

dϕ (4.9)

It is very important to note that the angular momentum is not defined as x × p. For
instance, spin angular momentum is not related to x and p at all!

Again, we obtain finite rotations by exponentiation.

D3(ϕ) = lim
n→∞

[
1− i

(
Jzϕ

n~

)]n

= e−
i
~ Jzϕ = 1− iJzϕ

~
− J2

zϕ
2

2~2
+ . . . (4.10)

We need just one more concept in order to uniquely specify the angular momentum
operator. We propose that

Theorem Postulate: D(R) has the same group properties as R
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In group theory one says that D(R) is a representation of R. In detail, this means:

1. Identity. R · 1 = R⇒ D(R) ·D(1) = D(R)

2. Closure. R1R2 = R3 ⇒ D(R1)D(R2) = D(R3) = D(R1R2)

3. Inverse. R−1R = 1, RR−1 = 1
⇒ D(R)−1D(R) = D(R−1)D(R) = 1 = D(R)D(R)−1 = D(R)D(R−1)

4. Associativity. (R1R2)R3 = R1(R2R3) = R1R2R3

⇒ [D(R1)D(R2)]D(R3) = D(R1)[D(R2)D(R3)] = D(R1)D(R2)D(R3)

Now we will write down the rotation operator analogue of (4.6):(
1− i

~Jxδϕ− 1
2~2 J

2
xδϕ

2
) (

1− i
~Jyδϕ− 1

2~2 J
2
y δϕ

2
)

−
(
1− i

~Jyδϕ− 1
2~2 J

2
y δϕ

2
) (

1− i
~Jxδϕ− 1

2~2 J
2
xδϕ

2
)

= 1− i
~Jzδϕ

2 − 1

This gives the fundamental commutation relations for the angular momentum operator
by equating terms of same order in δϕ2,

[
Jx, Jy

]δϕ2

~2
= i

Jzδϕ
2

~
+O(δϕ3) (4.11)[

Ji, Jj

]
= i~sumkεijkJk (4.12)

Note that in contrast to the translations, the generators of infinitesimal rotations do
not commute, i.e., they form a non-Abelian group.

4.2 Spin 1
2 Systems and Finite Rotations

The spin operators are

S1 = ~
2

(
|↑〉 〈↓|+ |↓〉 〈↑|

)
S2 = i~

2

(
− |↑〉 〈↓|+ |↓〉 〈↑|

)
S3 = ~

2

(
|↑〉 〈↑| − |↓〉 〈↓|

)
(4.13)

It is easy to show that the Si satisfy the fundamental commutation relations[
Si, Sj

]
= i~

∑
k

εijkSk (4.14)

Since the Si satisfy the fundamental commutation relations of angular momentum, we
propose that a rotation by ϕ about the z-axis can be expressed as

|α〉R = D3(ϕ) |α〉

D3(ϕ) = e−
i
~ S3ϕ (4.15)

Does this really make sense? Let’s consider the expectation value, e. g. 〈S1〉α.

〈S1〉α −→ 〈α|S1|α〉R =
〈
α|D†

3(ϕ)S1D3(ϕ)|α
〉

(4.16)
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Does this really correspond to a rotation?

D†
3(ϕ)S1D3(ϕ) =

=

=

= S1 cosϕ− S2 sinϕ (4.17)

Before interpreting this result, we will present an alternative way to derive this result
which will use the fundamental commutation relation instead of being restricted just
to the spin 1

2 systems.
For this alternative derivation, we need the Baker-Hausdorff lemma: let G be Hermi-

tian and λ a real number. Then we have the following identity:

eiGλAe−iGλ = A+ iλ
[
G,A

]
+
i2λ2

2!
[
G, [G,A]

]
+ . . .

+
inλn

n!
[G, [G, [G, . . . [G,A]]] . . .] + . . . (4.18)

The proof is left as an exercise. Using this relation, we obtain

D†
3(ϕ)S1D3(ϕ) =

=

= S1 cos ϕ − S2 sin ϕ (4.19)

The expectation values of S1 now becomes

〈S1〉α −→ 〈α|S1|α〉R = 〈S1〉α cosϕ− 〈S2〉α sinϕ (4.20)

Analogously, for S2

〈S2〉α −→ 〈α|S2|α〉R = 〈S1〉α sinϕ+ 〈S2〉α cosϕ (4.21)

Since S3 commnutes with D3(ϕ), we have

〈S3〉α −→ 〈α|S3|α〉R = 〈S3〉α (4.22)

In general, we get that

〈Jk〉 −→
∑

l

Rkl 〈Jl〉 (4.23)

whereR = (Rkl) is the rotation matrix. So, the expectation values behave like classical
systems under rotation!

Now consider the rotation of a general ket, D3(ϕ) |α〉. We first decompose |α〉 into
base kets and apply D3(ϕ) to it:

|α〉 = |↑〉 〈↑ |α〉+ |↓〉 〈↓ |α〉

D3(ϕ) |α〉 = e−
i
~ S3ϕ |α〉 = e−

i
2 ϕ |↑〉 〈↑ |α〉+ e

i
2 ϕ |↓〉 〈↓ |α〉 (4.24)
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If we rotate by 2π, we get − |α〉!

|α〉R3(2π) −→ −|α〉 (4.25)

This fact has been verified in neutron interferometry experiments.
Pauli Two-Component Formalism.

Here we introduce the tow-component spinor formalism introduced by Wolfgang
Pauli, which allows a convenient treatment of spin 1

2 systems. In general, spin states
are represented by spinors:

|↑〉 =
(

1
0

)
= χ↑ |↓〉 =

(
0
1

)
= χ↓

〈↑| = (1, 0) = χ†↑ 〈↓| = (0, 1) = χ†↓ (4.26)

|α〉 =
(
〈↑ |α〉
〈↓ |α〉

)
=
(
c↑
c↓

)
= χ (4.27)

Spinors are usually denoted by χ. The Sj operators are represented by the so-called
Pauli matrices σj .

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(4.28)

Some properties are: {
σi, σj

}
= 2δij ,[

σi, σj

]
= 2i

∑
k

εijkσk ,

σ†j = σj ,

det(σj) = −1 ,
tr(σj) = 0 . (4.29)

Let a be a vector in three dimensions. Then σ · a is a (2× 2) matrix given by

σ · a =
∑

k

akσk =
(

a3 a1 − ia2

a1 + ia2 −a3

)
. (4.30)

Note that (
σ · a

)(
σ · b

)
=
(∑

j

ajσj

)(∑
k

bkσk

)
=
∑

j

∑
k

(1
2
{σj , σk}+

1
2
[σj , σk]

)
ajbk

= a · b1 + iσ · (a× b) (4.31)

Let aj be real.

⇒
(
σ · a

)2 = |a|2 1(
σ · n̂

)n =

{
1 n ∈ 2Z
σ · n̂ n ∈ 2Z + 1

(4.32)
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Now we apply this to rotations D(n̂, ϕ):

D(n̂, ϕ) = e−
i
~ S·n̂ϕ = e−

i
2 σ·n̂ϕ = . . . = 1 cos

ϕ

2
− iσ · n̂ sin

ϕ

2
(4.33)

A spinor transforms under rotation according to

χ −→ e−
i
2 σ·n̂ϕχ (4.34)

The σks are to remain unchanged under rotation. Thus σ is not to be regarded as a
vector. Rather

χ†σkχ −→
∑

l

Rklχ
†σkχ (4.35)

transforms as a vector.
As an application of the spinor formalism we repeat the problem of determining the

eigenspinor of σ · n̂ with eigenvalue +1. n̂ is characterized by a polar angle β and an
azimuthal angle α. Here we achieve this by applying two rotations to χ↑:

χσ·n̂ = D3(α)D2(β)
(

1
0

)
(4.36)

=

=

=
(

cos β
2 e

−i α
2

sin β
2 e

i α
2

)
(4.37)

In one of the problems, the eigenket |S · n̂; ↑〉 has already been determined. The result
was

|S · n̂; ↑〉 = cos
β

2
|↑〉+ sin

β

2
eiα |↓〉 (4.38)

This corresponds to the same state as χσ·n̂, because the two representations only differ
by an overall phase factor (here ei α

2 ) that does not change the ket.

4.3 Eigenvalues and Eigenstates of Angular Momentum

Instead of just concentrating on spin 1
2 systems, we will now consider general angular

momentum states. We define the operator J2 as

J2 ≡ JxJx + JyJy + JzJz (4.39)

It commutes with all the Jk operators:[
J2, Jk

]
= 0 (4.40)
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Proof
To prove this we check the case [J2, Jz] = 0.[

J2, Jz

]
=
[
JxJx + JyJy + JzJz, Jz

]
= Jx[Jx, Jz] + [Jx, Jz]Jx + Jy[Jy, Jz] + [Jy, Jz]Jy

= Jx(−i~Jy)− i~JyJx + Jyi~Jx + i~JxJy ≡ 0 (4.41)

For the other two cases, the proof goes analogously. �

To be specific, we look for simultaneous eigenkets of J2 and Jz.

J2 |a, b〉 = a |a, b〉 Jz |a, b〉 = b |a, b〉 (4.42)

The choice of Jz is just convention, we could have equally well chosen Jx or Jy. It is
now convenient to define the ladder operators:

J± = Jx ± iJy (4.43)

As we will see, they play a similar role as the annihilation and creation operator in the
case of the harmonic oscillator. The commutation relations for the J± are[

J+, J−
]

= 2~Jz

[
Jz, J±

]
= ±~J±

[
J2, J±

]
= 0 (4.44)

What is the effect of J± on |a, b〉?

Jz

(
J± |a, b〉

)
=
(
[Jz, J±]︸ ︷︷ ︸
=±~J±

+J±Jz

)
|a, b〉

= (b± ~)J± |a, b〉 (4.45)

Thus, J± |a, b〉 is an eigenvector of Jz with eigenvalues b ± ~. (Recall the effect of a†

and a on the harmonic oscillator eigenstates.)
On other hand, J± does not change the eigenvalue of J2:

J2
(
J± |a, b〉

)
= J±J2 |a, b〉 = aJ± |a, b〉 (4.46)

In summary, we obtain

J± |a, b〉 = c± |a, b± ~〉 (4.47)

with the proportionality constant c± yet unspecified. Now we rewrite J2 − JzJz:

J2 − JzJz =
1
2
(
J+J− + J−J+

)
=

1
2
(
J+J

†
+ + J†+J+

)
(4.48)

J+J
†
+ and J†+J+ both have nonnegative expectation values because of

J†+ |a, b〉 ←→ 〈a, b|J+ J+ |a, b〉 ←→ 〈a, b|J†+ . (4.49)

Therefore 〈
a, b|J2 − JzJz|a, b

〉
≥ 0⇒ (a− b2) ≥ 0 . (4.50)
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Consequently, a > b2. Thus, there must be a bmax such that

J+ |a, bmax〉 = 0 , (4.51)

which also implies that

⇒ J−J+ |a, bmax〉 = 0 (4.52)

Again, we will rewrite the product

J−J+ = JxJx + JyJy − i( JyJx − JxJy︸ ︷︷ ︸
=[Jy,Jx]=−i~Jz

) = J2 − JzJz − ~Jz (4.53)

J−J+ |a, bmax〉 =
(
J2 − JzJz − ~Jz

)
|a, bmax〉 = 0 (4.54)

⇒ a− b2max − ~bmax = 0 ⇔ a = bmax(bmax + ~) (4.55)

Similarly, we can argue that there is a minimal value of b = bmin with

J− |a, bmin〉 = 0

J+J− = J2 − JzJz + ~Jz

J+J− |a, bmin〉 = (a− b2min + ~bmin) |a, bmin〉 (4.56)

⇒ a = bmin(bmin − ~) (4.57)

Hence, bmax = −bmin; all allowed values of b lie in between −bmax ≤ b ≤ bmax.
What is bmax− bmin? |a, bmax〉 must be reached from |a, bmin〉 by applying J+ a finite

number of times. Therefore we have

|a, bmax〉 = cJn
+ |a, bmin〉 (4.58)

⇒ bmax = bmin + n~ = n~
2 (4.59)

with n some integer. Usually one prefers to work with quantum numbers j and m that
are defined by

j ≡ bmax
~ = n

2 a ≡ ~2j(j + 1) m ≡ b
~ (4.60)

The allowed m values range from −j to j, i.e. are 2j + 1 allowed m values. If j is an
integer, all m are also integers, while if j is a half-integer, all m values are half-integer.

Simultaneous eigenkets of J2 and Jz are usually denoted by |j,m〉 which obey the
eigenvalue equations

J2 |j,m〉 = j(j + 1)~2 |j,m〉 (4.61)

Jz |j,m〉 = m~ |j,m〉 (4.62)

j is called the rotational quantum number while m is the azimuthal quantum number.

4.3.1 Matrix Elements of Angular Momentum Operators

Since |j,m〉 is an eigenstate of both J2 and Jz, we obviously have〈
j′,m′|J2|j,m

〉
= j(j + 1)~2δj,j′δm,m′

〈j′,m′|Jz|j,m〉 = m~δj,j′δm,m′

(4.63)
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What are the matrix elements of J±? We first consider

〈j′,m′|J†+J+|j,m〉 =
〈
j′,m′|J2 − JzJz − ~Jz|j,m

〉
= ~2

(
j(j + 1)−m2 −m

)
δj,j′δm,m′ (4.64)

Now J+ |j,m〉 = c+jm |j,m+ 1〉. A comparison with (4.64) yields∣∣c+jm

∣∣ = ~2
[
j(j + 1)−m(m+ 1)

]
= ~2(j −m)(j +m+ 1)

(4.65)

We demand that c+jm is real and positive by convention, thus

J+ |j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉 (4.66)

Analogously, we get for J−

J− |j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉 (4.67)

⇒ 〈j′,m′|J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)~δj′,jδm′,m±1 . (4.68)

4.3.2 Representations of the Rotation Operator

Now we are looking for the matrix elements of the rotation operator:

D
(j)
m,m′(R) =

〈
j,m|e− i

~ J·n̂ϕ|j,m′
〉

(4.69)

Since J2 commutes with any function of the Jk, D(R) |j,m〉 is still an eigenket of J2,
as can be seen from

J2D(R) |j,m〉 = D(R)J2 |j,m〉 = j(j + 1)~2D(R) |j,m〉 (4.70)

Hence matrix elements between states with different j-values vanish, as already incor-
porated in (??). This means in other words that rotations do not change the j-value.

Consequently, D(j)
m,m′(R) is a (2j + 1)× (2j + 1) matrix. It represents an irreducible

representation of the rotation operator, i. e. it cannot be diagonalized any further. The
rotation matrices characterized by a specific j form a group. For ϕ = 0 we have the
identity, and a rotation around an arbitrary axis in the opposite direction to the one
considered is the inverse. Furthermore, the product of any two members is also a
member of the group, i.e.

D
(j)
m,m′′(R1R2) =

∑
m′

D
(j)
m,m′(R1)D

(j)
m′,m′′(R2) . (4.71)

Thus, the structure of SO(3) is carried over to D(R), i. e. the group of all the D(R)
has to be unitary.

D
(j)
m,m′(R−1) = D

(j)†
m,m′(R) = D

(j)∗
m′,m(R) (4.72)

Be careful, the order of m and m′ has changed!
In order to understand the meaning of the matrix elements of the rotation operator,

we rotate a state |j,m〉, i.e. it is transformed |j,m〉 → D(R) |j,m〉. Now we use the fact
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4 Angular Momentum

that D(R) does not change the angular momentum j of a ket, so that for the insertion
of the identity operator expressed as a sum over angular momentum eigenstates we
only have to consider states with the same j:

D(R) |j,m〉 =
∑
m′

|j,m′〉 〈j,m′|D(R) |j,m〉 =
∑
m′

|j,m′〉D(j)
m′,m(R) (4.73)

Hence we see that D(j)
m′,m(R) is simply the amplitude for the rotated state to be in

|j,m′〉 when the unrotated state was |j,m〉.
For spin 1

2 systems, we have in fact already determined the rotation matrices in
terms of the Pauli matrices (see (4.33)). For a general rotation, we have

D
1
2
m,m′(n̂, ϕ) =

(
cos ϕ

2 − in3 sin ϕ
2 −(in1 + n2) sin ϕ

2
(−in1 + n2) sin ϕ

2 cos ϕ
2 + in3 sin ϕ

2

)
(4.74)

4.4 Orbital Angular Momentum

In order to derive the eigenstates, eigenvalues and matrix elements of the angular mo-
mentum operators, we only used the fact that the angular momentum is the generator
of rotation. In classical mechanics, the angular momentum is defined as

L ≡ x× p . (4.75)

In quantum mechanics, there is also the spin-angular momentum that has no classical
equivalent. In order to distinguish (4.75) from the spin-angular momentum, it is
refered to as the orbital angular momentum L. If the spin-angular momentum is 0 or
can be ignored, then the angular momentum J for a single particle is the same as the
orbital angular momentum L.

It is easy to show that L satisfies the fundamental commutation relations[
Li, Lj

]
= i~

∑
k

εijkLk (4.76)[
L2, Li

]
= 0 (4.77)

Now the question is: Does L indeed generate rotation?
In order to see this we let 1− i

~δϕLz act on a position eigenket |x〉. Using [x1, p2] = 0
and that p generates translations, we obtain[

1− i

~
δϕLz

]
|x〉 =

[
1− i

~
δϕ(x1p2 − x2p1)

]
|x〉 =

[
1− i

~
p2δϕx1 +

i

~
p1δϕx2

]
|x〉

= |(x1 − δϕx2, x2 + x1δϕ, x3)〉 (4.78)

This corresponds in fact to an infinitesimal rotation about the x3 axis.
Now we will apply this operator to an arbitrary state ket |α〉.〈

x|1− i

~
δϕL3|α

〉
= 〈(x1 + x2δϕ, x2 − x1δϕ, x3)|α〉 (4.79)

Instead of Cartesian coordinates, we will use spherical coordinates〈
r, ϑ, ϕ|1− i

~
δϕL3|α

〉
= 〈r, ϑ, ϕ− δϕ|α〉

= 〈r, ϑ, ϕ|α〉 − δϕ ∂

∂ϕ
〈r, ϑ, ϕ|α〉 , (4.80)
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4.5 The Central Potential

where we did a Taylor expansion of the wave function

〈r, ϑ, ϕ− δϕ|α〉 = ψα(r, ϑ, ϕ− δϕ)

= ψα(r, ϑ, ϕ)− δϕ ∂

∂ϕ
ψα(r, ϑ, ϕ) +

1
2
(δϕ)2

∂2

∂ϕ2
ψα(r, ϑ, ϕ) + . . . .

(4.81)

Since 〈r, ϑ, ϕ| is arbitrary, we can identify

〈x|L3|α〉 = −i~ ∂

∂ϕ
〈x|α〉 (4.82)

Using x = rer and

∇ = er
∂

∂r
+ eϑ

1
r

∂

∂ϑ
+ eϕ

1
r sinϑ

∂

∂ϕ
, (4.83)

we obtain

⇒ x×∇ = eϕ
∂

∂ϑ
− eϑ

1
sinϑ

∂

∂ϕ
(4.84)

⇒ 〈x|L1|α〉 = −i~
(
− sinϕ

∂

∂ϑ
− cosϕ cotϑ

∂

∂ϕ

)
〈x|α〉 (4.85)

⇒ 〈x|L2|α〉 = −i~
(
− cosϕ

∂

∂ϑ
− sinϕ cotϑ

∂

∂ϕ

)
〈x|α〉 (4.86)

〈x|L±|α〉 = −i~e±iϕ

(
±i ∂
∂ϑ
− cotϑ

∂

∂ϕ

)
〈x|α〉 (4.87)

Using L2 = L2
3 + 1

2

(
L+L− + L−L+

)
, it follows〈

x|L2|α
〉

= −~2

[
1

sin2 ϑ

∂2

∂ϕ2
+

1
sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)]
〈x|α〉 (4.88)

Apart from 1/r2, this is just the angular part of the Laplacian ∇2 in spherical coor-
dinates. This connection can also be established by reformulating the kinetic-energy
operator in spherical coordinates. In the appendix at the end of this chapter, it is
explicitly shown that the kinetic energy operator p2

2m can be expressed as

1
2m

〈
x|p2|α

〉
= − ~2

2m
∇2 〈x|α〉 = − ~2

2m

[( ∂2

∂r2
+

2
r

∂

∂r

)
〈x|α〉 − 1

~2r2
〈
x|L2|α

〉]
(4.89)

The first term is the radial part of the Laplacian. The last term must be the angular
part of the Laplacian, as can explicitly seen in (4.88).

4.5 The Central Potential

With central potential a spherical symmetric potential is meant, i.e., V ≡ V (|r|) =
V (r). Thus, H is rotationally invariant.

D†(R)HD(R) = H[
H,Li

]
= 0 =

[
H,L2

]
(4.90)
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4 Angular Momentum

Therefore, energy eigenkets are also eigenkets of L2 and L3. The eigenfunctions of L3

and L2 are denoted by

〈n̂|lm〉 = Ylm(ϑ, ϕ) (4.91)

Ylm(ϑ, ϕ) are called spherical harmonics. The eigenvalue equations for L3 and L2 can
be re-written as differential equations.

L3 |lm〉 = m~ |lm〉 (4.92)

⇒ −i~ ∂

∂ϕ
Ylm(ϑ, ϕ) = m~Ylm(ϑ, ϕ) (4.93)

⇒ Ylm ∝ eimϕ (4.94)

Likewise,

L2 |lm〉 = l(l + 1)~2 |lm〉 (4.95)

defines a differential equation:[
1

sinϑ
∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
sin2 ϑ

∂2

∂ϕ2
+ l(l + 1)

]
Ylm(ϑ, ϕ) = 0 (4.96)

In general, the spherical harmonics are given by

Ylm(ϑ, ϕ) =
(−1)l

2ll!

√
2l + 1

4π
(l +m)!
(l −m)!

eimϕ 1
sinm ϑ

dl−m

d cosl−m ϑ
sin2l ϑ (4.97)

They are orthogonal to each other and form a complete set:∫ π

0

dϑ sinϑ
∫ 2π

0

dϕ Y ∗
lm(ϑ, ϕ)Yl′m′(ϑ, ϕ) = δll′δmm′ (4.98)

Further details about the spherical harmonics are given in the appendix in section 4.7.2.
Here we just report the lowest Ylm’s which are

Y00 =
1√
4π

Y10 =

√
3
4π

cosϑ Y11 = −
√

3
8π

sinϑeiϕ (4.99)

For l = 2, the functions are slightly more complicated.

Y20 =

r
5

16π
(3 cos2 ϑ − 1) Y21 = −

r
15

8π
sin ϑ cos ϑ · eiϕ Y22 =

r
15

32π
sin2 ϑ · e2iϕ

(4.100)

4.5.1 Schrödinger Equation for Central Potential Problems

The Schrödinger equation for a central potential is given by[
− ~2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)
+

L2

2mr2
+ V (r)

]
Ψ(r, ϑ, ϕ) = EΨ(r, ϑ, ϕ) (4.101)

where V (r) has to satisfy lim
r→0

r2V (r) = 0.
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4.5 The Central Potential

Since H is spherically symmetric, L2 commutes with H. Thus there is a common set
of eigenfunctions. The only term depending on the angles is L2/(2mr2). In order to
solve the Schrödinger equation, we use as an ansatz the separation of variables.

Ψ(r, ϑ, ϕ) = R(r)Ylm(ϑ, ϕ) (4.102)

Substituting (4.102) into (4.101) and using L2Ylm = ~2l(l+ 1)Ylm leads to a differen-
tial equation for the radial part.[

− ~2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)
+

~2l(l + 1)
2mr2

+ V (r)
]
R(r) = ER(r) (4.103)

(4.103) almost looks like a one-dimensional Schrödinger equation except for the ki-
netic energy term. Substituting R(r) ≡ U(r)

r results in

(
∂2

∂r2
+

2
r

∂

∂r

)
R(r) =

(
1
r

∂

∂r
r

)2
U(r)
r

=
1
r

∂2

∂r2
U(r) (4.104)

⇒
[
− ~2

2m
d2

dr2
+

~2l(l + 1)
2mr2

+ V (r)
]
U(r) = EU(r) (4.105)

Thus, we have a one-dimensional problem with the effective potential

Veff(r) = V (r) +
~2l(l + 1)

2mr2
(4.106)

There are some constraints on the wave function:

1. Normalizability: If we assume that the angular part is already normalized, then∫
|Ψ(r, ϑ, ϕ)|2 d3r =

∫
R+
r2
|U(r)|2

r2
dr <∞

⇒ lim
r→∞

|U(r)| ≤ a

rε+ 1
2

ε > 0 (4.107)

2. lim
r→0

U(r) = 0 because otherwise the Schrödinger equation cannot be satisfied

because of ∇2Ψ ∝ ∇2 U(r)
r ∝ 1

r3 for r → 0.

4.5.2 Examples for Spherically Symmetric Potentials

Free Particles

Here, V (r) ≡ 0. The general solutions are

R(r) = c1jl(ρ) + c2ηl(ρ) (4.108)

where ρ = kr and k = 1
~
√

2mE. jl and ηl are the spherical Bessel and Hankel func-
tions, respectively.
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4 Angular Momentum

The Coulomb Potential

The potential is

V (r) = −Ze
2

r
(4.109)

This corresponds to a hydrogen-like atom, and for Z = 1 it is the hydrogen atom. The
solution of the radial Schrödinger equation giving the energy eigenvalues is somewhat
involved, but straightforward. Solving this problem was one of the first successes of
quantum mechanics since from the eigenvalues the measured hydrogen spectra could
be immediately understood.

Here we will not give a derivation of the results, but simply list them. In order to
write down the solutions, we first introduce the dimensionless variable

ρ ≡ 1
~
√

8me |E|r (4.110)

The energy eigenfunctions are

Ψnlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑ, ϕ) (4.111)

where

Rnl(r) = −

√√√√( 2Z
na0

)2 (n− l − 1)!

2n
(
(n+ l)!

)3 e− ρ
2 ρlL2l+1

n+1 (ρ) (4.112)

The corresponding energy levels are

En = −mZ
2e4

2~2
· 1
n2

= −Z
2e2

2a0
· 1
n2

with a0 =
~2

mee2
≈ 0.529 Å (4.113)

n ≥ l + 1 ρ =
2Zr
na0

,

where a0 is the Bohr radius. The Lq
p(ρ) are the associated Laguerre polynomials.

Lp(ρ) = eρ d
p

dρp

(
ρpe−ρ

)
=⇒ Lq

p(ρ) =
dq

dρq
Lp(ρ) (4.114)

Some radial functions for low n

R10(r) = 2
(
Z

a0

) 3
2

e−
Zr
a0

R20(r) = 2
(
Z

2a0

) 3
2 (

1− Zr

2a0

)
e−

Zr
2a0

R21(r) =
(
Z

2a0

) 3
2 Zr√

3a0

e−
Zr
2a0 (4.115)
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4.6 Addition of Angular Momentum

4.6 Addition of Angular Momentum

4.6.1 Orbital Angular Momentum and Spin 1
2

For any realistic description of a particle with spin one must take into account both
the spin and the spatial degrees of freedom. For a spin 1

2 system, e.g., the appropriate
Hilbert space can be regarded as being a direct product space of the two-dimensional
spin space with the infinite-dimensional space of the spatial degrees of freedom. The
base kets are then given by

|x,±〉 = |x〉 ⊗ |±〉 , (4.116)

where ⊗ is the tensor product. Any operator in the space spanned by {|x〉} commutes
with any operator in the spin space described by {|±〉}. The rotation operator is still of
the form e−

i
~ J·n̂ϕ, but J consists of two parts, namely,

J ≡ L⊗ 1 + 1⊗ S ≡ L + S (4.117)[
L,S

]
= 0 ⇒ D(R) = Dorb(R)⊗Dspin(R) (4.118)

Since L and S commute, D(R) can be written as

D(R) = e−
i
~ L·n̂ϕ ⊗ e− i

~ S·n̂ϕ (4.119)

A wave function for a particle with spin 1
2 has two components:

〈x,±|α〉 = Ψ±(x) =
(

Ψ+(x)
Ψ−(x)

)
(4.120)

There are 2(2l + 1) product states |l,m,±〉 that are eigenstates of L2, Lz, S2, and Sz.
As we will see later, we can also use a basis made of eigenstates of J2, L2, S2, and Jz.
|j, l,m〉 will denote such an eigenstate.

What is the total angular momentum if we add the orbital and the spin angular
momentum? We assume that for a spin 1

2 particle j = l± 1
2 . Does this make sense? In

other words, what is the dimension of this space? The number of states is 2(l + 1
2 ) +

1 + 2(l − 1
2 ) + 1 = 2(2l + 1), so we obtain the right number of states.

As a starting point, we make the ansatz that

|l + 1
2
, l +

1
2
, l〉 = |l, l, ↑〉 . (4.121)

The state of the left-hand side is an eigenstate of J2, Jz, L2, and S2, the state on the
right-hand is an eigenstate of L2, Lz, Sz, and S2. It is simple to proove that this ansatz
makes sense.

Proof
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4 Angular Momentum

�

Any general state
∣∣l + 1

2 ,mj , l
〉

can be created by successive application of J− =
L− +S− (recall that the ladder operators only change the z component of the angular
momentum, the total angular momentum remains unchanged!). First, we apply J− to
the state |l, l, ↑〉.

J− |l, l, ↑〉 =
√

2l~ |l, l − 1, ↑〉+ ~ |l, l, ↓〉 (4.125)

We normalize the right-hand side.∣∣∣∣l + 1
2
, l − 1

2
, l

〉
=

√
2l

2l + 1
|l, l − 1, ↑〉+

√
1

2l + 1
|l, l, ↓〉 (4.126)

In general, we get∣∣∣∣l + 1
2
,mj , l

〉
=

√
l +mj + 1

2

2l + 1

∣∣∣∣l,mj −
1
2
, ↑
〉

+

√
l −mj + 1

2

2l + 1

∣∣∣∣l,mj +
1
2
, ↓
〉

(4.127)

where −(l + 1
2 ) ≤ mj ≤ l + 1

2 .
Analogously, we get∣∣∣∣l − 1

2
,mj , l

〉
= −

√
l −mj + 1

2

2l + 1

∣∣∣∣l,mj −
1
2
, ↑
〉

+

√
l +mj + 1

2

2l + 1

∣∣∣∣l,mj +
1
2
, ↓
〉

(4.128)

where −(l − 1
2 ) ≤ mj ≤ l − 1

2 . It is simple to check that these states (4.128) are
orthogonal to the states (4.127) and that they are indeed eigenstates of J2 and Jz

with eigenvalues j = l − 1
2 and mj .

A useful property of the states is the fact that they are eigenstates of the operator
L ·S = 1

2

(
J2−L2−S2

)
which appears in the spin-orbit interaction (see section 5.2.2).

4.6.2 Two Spin 1
2

Particles

In the case of two spin 1
2 particles, the total spin operator is given by

S ≡ S1 ⊗ 1 + 1⊗ S2 ≡ S1 + S2 (4.129)

The commutation relations are[
S1xi , S1xj

]
= i~εijkS1xj

[
S2xi , S2xj

]
= i~εijkS2xj (4.130)

so that we have for the total spin [
Sx, Sy

]
= i~Sz , (4.131)

and so forth. The eigenvalues of the spin operators are

S2 = (S1 + S2)2 : s(s+ 1)~2

Sz = S1z + S2z : m~
S1z : m1~
S2z : m2~ (4.132)

Again, there are two different representations of the total spin states.
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1. The {m1,m2} representation based on the eigenkets of S1z and S2z:

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (4.133)

2. The {s,m} or triplet-singlet representation based on the eigenkets of S2 and Sz:

|s = 1,m = 1〉 = |↑↑〉 ,

|s = 1,m = 0〉 =
(

1√
2

)
(|↑↓〉+ |↓↑〉) ,

|s = 1,m = 1〉 = |↓↓〉 ,

|s = 0,m = 0〉 =
(

1√
2

)
(|↑↓〉 − |↓↑〉) , (4.134)

The |s = 1,m = ±1, 0〉 states are referred to as the spin triplet, while |s = 0,m = 0〉 is
called the spin singlet state.

4.6.3 General Case

No we will add two general angular momenta J1 and J2. J1z and J2z are the z -
components of the angular momenta J1 and J2, respectively. J = J1⊗1+1⊗J2 is the
total angular momentum and Jz its z-component. We can easily show that the com-
ponents of the total angular momentum satisfy the angular momentum commutation
relations: [

Ji, Jj

]
= i~εijkJk (4.135)

This means that J is an angular momentum for itself. There are two choices for the
chosen base. The first is spanned by the eigenkets |α〉 = |j1, j2,m1,m2〉. Consequently,
the eigenvalues of these states are simply given by

J2
1 |j1, j2,m1,m2〉 = j1(j1 + 1)~2 |j1, j2,m1,m2〉 (4.136)

J1z |j1, j2,m1,m2〉 = m1~ |j1, j2,m1,m2〉 (4.137)

J2
2 |j1, j2,m1,m2〉 = j2(j2 + 1)~2 |j1, j2,m1,m2〉 (4.138)

J2z |j1, j2,m1,m2〉 = m2~ |j1, j2,m1,m2〉 (4.139)

Equivalently, we could use the base spanned by the eigenvectors of J2, Jz, J2
1, and

J2
2. Note that the total angular momentum operator commutes with J2

1 and J2
2, i.e.[

J2,J2
i

]
= 0, which can be directly seen by writing J2 as

J2 = J2
1 + J2

2 + 2J1zJ2z + J1+J2− + J1−J2+ (4.140)

In this representation, the eigenstates are denoted by |α〉 = |j,mj , j1, j2〉. Here, the
eigenvalue equations are

J2 |j,mj , j1, j2〉 = j(j + 1)~2 |j,mj , j1, j2〉 (4.141)

Jz |j,mj , j1, j2〉 = mj~ |j,mj , j1, j2〉 (4.142)

J2
1 |j,mj , j1, j2〉 = j1(j1 + 1)~2 |j,mj , j1, j2〉 (4.143)

J2
2 |j,mj , j1, j2〉 = j2(j2 + 1)~2 |j,mj , j1, j2〉 (4.144)

J2 commutes with Jz, but it does not commute with J1z or J2z!
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Change of base As usual, we can change bases according to

|j,mj , j1, j2〉 =
∑
m1

∑
m2

|j1, j2,m1,m2〉 〈j1, j2,m1,m2|j,mj , j1, j2〉 , (4.145)

where we have used that∑
m1

∑
m2

|j1, j2,m1,m2〉 〈j1, j2,m1,m2| = 1 (4.146)

in the ket space of given angular momentum quantum numbers j1 and j2. The
elements of the transformation matrix 〈j1, j2,m1,m2|j,mj , j1, j2〉 are the so-called
Clebsch-Gordon coefficients.

Clebsch-Gordon coefficients In fact, many of the Clebsch-Gordon coefficients appear-
ing in (4.145) vanish, which makes it easier to perform the transformation. First of
all, they vanish unless mj = m1 +m2. The proof is rather simple.

0 =

⇒ 0 =

= (4.147)

Secondly, they also vanish unless |j1 − j2| ≤ j ≤ |j1 + j2|. This relation seems to be
obvious when we visualize J as the vectorial sum of J1 and J2. Its consistency can
also be checked when the dimensionality of the space spanned by {|j1, j2,m1,m2〉} is
compared to that of {|j,mj , j1, j2〉} which should be the same.

The Clebsch-Gordon coefficients form a unitary matrix. Furthermore, the matrix
elements are chosen to be real by convention. A real unitary matrix is orthogonal,
which means that∑

m1

∑
m2

〈j1, j2,m1,m2|j,mj , j1, j2〉
〈
j1, j2,m1,m2|j′,m′

j , j1, j2
〉

= δj j′δmj m′
j∑

j

∑
mj

〈j1, j2,m1,m2|j,mj , j1, j2〉 〈j1, j2,m′
1,m

′
2|j,mj , j1, j2〉 = δm1 m′

1
δm2 m′

2

(4.148)

As an example, we write down the 2× 2 matrix formed by the Clebsch-Gordan coeffi-
cients for the addition of orbital and spin-angular momentum

〈
l, 1

2 ,m1,m2|j,mj , l,
1
2

〉
:

√
l+mj+

1
2

2l+1

√
l−mj+

1
2

2l+1

−
√

l−mj+
1
2

2l+1

√
l+mj+

1
2

2l+1

 , (4.149)

which directly follows from (4.127) and (4.128).
Sometimes, Wigner’s 3 j symbol is used to denote the Clebsch-Gordon coefficients:

〈j1, j2,m1,m2|j,mj , j1, j2〉 = (−1)j1−j2+mj
√

2j + 1
(

j1j2, j
m1m2 −m

)
(4.150)
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Applying J± ≡ J1± + J2± to the state |j,mj , j1, j2〉 can be used to define a recursion
relation to calculate the Clebsch-Gordon coefficients.

J± |j1, j2,m1,m2〉 = (J1± + J2±)
∑
m1

∑
m2

|j1, j2,m1,m2〉 〈j1, j2,m1,m2|j,mj , j1, j2〉

(4.151)

The addition of angular momenta is of particular importance for the specification of
the electronic configurations of atoms. In the absence of external fields, the total an-
gular momentum J is a constant of motion because of the spherical symmetry. We will
later see that there is a spin-orbit interaction which couples orbital and spin angular
momentum. If we neglect this interaction which is in particular for light atoms a good
approximation, then the total orbital angular momentum L and the total spin angu-
lar momentum S are individually constants of motion, characterized by the quantum
numbers L, S,ML and MS where we used capital letters to denote the total angular
momenta.

Hence we have in total a multiplet of (2L +1)(2S+1) degenerate states. In order
to specify a level of definite L, S, and J , spectroscopists use the notation 2S+1LJ. For
example, 3P2 denotes a level with L=1, S=1, J=2, and is read “triplet P two”.

4.7 Appendix

4.7.1 Connection between L2 and the Laplacian

In section 4.4, it has been shown that
〈
x|L2|α

〉
, apart from a factor 1/r2, corresponds

to the angular part of the Laplacian ∇2 in spherical coordinates applied to the wave
function. In addition, it was mentioned that this connection can also be established
by reformulating the kinetic-energy operator in spherical coordinates. In order to see
this, we first note that L2 can be reexpressed as

L2 =
∑

i,j,l,m,k

εijkxipjεlmkxlpm =
∑

i,j,l,m,k

(
δilδjm − δimδjl

)
xipjxlpm

=
∑

i,j,l,m,k

[
δilδjmxi(xlpj − i~δjl)pm − δimδjlxipj(pmxl + i~δlm)

]
= x2p2 − i~x · p−

∑
i,j,k,l,m

δimδjl

[
xipm(xlpj − i~δjl) + i~δlmxipj

]
= x2 · p2 − i~x · p−

(
x · p)2 + 3i~x · p− i~x · p

= x2p2 −
(
x · p)2 + i~x · p (4.152)

Furthermore, we have

〈x|x · p|α〉 = x ·
(
−i~∇〈x|α〉

)
= −i~r ∂

∂r
〈x|α〉 , (4.153)〈

x|(x · p)2|α
〉

= −~2r
∂

∂r

(
r
∂

∂r
〈x|α〉

)
= −~2

(
r2
∂2

∂r2
〈x|α〉+ r

∂

∂r
〈x|α〉

)
. (4.154)

Consequently 〈
x|L2|α

〉
= r2

〈
x|p2|α

〉
+ ~2

(
r2
∂2

∂r2
+ 2r

∂

∂r
〈x|α〉

)
(4.155)
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The kinetic energy operator p2

2m can now be expressed as

1
2m

〈
x|p2|α

〉
= − ~2

2m
∇2 〈x|α〉 = − ~2

2m

[( ∂2

∂r2
+

2
r

∂

∂r

)
〈x|α〉 − 1

~2r2
〈
x|L2|α

〉]
(4.156)

4.7.2 Properties of the spherical harmonics

The spherical harmonics

〈n̂|lm〉 = Ylm(ϑ, ϕ) (4.157)

are the eigenfunctions of L3 and L2 obeying the eigenvalue equations

L3 |lm〉 = m~ |lm〉 (4.158)

L2 |lm〉 = l(l + 1)~2 |lm〉 (4.159)

They can be expressed as

Ylm(ϑ, ϕ) = (−1)
1
2 (m+|m|)Pl|m|(cosϑ)eimϕ ·

√
2l + 1

4π
(l − |m|)!
(l + |m|)!

, (4.160)

where the Plm are the associated Legendre functions

Plm(x) = (1− x2)
m
2
dm

dxm
Pl(x) =

(−1)l

2ll!
sinm ϑ

dl+m sin2l ϑ

d cosl+m ϑ
(4.161)

and the Pl are the Legendre polynomials:

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l =

(−1)l

2ll!
sinm ϑ

dl sin2l ϑ

d cosl ϑ
x = cosϑ (4.162)

There are two recursion relations in order to determine the next-order Legendre poly-
nomials:

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x)

(1− x2)
dPl

dx
= l(Pl−1 − xPl) (4.163)

The lowest order Legendre polynomials are

P0 = 1 P1 = x P2 =
1
2
(3x2 − 1) P3 =

1
2
(5x3 − 3x) . . . (4.164)

In general, the spherical harmonics are given by

Ylm(ϑ, ϕ) =
(−1)l

2ll!

√
2l + 1

4π
(l +m)!
(l −m)!

eimϕ 1
sinm ϑ

dl−m

d cosl−m ϑ
sin2l ϑ (4.165)

They are orthogonal to each other and form a complete set:∫ π

0

dϑ sinϑ
∫ 2π

0

dϕ Y ∗
lm(ϑ, ϕ)Yl′m′(ϑ, ϕ) = δll′δmm′ (4.166)
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Further properties of the spherical harmonics in detail:

Completeness:
∞∑

l=0

l∑
m=−l

Y ∗
lm(ϑ, ϕ)Ylm(ϑ′, ϕ′) =

1
sinϑ

δ(ϑ− ϑ′)δ(ϕ− ϕ′) (4.167)

Addition theorem:
l∑

m=−l

Y ∗
lm(ϑ, ϕ)Ylm(ϑ′, ϕ′) =

2l + 1
4π

Pl(n̂ · n̂′) (4.168)

Yl,−m(ϑ, ϕ) = (−1)mYlm(ϑ, ϕ) (4.169)

Yl,0(ϑ, ϕ) =

√
2l + 1

4π
Pl(cosϑ) (4.170)

The lowest Ylm’s are

Y00 =
1√
4π
, Y10 =

√
3
4π

cosϑ, Y11 = −
√

3
8π

sinϑeiϕ

Y20 =

√
5

16π
(3 cos2 ϑ− 1), Y21 = −

√
15
8π

sinϑ cosϑ · eiϕ, Y22 =

√
15
32π

sin2 ϑ · e2iϕ

(4.171)
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5 Approximation Methods

Only very few problems – such as the free particle, the harmonic oscillator and the
hydrogen atom – can be solved exactly in quantum mechanics. Hence for most realistic
problems we have to rely on approximation methods in order to understand the basic
physics, even if we are able to solve the problem numerically.

5.1 Time-Independent Perturbation Theory:
Non-Degenerate Case

Consider a HamiltonianH0. We assume that we have exactly determined the eigenkets
|n(0)〉 and the eigenvalues E(0)

n .

H0|n(0)〉 = E(0)
n |n(0)〉 (5.1)

Now we assume that an additional term V is added to the Hamiltonian

H = H0 + V . (5.2)

The extra term is known as the perturbation. We are looking for the solutions of the
full Hamiltonian problem

H|n〉 = (H0 + V )|n〉 = En|n〉 (5.3)

With ∆n ≡ En − E(0)
n we will denote the difference in the eigenenergies between the

perturbed system and the unperturbed system. Usually one writes Eq. (5.3) as

(H0 + λV )|n〉 = En|n〉 (5.4)

As we will see below, we will do a power expansion in terms of the perturbation V .
The continuous real parameter λ will help us to keep track of the number of times the
perturbation enters. Finally we will then set λ = 1. The transition from λ = 0→ λ = 1
can be regarded as “switching on the perturbation”.

Let us first focus on a simple two-state problem with a perturbation V12 = V21 = V ,
i.e. V is assumed to be real. The unperturbed eigenvalues are given by E(0)

1 and E(0)
2 .

In the eigenbase of the unperturbed system, the full Hamiltonian is given by

H ≡ H0 + λV =

(
E

(0)
1 λV

λV E
(0)
2

)
(5.5)

The eigenenergies of the perturbed system are easily evaluated:

E1,2 = (5.6)
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Now we suppose that λV �
∣∣∣E(0)

1 − E(0)
2

∣∣∣, i. e. the perturbation is relatively small
compared to the energy gap. Using a Taylor expansion to approximate the square root,

√
1 + ε = (5.7)

we obtain

E1 = E
(0)
1 +

λ2 |V |2

E
(0)
1 − E(0)

2

+O(λ4)

E2 = E
(0)
2 +

λ2 |V |2

E
(0)
2 − E(0)

1

+O(λ4) (5.8)

It is important to note here that there is not always a perturbation series for weak
perturbations. However, one can say that perturbation theory usually works whenever
the state with finite λ does not differ qualitatively from the state with λ = 0.

Let us now formally develop the perturbation expansion. In principle, the full prob-
lem should be written as

H(λ)|n〉λ = (H0 + λV )|n〉λ = E(λ)
n |n〉λ , (5.9)

but we will omit the index λ in the following. Both the eigenstates and the eigenener-
gies of the full problem are expanded in a power series in λ:

|n〉 = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ . . . (5.10)

En = E(0)
n + ∆n

= E(0)
n + λ∆(1)

n + λ2∆(2)
n + . . . (5.11)

In the following it will be convenient use the normalization 〈n|n(0)〉 = 1 instead of the
usual one 〈n|n〉 = 1:

0 =
〈
n(0)|n

〉
− 1

= 〈n(0)|n(0)〉︸ ︷︷ ︸
=1

+λ〈n(0)|n(1)〉+ λ2〈n(0)|n(2)〉+ . . .− 1

= λ〈n(0)|n(1)〉+ λ2〈n(0)|n(2)〉+ . . . (5.12)

From that it follows that

〈n(0)|n(1)〉 = 〈n(0)|n(2)〉 = . . . = 0 , (5.13)

since each term in Eq. (5.12) must vanish individually.
We rewrite the full Hamiltonian problem using the power expansions in λ:(

H0 + λV
)(
|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ . . .

)
= (E(0)

n + λ∆(1)
n + λ2∆(2)

n + . . .)
(
|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ . . .

)
(5.14)
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5.1 Time-Independent Perturbation Theory: Non-Degenerate Case

Now we match the corresponding coefficients in terms of powers of λ. The first terms
are given by

O(λ0) :H0|n(0)〉 = E(0)
n |n(0)〉 (5.15)

O(λ1) : (5.16)
...

O(λk) :H0|n(k)〉+ V |n(k−1)〉 = E(0)
n |n(k)〉+ ∆(1)

n |n(k−1)〉+ . . .+ ∆(k)
n |n(0)〉 (5.17)

Multiplying Eq. (5.16) by 〈n(0)| from the left, we obtain

〈n(0)|H0|n(1)〉︸ ︷︷ ︸
E

(0)
n 〈n(0)|n(1)〉

+〈n(0)|V |n(0)〉 = E(0)
n 〈n(0)|n(1)〉+ ∆(1)

n 〈n(0)|n(0)〉︸ ︷︷ ︸
=1

, (5.18)

where we have used that |n(0)〉 is an eigenket of H0. Thus we have

⇒ 〈n(0)|V |n(0)〉 = ∆(1)
n ≡ Vnn , (5.19)

Hence we get the energy shifts to first order in λ and therefore in V :

∆n = En − E(0)
n = λ〈n(0)|V |n(0)〉 = λVnn . (5.20)

Analogously, by multiplying Eq. (5.17) by 〈n(0)| from the left and using Eq. (5.13) we
get the result for all other orders:

∆(k)
n = 〈n(0)|V |n(k−1)〉 (5.21)

This means that once the change in the state to a certain order is known, the energy
change can be found to the next order.

In order to get the perturbed wave function, we expand |n(k)〉 in terms of eigenstates
|m(0)〉 of H0:

|n(k)〉 =
∑
m

|m(0)〉〈m(0)|n(k)〉 =
∑
m6=n

|m(0)〉〈m(0)|n(k)〉 (5.22)

The term with m = n is not included in the sum because of Eq. (5.13). Multiplying
(5.17) from the left with 〈m(0)|, we obtain for m 6= n

〈m(0)|H0|n(k)〉︸ ︷︷ ︸
E

(0)
m 〈m(0)|n(k)〉

+ 〈m(0)|V |n(k−1)〉 =

= E(0)
n 〈m(0)|n(k)〉+ ∆(1)

n 〈m(0)|n(k−1)〉+ . . .+ ∆(k−1)
n 〈m(0)|n(1)〉

(5.23)

Note that in the nondegenerate case that we assumed here, i.e. E(0)
m 6= E

(0)
n for m 6= n,

we have 〈m(0)|n(0)〉 = δmn. For k = 1, we get

〈m(0)|n(1)〉 =
1

E
(0)
n − E(0)

m

〈m(0)|V |n(0)〉 (5.24)

87



5 Approximation Methods

From that we get the first-order approximation for the eigenket |n〉 of the perturbed
system, using (5.10) and (5.22):

|n〉 = |n(0)〉+ λ
∑
m6=n

|m(0)〉 〈m
(0)|V |n(0)〉

E
(0)
n − E(0)

m

(5.25)

The corresponding eigenenergy to first order has already been evaluated in Eq. (5.20):

En = E(0)
n + λ〈n(0)|V |n(0)〉 (5.26)

to first order.
We get the second-order term of the energy shift by inserting our result for the wave

function to first order in the general formula for energy shifts Eq. (5.21):

∆(2)
n = 〈n(0)|V |n(1)〉

=
∑
m6=n

〈n(0)|V |m(0)〉
E

(0)
n − E(0)

m

〈m(0)|V |n(0)〉 =
∑
m6=n

∣∣〈n(0)|V |m(0)〉
∣∣2

E
(0)
n − E(0)

m

=
∑
m6=n

|Vmn|2

E
(0)
n − E(0)

m

(5.27)

In order to see the expansion, we write down the whole expression

En = E(0)
n + λ∆(1)

n + λ2∆(2)
n + . . .

= E(0)
n + λVnn + λ2

∑
m6=n

|Vmn|2

E
(0)
n − E(0)

m

+ . . . (5.28)

This expresion should be compared with Eq. (5.8): not surprisingly, the second-order
Taylor expansion of the exact eigenvalues of the (2×2) problem coincides with (5.28).

In fact, perturbation theory is usually used just up to second order for the energies.
For the sake of completeness, we add the second-order expression for the state kets:

|n〉 =|n(0)〉+ λ
∑
m6=n

|m(0)〉 Vmn

E
(0)
n − E(0)

m

+ λ2

∑
m6=n

∑
l 6=n

|m(0)〉 VmlVln(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) −∑
m6=n

|m(0)〉 VmnVnn(
E

(0)
n − E(0)

m

)2

 .

(5.29)

The second-order perturbation theory expression (5.28) can be found over and over
in quantum mechanical derivations and applications in the literature. Let us list some
important general properties of this expression:

Remarks For the first-order energy eigenstates, only the eigenstates and eigenener-
gies of the unperturbed system are needed.

The second order energy shifts tend to ‘repel’ the energy levels En and Em: the
lower one decreases by the same amount as the higher one increases.

For the ground state, the second order energy shifts are always negative (which is a
direct consequence of the preceding statement).
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5.2 Degenerate Perturbation Theory

5.1.1 Harmonic Oscillator

As an elementary example, we consider the harmonic oscillator. To the unperturbed
Hamiltonian

H0 =
p2

2m
+

1
2
mω2x2 (5.30)

we add a harmonic perturbation

V (x) =
1
2
εmω2x2 (5.31)

with |ε| � 1. The problem can easily be solved exactly by the substitution ω 7→√
1 + ε ω. Applying perturbation theory, we obtain

|0〉 = |0(0)〉+
∑
k 6=0

|k(0)〉 Vk0

E
(0)
0 − E(0)

k

+ . . .

∆0 = V00 +
∑
k 6=0

|Vk0|2

E
(0)
0 − E(0)

k

(5.32)

The relevant matrix elements are

V00 =
ε

2
mω2〈0(0)|x2|0(0)〉 =

ε

4
~ω (5.33)

V20 =
ε

2
mω2〈2(0)|x2|0(0)〉 =

ε

2
√

2
~ω (5.34)

All other matrix elements vanish. The denominators of the non-vanishing terms are
−2~ω; thus we obtain

|0〉 = |0(0)〉 − ε

4
√

2
|2(0)〉+O(ε2) (5.35)

∆0 = E0 − E(0)
0 = ~ω

(ε
4
− ε2

16
+O(ε3)

)
(5.36)

Let us compare this expansion with the exact solution. We perform a Taylor expansion
of
√

1 + ε in terms of ε:
√

1 + ε =
1
2

~ω
√

1 + ε = (5.37)

This agrees completely with the perturbation result.

5.2 Degenerate Perturbation Theory

Non-degenerate perturbation theory breaks down, if there is degeneracy, i.e. E(0)
n =

E
(0)
m for n 6= m but Vnm 6= 0. Then the corresponding term in the sum becomes

singular.
If there is a degeneracy, then we are free to choose any suitable base set of unper-

turbed kets. In fact we will exploit this freedom in such a way that the matrix elements
Vnm will vanish.
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Let D(Ek
n) be the k-dimensional subspace to the eigenvalue E(0)

n . Thus, we get

H0|l(0)i 〉 = E(0)
n |l

(0)
i 〉

= E
(0)
D |l

(0)
i 〉 (5.38)

for |l(0)i 〉 ∈ D(Ek
n). Then choose a set of k degenerate orthonormal states

|m(0)
j 〉 =

k∑
i=1

cji|li〉 (5.39)

such that

〈m(0)
j |V |m

(0)
j′ 〉 = 0 for j 6= j′ . (5.40)

This corresponds to the eigenvalue equation in the subspace D(Ek
n):V11 V21 . . .

V21 V22

...
. . .



〈l(0)1 |m

(0)
j 〉

〈l(0)2 |m
(0)
j 〉

...

 = ∆(1)
j


〈l(0)1 |m

(0)
j 〉

〈l(0)2 |m
(0)
j 〉

...

 (5.41)

The eigenvalues can be found by solving the secular equation

det(V −∆(1)1) != 0 . (5.42)

This means that the first-order energy shifts are simply given by

∆(1)
j = 〈m(0)

j |V |m
(0)
j 〉 . (5.43)

The eigenket to first order is now given by

|mj〉 = |m(0)
j 〉+ λ

∑
E

(0)
i 6=E

(0)
D

〈i(0)|V |m(0)
j 〉

E
(0)
D − E(0)

i

|i(0)〉 (5.44)

Similarly, the second-order energy of the perturbed system is given by

Ej = E
(0)
j + λ〈m(0)

j |V |m
(0)
j 〉+ λ2

∑
E

(0)
i 6=E

(0)
D

|〈i(0)|V |m(0)
j 〉|2

E
(0)
D − E(0)

i

(5.45)

Recipe First, identify the degenerate subspace(s). Then diagonalize the perturbation
matrix. The first-order shifts are given by the roots of the secular equation. For higher
orders, apply the formulas for non-degenerate perturbation theory, but exclude the
degenerate subspace in the summations.

5.2.1 Linear Stark Effect

If we neglect the spin dependence, the bound state energy of the hydrogen atom only
depends on the principal quantum number n. Thus for a given value of n, all states
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3e|E|a0

3e|E|a0

+−

(|2s,m=0>−|2p,m=0>)/21/2

No change for |2p,m=  1>

1/2(|2s,m=0>+|2p,m=0>)/2

Figure 5.1: Schematic energy-level diagram for the linear Stark effect.

with 0 ≤ l < n become degenerate. If we apply an uniform electric field in the z-
direction, this degeneracy becomes lifted. In order to see this, we have to diagonalize
the perturbation which is given by

V = −ez |E| . (5.46)

First, we note that [V,Lz] ∝ [z, Lz] = 0. Thus, the matrix elements of λV between
states with different eigenvalues of Lz vanish. Furthermore, the eigenfunctions of the
hydrogen atom are also parity eigenfunctions, i. e. |Ψnlm(r)|2 = |Ψnlm(−r)|2. Hence
only states with opposite parity are coupled by the perturbation. Since z = r cos θ
corresponds to a l = 1 function, we have the following selection rule

〈n′, l′,m′|z|n, l,m〉 = 0 unless

{
l′ = l ± 1
m′ = m

. (5.47)

Let us take a look at the n = 2 energy levels. There is one l = 0 (the 2s state) and
three l = 1 states (the 2p states). Thus, all entries of the perturbation matrix vanish
except for V12 = 〈2p,m = 0|V |2s〉 and V21 = 〈2s|V |2p,m = 0〉.

Thus, effectively we have to deal with a 2 × 2 perturbation matrix. The only two
non-vanishing elements of this matrix, which is proportional to the σx matrix, are

V12 = 〈2s|V |2p,m = 0〉 = V21 = 〈2p,m = 0|V |2s〉 = 3a0 |E| (5.48)

The energy shifts and the zeroth-order kets that diagonalize V are

∆(1)
± = ±3ea0 |E|
|±〉 = 1√

2

(
|2s,m = 0〉 ± |2p,m = 0〉

)
(5.49)

The degenerate 2s and 2p states are now split in three: |+〉, no change for |2p,m =
±1〉, and |−〉 (see fig. 5.1).

For non-degenerate states, e. g. the 1s state, there is no linear, only a quadratic
Stark effect, since the |1s〉 state has no permanent dipole.

Remark The formalism of degenerate perturbation theory is still useful, if the states
are almost degenerate.
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5.2.2 Spin-Orbit Interaction and Fine Structure

We will now consider Hydrogen-like atoms, i. e. atoms with one valence electron
outside a closed shell. The charge of the shell electrons is distributed spherical sym-
metrical.

Now we have a central potential Vc = eΦ(r), that is not a Coulomb potential any-
more. This is due to the interaction between the outer electron and the electrons in the
inner shells. As one consequence, the degeneracy of states with same quantum num-
ber n but different l is lifted. Higher l states lie higher in energy for a given n since
the higher l states are more strongly interacting with the repulsive electron cloud. For
lighter atoms, the difference between |n, l〉 and |n, l′〉 states is of the order of 0.1 eV
where the states with higher l have the higher energy.

Additionally, we have the so-called spin-orbit (L · S) interaction which is due to
relativistic effects and gives rise to the fine structure.

Qualitative Derivation

Due to the shell electrons, we have an electric field

E = −1
e
∇Vc(r) = −1

e

x
r

dVc

dr
. (5.50)

For a moving charge, there is an effective magnetic field (this is a relativistic effect)
which is given by

Beff = −1
c
v ×E (5.51)

The magnetic moment of the electron is given by

µ =
e

mec
S (5.52)

Now we can express the spin-orbit interaction.

−µ ·Beff =
eS
mec

(1
c
v ×E

)
(5.53)

There is another relativistic effect which can be explained by spin precession called
Thomas precession. It amounts to −1/2·(5.53). In total, we obtain

VLS =
eS

2mec

(
1
cv ×E

)
=

eS
2mec

(
p
mec

×
(
−1
e

x
r

dVc

dr

))
=

1
2m2

ec
2

1
r

dVc

dr
L · S (5.54)

The unperturbed Hamiltonian is given by

H0 =
p2

2me
+ Vc(r) (5.55)
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3p3/2

n=3

3s

3p

~0.1 eV
3p1/2

~1−10 meV

Figure 5.2: Diagram of the fine structure of Sodium

L · S commutes with J2 and J3, but not with L3 and S3. Hence we use the eigenfunc-
tions of L2, S2, J2, J3

1.

Ψnlm = Rnl(r)Y
j=l±1/2

lm (ϑ, ϕ)

= Rnl(r)

(
±
√
l ±m+ 1/2

2l + 1
Yl,mj−1/2(ϑ, ϕ)χ+ +

√
l ∓m+ 1/2

2l + 1
Yl,mj+1/2(ϑ, ϕ)χ−

)
(5.56)

where we have used (4.127) and (4.128) in order to express the eigenfunctions of the
total angular momentum.

Use L · S = 1
2

(
J2 − L2 − S2

)
in order to obtain the eigenvalues:

=

{
j = l + 1

2

j = l − 1
2

(5.57)

Now we can calculate the first-order shifts.

∆nlj =
1

2m2
ec

2

〈
1
r

dVc

dr

〉
~2

2

{
l j = l + 1

2

−(l + 1) j = l − 1
2

(5.58)

with 〈
1
r

dVc

dr

〉
=
∫ ∞

0

Rnl(r)
1
r

dVc

dr
Rnl(r)r2 dr (5.59)

Example: Sodium atom (see Fig. 5.2).

5.2.3 van-der-Waals Interaction

We consider the long-range interaction between two hydrogen atoms in their ground
state using perturbation theory. As we will see, it is easy to derive the qualitative
aspects of the van der Waals interaction using second-order perturbation theory

The unperturbed Hamiltonian is given by the Hamiltonian of two non-interacting
hydrogen atoms:

H0 = − ~2

2m
(
∇2

1 +∇2
2

)
−
(e2
r1

+
e2

r2

)
(5.60)

1J = S⊗ 1 + 1⊗ L
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5 Approximation Methods

The perturbation term corresponds to the electrostatic interaction between the two
hydrogen atoms which are assumed to be aligned along the z-axis. According to
Fig. (5.3), this interaction is given by

V =
e2

r
+ (5.61)

The lowest-energy solution for H0 is a combination of the lowest energy solutions for
the isolated hydrogen atoms.

Ψ(0)
0 (r1, r2) = Ψ(0)

100(r1)Ψ
(0)
100(r2) (5.62)

For large r � a0 we expand the perturbation in terms of ri/r:

V =
e2

r3
(
x1x2 + y1y2 − 2z1z2

)
+O(r−4) (5.63)

The first-order shifts vanish because of symmetry reasons (xi is odd while (Ψ(0)
100(rj))2

is even). The second-order perturbation does not vanish:

∆(2)
0 =

e4

r6

∑
k 6=0

∣∣〈k(0)|x1x2 + y1y2 − 2z1z2|0(0)〉
∣∣2

E
(0)
0 − E(0)

k

(5.64)

The result is a long range interaction ∝ r−6. This the ground-state energy is always
lowered by second-order terms, it corresponds to an attraction, the so-called van der
Waals attraction.

5.3 Variational Methods

There is another powerful tool in order to approximately determine eigenenergies, the
variational method. In contrast to perturbation methods it does not require the exact
solution of an unperturbed Hamiltonian that does not significantly differ from the full
Hamiltonian. It is rather based on the fact that the expectation value of H in any state
is always greater than or equal to the ground state energy E0, i.e.

H̄ ≡ 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

≥ E0 (5.65)

Proof

r1

+ +

− −

r

r2

z−axis

Figure 5.3: Two hydrogen atoms
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5.3 Variational Methods

Let us denote the energy eigenkets of H by |n〉. We can write H in terms of its eigenen-
ergies (i. e. we diagonalize H):

H =
∑

n

|n〉En〈n| (5.66)

Thus, we get

〈Ψ|H|Ψ〉 =
∑

n

〈Ψ|n〉En〈n|Ψ〉

≥
∑

n

〈Ψ|n〉E0〈n|Ψ〉 = E0〈Ψ|Ψ〉 (5.67)

Equation (5.65) is a true inequality, if |Ψ〉 has a component along any state that is not
the ground state. �

Equation (5.65) corresponds to the so-called Rayleigh-Ritz variational principle which
states that 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 will always be an upper bound for the true ground state
energy.

In practice, one characterizes a trial ket |Ψ〉 by one or more parameters λ1, λ2, . . .
and minimizes H̄ with respect to the λi, i.e.

∂H̄

∂λ1
= 0,

∂H̄

∂λ2
= 0, . . . (5.68)

We can get closer and closer to the true ground state with more and more suitable test
functions Ψ.

Example

Particle in a Box. The potential is

V =

{
0 |x| < a

∞ |x| ≥ a
(5.69)

We can solve this analytically and get

Ψ0(x) =
1√
a

cos
πx

2a

E0 =
~2π2

8ma2
(5.70)

However, let us assume that we did not know the correct solution. Our trial function
for the ground state should be symmetric with respect to x = 0, furthermore, it should
vanish at x = ±a. As our trial function satifying these conditions we choose

Ψλ(x) = |a|λ − |x|λ (5.71)

⇒ H̄ =
〈Ψλ|H|Ψλ〉
〈Ψλ|Ψλ〉

= (5.72)
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Minimization with respect to λ yields:

∂H̄

∂λ

∣∣∣∣
λ=λmin

= 0 ⇒ λmin =
1 +
√

6
2

≈ 1.72 (5.73)

H̄min =
5 + 2

√
6

π2
E0 ≈ 1.00298 · E0 (5.74)

Thus we have obtained a surprisingly good estimate of the true ground-state energy.

5.4 Time-Dependent Perturbation Theory

So far we have mainly addressed time-independent Hamiltonians. We will now con-
sider situations with time-dependent potentials, i.e. the Hamiltonian can be expressed
as

H = H0 + V (t)
∂H0

∂t
= 0 (5.75)

where H0 does not contain time explicitly. Assume that V (t) is switched on at t = 0,
V = θ(t)V (t). Thus the Schrödinger equations for t < 0 differs from the one for t > 0:

i~
∂

∂t
|α(0)(t)〉 = H0|α(0)(t)〉 , t < 0 ,

i~
∂

∂t
|α(t)〉 =

(
H0 + V (t)

)
|α(t)〉 , t ≥ 0 , (5.76)

subject to the boundary condition |α(0)(t)〉 = |α(t)〉 for t ≤ 0.
We assume that V (t) is a small perturbation, so that the dynamics, i. e. the time-

evolution, is mainly determined by H0. We will take this dependence explicitly:

|α(t)〉 = e−
i/~H0t|α(t)〉I (5.77)

Here the subscript I indicates that the ket is in the interaction representation whose
time-dependence is solely due to the time-dependent potential V (t), as we see from
inserting (5.77) into the Schrödinger equation (5.76):

i~
∂

∂t
e−iH0t/~|α(t)〉I =

(
H0 + V (t)

)
e−iH0t/~|α(t)〉I

⇒

⇒ i~
∂

∂t
|α(t)〉I = eiH0t/~V (t)e−iH0t/~|α(t)〉I ≡ VI(t)|α(t)〉I (5.78)

We will now integrate the last equation,

|α(t)〉I = |α(0)(0)〉I +
1
i~

∫ t

0

VI(t′)|α(t′)〉I dt′ (5.79)
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Now expand |α(t)〉I in “powers” of VI by iteration. The first-order iteration is given by

|α(t)〉I ≈ |α(0)(0)〉I + |α(1)(t)〉I

= |α(0)(0)〉I +
1
i~

∫ t

0

dt′ VI(t′)|α(0)(t = 0)〉I (5.80)

For the second-order iteration, we substitute our result back in (5.79) and get

|α(2)(t)〉I =
(

1
i~

)2 ∫ t

0

dt′
∫ t′

0

dt′′VI(t′)VI(t′′)|α(0)(t = 0)〉I (5.81)

Similarly, to kth order we get

|α(k)(t)〉I =
(

1
i~

)k ∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

. . .

∫ tk−1

0

dtkVI(t1)VI(t2) · · ·VI(tk)|α(0)(t = 0)〉I

(5.82)

Now let us assume that at time t = 0 the system is in an eigenstate |i〉 of H0 with
energy Ei. i.e., |i〉 = |i(t = 0)〉 = |i(t = 0)〉I . We will expand the eigenket |i(t)〉 which
is not in the interaction picture.

|i(t)〉 =
∑

n

|n〉〈n|i(t)〉 =
∑

n

|n〉〈n|e−iH0t/~|i(t)〉I =

=
∑

n

|n〉e−iEnt/~cn(t) =
∑

n

|n〉e−iEnt/~
∑

k

c(k)
n (t) , (5.83)

where the last sum corresponds to the expansion in the perturbation series. We use
(5.80)–(5.82) to determine the coefficients c(k)

n (t) that give the probabilities to find
the system in a state n 6= i at later times. We immediately get c(0)n (t) = δni.

c(0)n (t) = δni

c(1)n (t) =
1
i~

∫ t

0

dt′〈n|VI(t′)|i〉 =
1
i~

∫ t

0

dt′〈n|eiH0t′/~V (t′)e−iH0t′/~|i〉

=
1
i~

∫ t

0

dt′eiωnit
′
Vni(t′) (5.84)

with

ωni =
(En − Ei)

~
. (5.85)

The second-order term is obtained analogously:

c(2)n (t) =
(

1
i~

)2∑
m

∫ t

0

dt′
∫ t′

0

dt′′ eiωnmt′Vnm(t′)eiωmit
′′
Vmi(t′′) (5.86)

The transition probability for the system to go from state |i〉 to |n〉 for n 6= i is given by

Pi→n(t) =
∣∣c(1)n (t) + c(2)n (t) + . . .

∣∣2 (5.87)

Example
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Figure 5.4: Transition probability for various times after a constant perturbation has
been switched on as a function of the energy difference assuming that Vni

is only weakly dependent on the energy.

Constant Perturbation.

V (t) =

{
0 ; t < 0
V ; t > 0

(5.88)

Assume the initial state at t = 0 is |i〉.

⇒ c(0)n = δni

c(1)n (t) =
1
i~
Vni

∫ t

0

eiωnit
′
dt′ =

Vni

En − Ei

(
1− eiωnit

)
(5.89)

The transition probability to first-order is

Pi→n(t) ≈ |c(1)n (t)|2 =

=
4 |Vni|2

|En − Ei|2
sin2

[
En − Ei

2~
t

]
(5.90)

For small times, this term grows proportional to t2.
Assume that there are many states, i.e. that there is a quasi-continuum of energy

eigenstates. Define

ω ≡ En − Ei

~
= ωni (5.91)

Using this notation, we get Pω(t) ∝ 4 sin2(ωt/2)/ω2 which is plotted in Fig. (5.4).
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5.4 Time-Dependent Perturbation Theory

For fixed t, the value of 4sin2(ωt/2)/ω2 at ω = 0 is t2 (follows from sin(ωt/2) ≈
(ωt/2) for small ω. Hence the height of the middle peak as a function of ω = (En −
Ei)/~) is proportional to t2. The first zero of 4sin2(ωt/2)/ω2 is at (ωt/2) = π, so
that the width of the peak is proportional to 1/t and the total area of the peak is
consequently proportional to t. This means that for large t, assuming that Vni is only
weakly dependent on the energy, |c(1)n (t)| is appreciable only for final states with ω ≤
(2π)/t:

En − Ei ≤
2π~
t
⇒ ∆t∆E ∼ 2π~ , (5.92)

where ∆t is the period of time that the perturbation has acted. This is the likely
spread in energy as a function of t. For small t, there is a certain amount of energy
nonconservation, while at longer times energy conservation is approximately fulfilled.

It is important to note that switching on a constant perturbation corresponds to an
external modification of the system so that energy conservation does not need to be
obeyed any more. And indeed, when the constant perturbation is turned on sharply,
in first order transitions to any state with Vni 6= 0 are possible, but the probability
is most significant for transitions that conserve the energy to within ∆E = 2π~/t.
The total probability for transitions fulfilling this kind of uncertainty principle grows
proportional to t.

A quasi-continuum of states is described by a density of states (DOS) ρ(E) where
ρ(E) dE is the number of states within the intervall (E,E + dE).

The transition probabilty for the states is

P (t) =
∑

n

|c(1)n (t)|2 , (5.93)

where the sum is taken over final states with En ≈ Ei. This leads to∫
dEn ρ(En)

∣∣∣c(1)n (t)
∣∣∣2 = 4

∫
sin2

[
En − Ei

2~
t

]
|Vni|2

|En − Ei|2
ρ(En) dEn (5.94)

Use lim
α→∞

1
π

sin2 αx
αx2 = δ(x) to get the asymptotic transition probability:

lim
t→∞

P (t) =

=
2π
~
t |Vni|2 ρ(En)

∣∣
En=Ei

(5.95)

Thus the transition probability for large t becomes proportional to t which means that
the transition rate Γ ≡ dP

dt is constant in time for large t. Γ is given by

Γ =
dP

dt
=

2π
~
|Vni|2 ρ(En)

∣∣
En=Ei

(5.96)

This formula which is of great practical importance is called Fermi’s Golden Rule. It is
often also written as

Γ =
2π
~
|Vni|2 δ(En − Ei) (5.97)
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where (5.97) has to be integrated with
∫
dEn ρ(En).

The second-order term is

c(2)n (t) =
(

1
i~

)2∑
m

VnmVmi

∫ t

0

dt′eiωnmt′
∫ t′

0

dt′′eiωmit
′′

=
i

~
∑
m

VnmVmi

Em − Ei

∫ t

0

(
eiωmit

′
− eiωnmt′

)
dt′ (5.98)

This is a rapidly oscillating function for ωmi 6= ωnm. Hence only terms with En ≈ Ei

contribute significantly to the transition probability.

Γ =
2π
~

∣∣∣∣Vni +
∑
m

VnmVmi

Ei − Em

∣∣∣∣2ρ(En)
∣∣
En=Ei

(5.99)

The first-order terms correspond to a real transitions that are energy conserving whereas
the second-order term involves so-called virtual transitions |i〉 → |m〉 and |m〉 → |n〉
that are not energy conserving.

We will apply this to harmonic perturbation and stimulated emission and absorption.

Example

Harmonic Perturbation. Consider a harmonic perturbation V (t) = V eiωt + V †e−iωt.
First-order perturbation theory gives us

c(1)n =
1
i~

∫ t

0

(
Vnie

iωt′ + V †
nie

−iωt′
)
eiωnit

′
dt′

= (5.100)

This is similar to the constant perturbation case with the substitution ωni → ωni ± ω.
In analogy with the golden rule, we get

Γ =
2π
~
(
|Vni|2ρ(En)

∣∣
En=Ei−~ω

+ |V †
ni|

2ρ(En)
∣∣
En=Ei+~ω

)
(5.101)

or

Γ =
2π
~
(
|Vni|2δ(En − Ei + ~ω) + |V †

ni|
2δ(En − Ei − ~ω)

)
(5.102)

The left term corresponds to stimulated emission, the right one corresponds to absorp-
tion (see Fig. 5.5).

Note that |Vni|2 = |V †
in|2 because V †

ni = V ∗
in or equivalently 〈i|V †|n〉 = 〈n|V |i〉∗.

Thus, the emission rate from some state |i〉 to some state |n〉 is given by

emission rate for |i〉 → |n〉
density of final states for En

=
absorption rate for |n〉 → |i〉
density of final states for Ei

(5.103)

This relation is known as the principle of detailed balance.
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ωh−
E i

En

(i)

ωh−

E

(ii)
E

i

n

Figure 5.5: Schematic sketch for: (i) stimulated emission, the system gives up ~ω; (ii)
absorption, the system receives ~ω.
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6 Symmetry in Quantum Mechanics

We have already dealt with symmetries, e. g. an one-dimensional or spherically sym-
metrical potential. We have already learned that symmetry properties of the wave
function can be used in order to classify the eigenstates of a Hamiltonian. If for ex-
ample the parity operator commutes with the Hamiltonian, then parity eigenstates are
also energy eigenstates.

In this chapter, we will address the relation between the symmetries of a molecule
and the classification of the corresponding eigenstates in a more systematic way. This
will require to consider some basics of group theory. However, before we will cover
a symmetry of nature that is unknown in classical physics, namely the permutation
symmetry between identical particles.

There are further important symmetry operations that we wil not consider. For
example, there is the lattice translation in a periodic crystal that leads to the existence
of so-called Bloch states which is important in solid state chemistry.

6.1 Identical Particles

Quantum mechanical identical particles behave completely differently compared to
classical physics. In quantum mechanics, identical particles are truly indistinguish-
able, because we cannot follow the trajectories of particles by position measurements
without disturbing the system. Consider the situation shown in Fig. 6.1. Suppose
the state of the two particles is written as |k′〉 |k′′〉 which means that particle 1 is
in state |k′〉 and particle 2 in state |k′′〉. However, Fig. 6.1 shows two indistiguish-
able paths, i. e. |k′〉 |k′′〉 and |k′′〉 |k′〉 describe indistinguishable situations. On the
other hand, for k′ 6= k′′, |k′〉 |k′′〉 and |k′′〉 |k′〉 are distinct kets! All kets of the form
c1 |k′〉 |k′′〉+ c2 |k′′〉 |k′〉 lead to an identical set of eigenvalues. This is called exchange
degeneracy.

We now define the permutation operator P12.

P12 |k′〉 |k′′〉 = |k′′〉 |k′〉 P12 = P21 (6.1)

P12 is obviously an involution, i. e. P 2
12 = id. Thus, the eigenvalues are ±1. An

(a) (b)

?

Figure 6.1: Two indistinguishable paths
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observable with particle label transforms like

P12A1P
−1
12 = A2 = P12A1P12 (6.2)

Consider a system of two identical particles

H =
p2

1

2m
+

p2
2

2m
+ Vpair(|x1 − x2|) + Vext(x1) + Vext(x2) (6.3)

P12HP
−1
12 = H ⇐⇒

[
H,P12

]
= 0 (6.4)

Thus, P12 is a constant of motion. The two eigenvalues and eigenkets of P12 are the
symmetric one with eigenvalue +1

|k′, k′′〉+ =
1√
2

(
|k′〉 |k′′〉+ |k′′〉 |k′〉

)
(6.5)

as well as the antisymmetric one with eigenvalue −1

|k′, k′′〉− =
1√
2

(
|k′〉 |k′′〉 − |k′′〉 |k′〉

)
(6.6)

Now we define the symmetrizer and the antisymmetrizer.

S12 ≡
1
2
(
1 + P12

)
S12 |k′, k′′〉+ = |k′, k′′〉+ S12 |k′, k′′〉− = 0 (6.7)

A12 ≡
1
2
(
1− P12

)
A12 |k′, k′′〉+ = 0 A12 |k′, k′′〉− = |k′, k′′〉− (6.8)

The proof is left as an exercise.
If we generalize this concept for many identical particles, we get

Pij

∣∣k1
〉 ∣∣k2

〉
. . .
∣∣ki
〉
. . .
∣∣kj
〉
. . . =

∣∣k1
〉 ∣∣k2

〉
. . .
∣∣kj
〉
. . .
∣∣ki
〉
. . . (6.9)

Again, P 2
ij = id. Note that in general

[
Pij , Pkl

]
6= 0.

Example

System of three identical particles. There are 3! = 6 possible kets that are a
combination of |k′〉, |k′′〉, and |k′′′〉, if they are all different kets.

There is only one totally symmetrical and one totally antisymmetrical form. These
are the states that are symmetric or antisymmetric, respectively, under the interchange
of any two arbitrary kets.

|k′ k′′ k′′′〉± ≡
1√
3!

[(
|k′〉 |k′′〉 |k′′′〉+ |k′′〉 |k′′′〉 |k′〉+ |k′′′〉 |k′〉 |k′′〉

)
±
(
|k′′〉 |k′〉 |k′′′〉+ |k′′′〉 |k′′〉 |k′〉+ |k′〉 |k′′′〉 |k′′〉

)]
(6.10)

These are both simultaneous eigenkets of P12, P23, and P13. It follows that there
are four independents states that are neither totally symmetrical nor antisymmetrical.
Furthermore, we can introduce an operator P123 by

P123(|k′〉 |k′′〉 |k′′′〉) = |k′′〉 |k′′′〉 |k′〉 (6.11)

Note that P123 = P12P13.
It is also important to realize that it is impossible to create a totally antisymmetric

state if two of the three indices are the same.
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6.1 Identical Particles

In nature, N identical particles are either totally symmetrical or totally antisymmet-
rical under interchange of any pair of kets. In the first case the particles are called
bosons and the so-called Bose-Einstein statistics applies, i. e.

Pij |N identical bosons〉 = + |N identical bosons〉 (6.12)

Fermions, on the other hand, are totally antisymmetrical, i. e. the Fermi-Dirac statistics
applies:

Pij |N identical fermions〉 = − |N identical fermions〉 (6.13)

Half-integer spin particles are fermions and integer spin particles are bosons (this
can only be proved in relativistic quantum mechanics). In particular, electrons are
fermions. A direct consequence is the

Theorem Pauli-Exclusion Principle

No two electrons can occupy the same state.

Consider two particles that can occupy only two states. If these particles are fermions,
then we get

1√
2

(
|k′〉 |k′′〉 − |k′′〉 |k′〉

)
. (6.14)

Alternatively, if we deal with bosons, we have three symmetrical states:

|k′〉 |k′〉 |k′′〉 |k′′〉 1√
2

(
|k′〉 |k′′〉+ |k′′〉 |k′〉

)
(6.15)

Classical particles satisfying the Maxwell-Boltzmann statistics can be found in four
different states.

|k′〉 |k′′〉 |k′′〉 |k′〉 |k′〉 |k′〉 |k′′〉 |k′′〉 (6.16)

In a sense, fermions “avoid” each other. Two of the three allowed states for bosons are
states where both particles occupy the same state, while for “classical” particles, there
are only two out of four.

Thus, bosons prefer to be in the same state much more than the other particles.
The driving force (there is no “real” force) is a statistical one! The probability for the
particle to be in a mutual state is much higher than the one to be in a different state.
The most dramatic realization of the symmetric nature of bosons is the Bose-Einstein
condensation.
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6.2 Two-Electron System

Here, we consider two electrons (fermions).

Ψ =
∑
ms1

∑
ms2

C(ms1 ,ms2) 〈x1,ms1 ,x2,ms2 |α〉 (6.17)

We assume that
[
S2

total,H
]

= 0, i. e. the total spin operator commutes with the
Hamiltonian. Thus, eigenfunctions of S2

total are eigenfunctions of the Hamiltonian.

Ψ = Φ(x1,x2)χ(ms1 ,ms2) (6.18)

with

χ(ms1 ,ms2) =


χ↑↑ triplet
1√
2

(
χ↑↓ + χ↓↑

)
triplet

χ↓↓ triplet
1√
2

(
χ↑↓ − χ↓↑

)
singlet

(6.19)

The first three states correspond to the symmetric triplet, the last one to the antisym-
metric singlet. Note that 〈x1,ms1 ;x2,ms2 |P12|α〉 = 〈x2,ms2 ;x1,ms1 |α〉; hence we get
for a fermion

〈x1,ms1 ;x2,ms2 |α〉 = −〈x2,ms2 ;x1,ms1 |α〉 (6.20)

Due to the fact that we were able to separate the spin and the position dependence of
the wave function, the permutation operator has to decompose into a space and a spin
permutation operator:

P12 = P space
12 P spin

12 (6.21)

In this case, the spin permutation operator is given by

P spin
12 =

1
2
(
1 +

4
~2

S1 · S2

)
|α〉 7→ P12 |α〉 ⇒ Φ(x1,x2) 7→ Φ(x2,x1) χ(ms1 ,ms2) 7→ χ(ms2 ,ms1) (6.22)

The combined wave function has to be antisymmetrical, so if the spatial part is sym-
metrical, the spin state has to be antisymmetrical and vice versa.
|Φ(x1,x2)|2 d3x1 d

3x2 is the probability for finding electron 1 around x1 and elec-
tron 2 around x2. Assume that there is no mutual interaction, i. e.

H ≡ H(p1,p2,x1,x2) =
p2

1

2me
+

p2
2

2me
+ Vext(x1) + Vext(x2) (6.23)

In such a case, the eigenfunctions are separable:

Φ(x1,x2) =
1√
2

(
ϕA(x1)ϕB(x2)± ϕA(x2)ϕB(x1)

)
(6.24)

The + sign is for the spin singlet, the − sign for the spin triplet. Thus we get for the
probability

|Φ(x1,x2)|2 d3x1 d
3x2 =

1
2

[
|ϕA(x1)|2 |ϕB(x2)|2 + |ϕA(x2)|2 |ϕB(x1)|2

± 2<
(
ϕA(x1)ϕB(x2)ϕ∗A(x2)ϕ∗B(x1)︸ ︷︷ ︸

exchange density

)]
d3x1 d

3x2 (6.25)
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This implies that in the triplet state |Φ(x1,x2 = x1)|2 = 0, whereas for a singlet state
we get an enhanced probability to find both particles at the same point in space:
|Φ(x1,x2 = x1)|2 = 2 |ϕA(x1)|2 |ϕB(x2)|21.

6.3 The Helium Atom

The simplest system where the problem of identity plays an important role is the he-
lium atom. Still the two-particle Schrödinger equation with the basic Hamiltonian

H =
p2

1

2me
+

p2
2

2me
− 2e2

r1
− 2e2

r2
+

e2

r12
(6.26)

where r1 = |x1|, r2 = |x2|, and r12 = |x1 − x2|, cannot be solved analytically. Hence
this system also serves as an example for the application of approximation methods.

The total spin is a constant of motion, because there is no external magnetic field
so that the Hamiltonian commutes with the total spin operator. Hence, the spin state
is either a singlet or a triplet. Since there is no analytical solution for this problem,
we will first apply perturbation theory with the perturbation e2

/r12. The ground state
configuration of the unperturbed system is 1s2, i. e. both electrons are in n = 1, l = 0.
The spatial part of the wave function is then symmetric so that only the spin singlet
function is allowed.

6.3.1 Ground State

The unperturbed wave function is the product of the single-electron wave functions
and the proper spinor:

Ψ100(x1)Ψ100(x2)χsinglet =
Z3

πa3
0

e−Z(r1+r2)/a0χsinglet (6.27)

The ground state energy of H0 is

E0 = −2× 4
e2

2a0
= −8 Ryd = −108.8 eV (6.28)

This is considerably less than the experimental value of Eexp
0 = −78.8 eV.

Let’s apply first-order perturbation theory:

∆(1)
1s2 =

〈
e2

r12

〉
1s2

=
∫ ∫

Z6

π2a6
0

e−2Z(r1+r2)/a0
e2

r12
d3x1 d

3x2 (6.29)

Let r< and r> be the smaller and larger radius of r1 and r1 and γ is angle between x1

and x2:

1
r12

=
1√

r21 + r22 − 2r1r2 cos γ
=

∞∑
l=0

rl
<

rl+1
>

Pl(cos γ)

=
∞∑

l=0

rl
<

rl+1
>

4π
2l + 1

l∑
m=−l

Y ∗
lm(ϑ1, ϕ1)Ylm(ϑ2, ϕ2) (6.30)

1this does not violate the Pauli exclusion principle, because the electron have opposite spin
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Figure 6.2: Schematic diagram for the energy splitting of the low-lying electronic
states of the helium atom. The upper diagram illustrates the splitting of the
(1s)(nl) states in general, while the lower panels shows the lowest states
explicitly.

After some algebra we get for the first-order shift

∆(1)
1s2 =

5
2
e2

2a0

⇒ E
(1)
0 = −

(
8− 5

2
) e2
2a0
≈ −74.8 eV ≈ 95% · Eexp

0 (6.31)

Now we apply the variational method. Assume that the nucleus is screened by the
charge cloud of the other electron. Thus our trial function is

〈
x1,x2|0̃

〉
=
Z3

eff

πa3
0

e−Zeff (r1+r2)/a0

H̄ =
〈

0̃| p
2
1

2m
+

p2
2

2m
|0̃
〉
−
〈

0̃|Ze
2

r1
+
Ze2

r2
|0̃
〉

+
〈

0̃| e
2

r12
|0̃
〉

=
(
2 · Z

2
eff

2
− 2ZZeff +

5
8
Zeff

) e2
a0

(6.32)

where Zeff is the optimization parameter. This equation is minimized when Zeff =
27/16 = 1.6875. Hence, E0 = −77.5 eV, which is already rather close to the measured
value of Eexp

0 = −78.8 eV

6.3.2 Excited States

Now we will consider the excited states 1s nl. The energy is E = E100 + Enlm + ∆E.
To first order, we get

∆E =
〈
e2

r12

〉
= I ± J (6.33)
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Here, we take to + sign for the singlet, the − sign for the triplet. I and J are the direct
integral and the exchange integral, respectively, which are given by

I =
∫∫
|Ψ100(x1)|2 |Ψnlm(x2)|2 e2

r12
d3x1 d

3x2

J =
∫∫

Ψ100(x1)Ψnlm(x2) e2

r12
Ψ∗

100(x2)Ψ∗
nlm(x1)d3x1 d

3x2 (6.34)

The resulting energy spectrum is shown schematically in Fig. 6.2. Note that the en-
ergies are spin-dependent although there is no spin term in the Hamiltonian. Qual-
ititatively, the spectrum can be understood as follows. In the singlet states which is
known as parahelium the spatial part of the wave function is symmetric so that the
two electrons tend to be closer to each other. Because of the electrostatic repulsion,
the singlet states are therefore higher in energy than the triplet states known as ortho-
helium where the space funtion is antisymmetric so that the electrons tend to avoid
each other.

6.4 Symmetry of molecules: Group theory and representations

In chapter 4 we already learned that there is an intimate relationship between symme-
tries, the rotational symmetry, and the solution of the corresponding Schrödinger equa-
tion, the spherical harmonics. Here we are concerned with molecules. If a molecule
is fixed in space, the translational and rotational invariance is broken. There are still
symmetry operation that transform the molecule into itself.

In detail, we will mainly consider the following point operations, that leave at least
one point in space unchanged:

E identity
cn Rotation through 2π/n about some axis
σ Reflection
sn Rotation through 2π/n followed by a reflection in a plane perpendicular

to this axis
i = s2 Inversion
If two symmetry operations A and B are applied successively, another symmetry op-

eration C results. One writes: AB = C. For a certain number of symmetry operations,
the results of the successive application can be listed in a multiplication table, as it
is shown in Table 6.1 for the symmetry group C2h. In fact, as it is easy to show, the
symmetry operations listed in Table 6.1 obey all the rules necessary to form a group,
namely the existence of the identity, closure, the existence of inverse elements and
associativity (see page 65). Thus these elements form a group of transformations T .

Let us now consider the effect of symmetry operations A,B,C, . . . on energy eigen-
functions of a Hamiltonian with a discrete spectrum. For the sake of simplicity, we
will only take a finite number, say M , of eigenstates into account. Furthermore, let
ψ1, ψ2, . . . , ψM be a basis which does not necessarily consist of eigenstates. We first
apply the symmetry operation A that commutes with the Hamiltonian. This could for
example correspond to a rotation. Since A commutes with H, applying A on an eigen-
state φ1 does not change the energy eigenvalue of the resulting wave function, as can
be easily seen from

HAφ1 = AHφ1 = ε1Aφ1 . (6.35)
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which means that Aφ1 and φ1 have the same eigenvalue. For the general ket ψ1

this means that Aψ1 can also be expressed as a sum over the energy eigenstates or,
equivalently, in any other suitable basis such as the ψi, i = 1, . . . ,M ,

Aψ1 =
M∑

j=1

a1jψj . (6.36)

The same can in fact be done for any of the wavefunctions ψi:

Aψi =
M∑

j=1

aijψj , (6.37)

which means that the effect of the symmetry operation A on the wave functions de-
fines a matrix A → (aij). The same can be done for the other symmetry operations
B,C, . . . that form the group of transformations T . It is a simple exercise to show
that all the properties of the group formed by A,B,C, . . . is transferred to the matrices
(aij), (bij), (cij), . . .. This means that the matrices form a representation of the original
group A → D(A) = (aij) which we call D from the German word for representation,
Darstellung (for the definition of a representation, see page 65; formally one can say
that the matrices of a representation correspond to a group that is homomorphic to
the original group). The wave functions ψi, i = 1, . . . ,M , are said to form a basis for
the representation D.

If there are degenerate wave functions, any linear combination of these wave func-
tions could be used as a basis for the degenerate subspace. This would of course also
influence the representation. However, these representations are closely linked and
could be transformed into each other. In fact, two representations D and D′ are said
to be equivalent if a matrix P exists so that

D′(T ) = P−1D(T )P , (6.38)

where T stands for any symmetry operation of the original group, which means that
eq. (6.38) should be obeyed for all elements of the group simultaneously.

6.4.1 Irreducible presentations

An important aspect of a representation is its so-called reducibility . It is of course
desirable to obtain a representation that is rather simple. Preferably this would be a

Table 6.1: Multiplication table of the symmetry operations E, c2, σ and i forming the
symmetry group C2h.

Operation E c2 σ i

E E c2 σ i
c2 c2 E i σ
σ σ i E c2
i i σ c2 E
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diagonal form of the matrices with non-zero elements of the matrices only along the
diagonal. For a single (n × n) matrix A this is possible by applying transformations
of the type (6.38). However, we have to consider that we have to diagonalize several
different matrices with the same transformation matrix, and then it is in general not
possible to bring all matrices in a diagonal form. Still, it is often possible to bring every
matrix D(T ) of the representation into a block-diagonal form with smaller matrices
D(i)(T ) along the diagonal and zeros elsewhere, i.e. into a form that looks like

 D(1)

 0 0 . . . 0

0

(
D(2)

)
0 . . . 0

0 0
(
D(3)

)
. . . 0

...
...

...
. . . 0

0 0 0 0
(
D(n)

)


(6.39)

If such transformation is possible, the representation D is said to be reducible and to
contain the representations D(i). This is written as

D = D(1) +D(2) +D(3) + . . .+D(n) . (6.40)

How many different irreducible representations of a group exist? One can show that
this exactly corresponds to the number of classes of a group which will be discussed
below.

The important point here is that the decomposition of the representation into irre-
ducible representation corresponds to finding a basis of the wave functions φk so that
only a subset of the φk will be transformed into itself upon applying the symmetry op-
erations. The states of this subset will then be energetically degenerate which means
that the dimensions of the irreducible presentations directly give the degree of de-
generacies of the corresponding states belonging to the particular subset. Likewise, if
there are only one-dimensional representations, then there are no energetically degen-
erate states. The way the φk transform is furthermore independent of the particular
quantum problem, it only depends on the symmetry of the system.

There is a special nomenclature to characterize irreducible representation. One-
dimensional representations are denoted by the letters A andB depending on whether
the representation is symmetric or antisymmetry with respect to a rotation about the
main symmetry axis. Subscripts g and u indicate whether the one-dimensional rep-
resentations are even (gerade) or odd (ungerade) with respect to the inversion. The
letters E and F stand for two- and three-dimensional representations, respectively.
Further subscripts 1 and 2 and one or two apostrophs can be added to indicate further
symmetries that will not be discussed here.

6.4.2 Group characters

Before we proceed any further, some basics about group theory shall be addressed. The
number of elements in a group is called the order of the group and is often denoted by
the letter h. For the example of Table 6.1, h = 4. One element B of a group G is said
to be conjugate to the element A if there is an element C in the group so that

B = C−1AC , (6.41)
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For symmetry operations, (6.41) represents nothing else but a transformation. Eq. (6.41)
also defines an equivalence relation that can be used to separate the group into classes.
A conjugate class consists of all elemtents of a group that are conjugate to each other.
Note that the identity E always forms a class of itself because of C−1EC = E for
any C. The group of Table 6.1 is an abelian or commutative group in which all el-
ements commute, i.e. AB = BA. In such a group, each element forms a class of
itself.

A central tool in the representation theory is the character χ. It is defined as the
trace of the representation D(A) of the transformation A:

χ(A) =
∑

i

Dii(A) . (6.42)

Since the trace remains unchanged by transformations of the type (6.41), the charac-
ters of all elements in one class are the same. Furthermore, the characters of equivalent
representations are the same, as is directly apparent from (6.38).

The character table of the group C2h is shown in Table 6.2. All representations are
one-dimensional which means that there would be no symmetry-related degeneracies.
In fact, the dimensionality of a representation is given by χ(E) since E is in any repre-
sentation given by the identity matrix. We have used the conventional nomenclature
of representations just mentioned in Table 6.2.

An important question is of course, how a reducible representation can be decom-
posed into its irreducible representations D(1) +D(2) +D(3) + . . .+D(n). To this end,
the characters are very useful. We will sketch here some important relations without
giving all the proofs. Please note that usually it is not necessary to perform this decom-
position by oneself. For simple groups, the irreducible representations are tabulated
in many text books or at least deducible from the tabulated ones, and complicated
groups required advanced methods.

First of all, the character of a symmetry operation in a reducible representation is
given by the sum of the characters in the irreducible components,

χ(T ) =
∑

i

niχi(T ) , (6.43)

where ni is the number of times the irreducible componentD(i) occurs in the reduction
of D. If a symmetry group, its irreducible representations and a particular basis of a
representation are given, then often the ni can be deduced by inspection or by a trial
and error approach.

Equation (6.43) looks similar to the decompostion of a wave function ψ into a linear
combination of eigenfunctions ψi. In fact, for the characters also an orthogonality

Table 6.2: Character table of the group C2h.

Representation E c2 σ i

Ag 1 1 1 1
Bg 1 -1 -1 1
Au 1 1 -1 -1
Bu 1 -1 1 -1
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N N

H

H

Figure 6.3: Schematic presentation of the N2H2 molecule.

relation can be derived which is here given without proof:

1
h

∑
T

χj(T )χi(T ) = δij , (6.44)

where the sum is to be performed over all symmetry operations T . Equation (6.44)
can be used together with eq. (6.43) to determine how often a irreducible representa-
tion D(i) is contained in D. Just multiply (6.43) with χj and sum over all elements of
the group:

ni =
1
h

∑
T

χi(T )χ(T ) = =
1
h

∑
Q

NQχi(T )χ(T ) , (6.45)

where for the second sum we have used the fact that the characters for all elements of
a class are the same, so that we only have to sum over all classes Q with NQ being the
number of elements of a class.

In order to obtain the basis of an irreducible representation from a reducible repre-
sentation, there is in fact also an useful tool, namely a projection operator which can
be explicitly constructed using

Pi =
1
h

∑
T

χi(T−1)D(T ) (6.46)

We will illustrate some of these concepts in the next section using the N2H2 molecule.

6.4.3 An example: the N2H2 molecule

So far we have not considered any molecules. The theory of chemical bonding will
only be addressed in the next chapter. Still we will already introduce some of the
concepts relevant for the quantum description of molecules in order to illustrate the
application of representation theory for the description of molecular properties. In the
next chapter we will then present a more eloborate example.

Here we will use the N2H2 molecule that is shown in Fig. 6.3 as an example. The
symmetry group of the N2H2 molecule corresponds in fact to the group C2h whose
multiplication table in shown in Tab. 6.1. The symmetry operations besides the iden-
tity operation are the rotation by 180◦ about the molecular center of mass with the
axis being perpendicular to the plane of Fig. 6.3, the reflection at the plane of Fig. 6.3,
and the inversion at the molecular center of mass.

We will consider a two-dimensional basis that corresponds to both of the NH groups
of the molecule. A basis does not necessarily be constructed from functions but could
in fact also be based on abstract objects. Applying the identity and the reflection will
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keep the NH groups unchanged whereas they will be interchange upon the rotation
and the inversion. This means that the symmetry operations are represented by the
following matrices and characters in this representation, that we may call Γ:

E =
(

1 0
0 1

)
c2 =

(
0 1
1 0

)
σ =

(
1 0
0 1

)
i =

(
0 1
1 0

)
(6.47)

χ(E) = 2 χ(c2) = 0 χ(σ) = 2 χ(i) = 0 (6.48)

In order to find the number of irreducible reprensentations, in such a simple case as
in (6.48) often simple combinatorial considerations based on eq. (6.43) are sufficient.
One just has to combine two representations listed in Tab. 6.2 in such a way that the
sum of the characters of each class are the same in in (6.48). Thus it is easy to see that
the Γ can be decomposed into

Γ = Ag + Bu (6.49)

We can also check eq. (6.44) yields the same result. We obtain

nAg =
1
4

(
χAg

(E)︸ ︷︷ ︸
=1

χΓ(E)︸ ︷︷ ︸
=2

+ χAg
(c2)︸ ︷︷ ︸

=1

χΓ(c2)︸ ︷︷ ︸
=0

+ χAg
(σ)︸ ︷︷ ︸

=1

χΓ(σ)︸ ︷︷ ︸
=2

+ χAg
(i)︸ ︷︷ ︸

=1

χΓ(i)︸ ︷︷ ︸
=0

)
= 1 ,

(6.50)

nAu =
1
4

(
χAu

(E)︸ ︷︷ ︸
=1

χΓ(E)︸ ︷︷ ︸
=2

+ χAu
(c2)︸ ︷︷ ︸

=1

χΓ(c2)︸ ︷︷ ︸
=0

+ χAu
(σ)︸ ︷︷ ︸

=−1

χΓ(σ)︸ ︷︷ ︸
=2

+ χAu
(i)︸ ︷︷ ︸

=−1

χΓ(i)︸ ︷︷ ︸
=0

)
= 0 ,

(6.51)

Similarly, one obtains nBg = 0 and nBu = 1, i.e. we confirm (6.49). In the next chap-
ter, we will use this concept in order to construct molecular electronic wave functions
that correspond to irreducible representations.
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7 Theory of chemical bonding

In this chapter, we will provide an introduction into the basic theoretical concepts that
are necessary in order to understand the nature of chemical bonding. First the rele-
vant Hamiltonian will be introduced, and the methods in order to determine the corre-
sponding Schrödinger equation will be discussed. In fact, only the simplest molecule,
the H+

2 ion, can still be solved analytically, for all other molecules approximations are
required for the solution of the Schrödinger equation which will be presented in this
chapter.

7.1 Hamiltonian

In chemistry, the only basic interaction one is concerned with is the electrostatic inter-
action between the nuclei and electrons. Hence the only terms that enter the Hamil-
tonian are the kinetic energy of the nuclei and the electrons and the nucleus–nucleus,
nucleus-electron and electron-electron electrostatic interaction energy:

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (7.1)

Neglecting relativistic effects, the single terms are as follows.
Kinetic energy of the nuclei:

Tnucl =
L∑

I=1

~P 2
I

2MI
, (7.2)

Kinetic energy of the electrons:

Tel =
N∑
i=1

~p2
i

2m
, (7.3)

Nucleus-nucleus electrostatic energy:

Vnucl−nucl =
1
2

∑
I6=J

ZI ZJ e
2

|~RI − ~RJ|
, (7.4)

Nucleus-electron electrostatic energy:

Vnucl−el = −
∑
i,I

ZI e
2

|~ri − ~RI|
, (7.5)

Eelctron-electron electrostatic energy:

Vel−el =
1
2

∑
i 6=j

e2

|~ri − ~rj|
. (7.6)
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Magnetism can be taken into account either by a full relativistic treatment or by adding
magnetic effects explicitly in the Hamiltonian. This Hamiltonian then enters the non-
relativistic Schrödinger equation

H Φ(~R,~r) = E Φ(~R,~r) (7.7)

where ~R and ~r denote the all nuclear and electronic coordinates, respectively. In prin-
ciple, we are ready here because by solving the Schrödinger equation and determining
the eigenfunctions of the many-body Hamiltonian with taking the proper quantum
statistics of the considered particles into account we get the full information about
the system. Unfortunately, the solution of the many-body Schrödinger equation in
closed form is not possible. In order to make the solution tractable, a hierarchy of
approximations is needed.

7.2 Born–Oppenheimer Approximation

The central idea underlying the Born–Oppenheimer or adiabatic approximation is the
separation in the time scale of processes involving electrons and atoms. Typical mass
ratios between the nuclei and the electron are

MH/me ≈ 1840
MSi/me ≈ 51520 (7.8)

MCu/me ≈ 115920

Thus, except for hydrogen and helium, atoms have a mass that is 104 to 105 times
larger than the mass of an electron. Consequently, at the same kinetic energy elec-
trons are 102 to 103 times faster than the nuclei. Hence one assumes that the elec-
trons follow the motion of the nuclei instantaneously. The electron distribution then
determines the potential in which the nuclei moves.

In practice, one splits up the full Hamiltonian and defines the electronic Hamiltonian
Hel for fixed nuclear coordinates ~R as follows

Hel({~R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el. (7.9)

In (7.9) the nuclear coordinates {~R} do not act as variables but as parameters defining
the electronic Hamiltonian. The Schrödinger equation for the electrons for a given
fixed configuration of the nuclei is then

Hel({~R})Ψ(~r; {~R}) = Eel({~R})Ψ(~r; {~R}). (7.10)

Again, in (7.10) the nuclear coordinates {~R} are not meant to be variables but param-
eters. In the Born–Oppenheimer or adiabatic approximation the eigenenergy Eel({~R})
of the electronic Schrödinger equation is taken to be the potential for the nuclear mo-
tion. Eel({~R}) is therefore called the Born–Oppenheimer energy surface. By finding
minima and extrema of the Born-Oppenheimer surface, the geometry and binding
energy of molecules can be determined, but also activation barriers for chemical reac-
tions.

In order to describe the dynamics of the nuclear motion within the Born-Oppenheimer
approximation, the atomic Schrödinger equation

{Tnucl + Eel(~R)} Λ(~R) = EnuclΛ(~R). (7.11)
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Figure 7.1: The coordinates of the ionized H2 molecule

has to be solved. Here Eel(~R) can now be regarded as a function of the nuclear
coordinates ~R. Often the quantum effects in the atomic motion are neglected and the
classical equation of motion are solved for the atomic motion:

MI
∂2

∂t2
~RI = − ∂

∂ ~RI

Eel(~R). (7.12)

The force acting on the atoms can be conveniently evaluated using the Hellmann–
Feynman theorem

~FI = − ∂

∂ ~RI

Eel(~R) = 〈Ψ(~r, {~R})| ∂
∂ ~RI

Hel(~R)|Ψ(~r, {~R})〉. (7.13)

In principle, in the Born–Oppenheimer approximation electronic transition due to
the motion of the nuclei are neglected. Here we do not derive the Born-Oppenheimer
approximation in detail (see, e.g., J. Callaway, Quantum Theory of the Solid State ).
The important parameter for the validity of the adiabatic approximation is the mass
ratio me/M . In fact, the Born–Oppenheimer approximation is very successful in the
theoretical description of many properties of solids. Still its true validity is hard to
prove because it is very difficult to correctly describe processes that involve electronic
transition.

If it takes a finite amount of energy to excite electronic states, i.e., if the adiabatic
electronic states are well-separated, then it can be shown that electronically nonadi-
abatic transitions are rather improbable. This applies to insulator and semiconductor
surfaces with a large band gap. In metals, no fundamental band gap exists so that
electronic transitions with arbitrarily small excitations energies can occur. Still, the
strong coupling of the electronic states in the broad conduction band leads to short
lifetimes of excited states and thus to a fast quenching of these states.

7.3 The H+
2 molecule

In sect. 6.3, we have already seen that a system consisting of two electrons, the he-
lium atom, cannot be solved analytically, but only approximately, for example by a
variational method. Here we are concerned with the binding between two atoms me-
diated through electrons. As a first, relatively easy example we consider the ionized
H+

2 molecule with an electron moving in the attractive potential of two protons which
within the Born-Oppenheimer approximation are assumed to be fixed in space. The
configuration is illustrated in Fig. 7.1. The Hamiltonian is then given by:
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H =
p2

2me
− e2

|x−X1|
− e2

|x−X2|
+

e2

|X1 −X2|
(7.14)

This problem is in fact exactly solvable but requires some coordinate transformation.
Here we will use a approximate variational method as in sect. ?? in order to estimate
the equilibrium distance of the protons in the H+

2 molecule. The problem is invariant
with respect to a translation of the molecular center of mass and a rotation of the
molecular axis. Thus the energy only depends on the distance of the two protons.
Since the system has an inversion symmetry with respect to the molecular center of
mass which corresponds to the midpoint between the protons, the solutions have to
be either symmetric or antisymmetric with respect to this inversion, as group theory
tells us (see Sect. 6.4).

As the initial guess we take the symmetric and antisymmetric superposition of hy-
drogen 1s functions:

ψ± = C± [ψ1(x)± ψ2(x)] , (7.15)

where the two 1s functions located at the nuclei X1 and X2 are (see sec. 4.5)

〈x|1s1,2〉 = ψ1,2(x) =
1√
πa3

0

exp (−|x−X1,2|/a0) (7.16)

The normalization constants C± follow from the overlap of the two wavefunctions ψ1

and ψ2:

1 =
∫
d3x|ψ±(x)|2 = C2

± 2(1± S(R)) , (7.17)

where the overlap integral S(R) as a function of the distance R = |X1 −X2| is given
by

S(R) =
∫
d3x ψ∗1(x)ψ2(x) =

(
1 +

R

a0
+
R2

3a2
0

)
exp(−R/a0) . (7.18)

The proof of this relation is left as an exercise.

The symmetric and the antisymmetric combination of the atomic orbitals are illus-
trated in Fig. 7.2. The symmetric combination ψ+ is larger in the region between the
two nuclei than the antisymmetric one ψ−. Since there is an attraction between the
positively charged nuclei and the electrons, we expect that ψ+ will be energetically
more favorable than ψ−.

In order to check this expectation, we have to evaluate the expectation value of the
Hamiltonian with respect to these states 7.15 which can be expressed as

〈H〉± = (2± 2S)−1(〈1s1|H|1s1〉+ 〈1s2|H|1s2〉 ± 2 〈1s1|H|1s2〉)
= (1± S)−1(〈1s1|H|1s1〉 ± 〈1s1|H|1s2〉). (7.19)
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Figure 7.2: Illustration of the difference between the symmetric and the anti-
symmetric combination of atomic orbitals.

The Hamiltonian matrix elements can be evaluated as follows:

〈1s1|H|1s1〉 =
∫
d3x ψ∗1(x)Hψ1(x)

= E0 −
∫
d3x ψ2

1(x)
e2

|x−X2|
+
e2

R

= E0 −
e2

R

(
1− e−2R/a0

(
R

a0
+ 1
))

+
e2

R

= E0 +
e2

R

(
R

a0
+ 1
)
e−2R/a0 (7.20)

where E0 is the ground state energy of −1 Rydberg = −13.6 eV of the hydrogen atom.
Furthermore,

(〈1s1|H|1s2〉 =
∫
d3x ψ∗1(x)Hψ2(x)

=
(
E0 +

e2

R

)
S(R)−

∫
d3x ψ1(x)ψ2(x)

e2

|x−X1|

=
(
E0 +

e2

R

)
S(R)− e2

a0

(
R

a0
+ 1
)
e−R/a0 (7.21)

where the last integral in the second line

A(R) =
∫
d3x ψ1(x)ψ2(x)

e2

|x−X2|
=

e2

a0

(
R

a0
+ 1
)
e−R/a0 (7.22)

is called the exchange integral. In total, the energy of the hydrogen ion as a function
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Figure 7.3: The energy of the H+
2 molecule as a function of the interatomic H-H dis-

tance R in the symmetric bonding state ε+ and the anti-symmetric anti-
bonding state ε−.

of the interatomic distance R is given by

ε±(R) ≡ 〈H〉± = (1± S)−1

[
E0 +

e2

R

(
R

a0
+ 1
)
e−2R/a0

±
((

E0 +
e2

R

)
S(R)− e2

a0

(
R

a0
+ 1
)
e−R/a0

)]
(7.23)

With E0 = − e2

2a0
, this can be rewritten as

ε±(R) ≡ 〈H〉± =(1± S)−1E0

[
1− 2

(
1 +

a0

R

)
e−2R/a0

±
((

1− 2
a0

R

)
S(R) + 2

(
R

a0
+ 1
)
e−R/a0

)]
(7.24)

The potential curve for the symmetrical superposition ε+ that is plotted in Fig. 7.3
has a minimum as a function of R while ε− is purely repulsive. This is due to the fact
that the symmetric wave function is bonding while the antisymmetric wave function
is antibonding because ψ+ is larger than ψ− in the region between the nuclei where
ψ− changes sign which is illustrated in Fig. 7.2

The variational results for the binding energy −1.76 eV and the nuclear distance
1.32 Å are in fact rather inaccurate. The exact results are −2.79 eV and 1.06 Å, respec-
tively. This shows that the variational approach used here is not really appropriate.
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7.4 The H2 molecule

Now we address the simplest neutral system in chemistry where a bonding between
two atoms occurs: the hydrogen molecule H2. The Hamiltonian is

H =
p2

1

2me
+

p2
2

2me
− e2

|x1 −X1|
− e2

|x1 −X2|

− e2

|x2 −X1|
− e2

|x2 −X2|
+

e2

|x1 − x2|
+

e2

|X1 −X2|
(7.25)

Although the Hamiltonian is still relatively easy, such a system can not been solved
exactly, as has already be mentioned in the context of the helium atom (see sect. 6.3).
This is due to the electron-electron interaction which is the second-last term on the
right-hand side of eq. 7.25. Qualitatively, we can already say that this term leads to an
extra repulsion. This additional repulsion will lower the binding energy, so that one
will get in comparison to the H+

2 ion

|EH2 | < 2|EH+
2
| . (7.26)

We will use the H2 molecule in order to address the basics in the quantum mechanical
description of chemical bonding. There are basically two methods two treat the chem-
ical bonding of the H2 molecule, the methods of molecular orbitals and the Heitler-
London method. We will present both of them.

However, first we note that the total electronic wave function of the H2 molecule
describes two electrons which means that we have to take into account the quantum
statistics of the electrons. The Hamiltonian (7.25) does not depend on the spin state
of the electrons. Therefore, the two-electron wave function solving this Hamiltonian
can be separated in a spatial and a spin part, as already shown in chapter 6.

Ψ = ψ(x1,x2) |ms1ms2〉 (7.27)

The spin part consists of a linear combination of the four spin states

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (7.28)

The {s,m} or triplet-singlet representation based on the eigenkets of the total spin
operator ~S2 = (~S1 + ~S2)2 and its component Sz along the z-axis:

|s = 1,m = 1〉 = |↑↑〉 ,

|s = 1,m = 0〉 =
(

1√
2

)
(|↑↓〉+ |↓↑〉) ,

|s = 1,m = −1〉 = |↓↓〉 ,

|s = 0,m = 0〉 =
(

1√
2

)
(|↑↓〉 − |↓↑〉) , (7.29)

The |s = 1,m = ±1, 0〉 states are referred to as the spin triplet, while |s = 0,m = 0〉 is
called the spin singlet state.

The Pauli exclusion principle requires that the total wave function Ψ is antisymmet-
ric with respect to the interchange of both particles. The spin singlet state is antisym-
metric; hence it has to be coupled with a symmetric spatial wave function. The triplet
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state, on the other hand, is symmetric with respect to the interchange of the two par-
ticles; therefore the spatial part has to be antisymmetric. Hence the eigenstates can
be characterized according to their spin state, and triplet and singlet states will in
general have different eigenenergies since their corresponding spatial parts have not
the same symmetry. It is important to recall that this splitting is a consequence of a
spin-independent Schrödinger equation.

7.4.1 Molecular orbitals

We first construct the singlet state in the method of molecular orbitals which corre-
sponds to the product of the symmetric wavefunction ψ+ (7.15) of the H+

2 molecule,

Ψs(1, 2) = [ψ1(x1) + ψ2(x1)] [ψ1(x2) + ψ2(x2)] χsinglet
1

2(1 + S(R))
(7.30)

= ψ+(x1)ψ+(x2) χsinglet, (7.31)

where χsinglet describes the spin singlet part of the wave function. The expression
in the square bracket will be denoted as a molecular orbital that is constructed as a
linear combination of atomic orbitals. Therefore this approach is also called the LCAO
method.

A triplet state can be constructed by using the antisymmetric combination of the H+
2

states

Ψt(1, 2) = [ψ+(x1)ψ−(x2) − ψ−(x1)ψ+(x2)] χtrip
1√
2
. (7.32)

This state includes anti-bonding functions and does therefore not correspond to the
ground state.

The approach (7.32) is in fact not too well-suited for describing the hydrogen
molecule. For short distances R of the two protons the electronic wave function should
rather be like the helium wave function (6.27) instead of being a product of 1s hydro-
gen wave functions. Furthermore, if we consider the singlet wavefunction (7.32) with
all terms explicitly multiplied,

Ψs(1, 2) =
[
(ψ1(x1)ψ1(x2) + ψ2(x1)ψ2(x2))

+ (ψ1(x1)ψ2(x2)) + ψ1(x2)ψ2(x1))
]
χsinglet

1
2(1 + S(R))

, (7.33)

we realize that in the two terms of the first bracket both electrons are concentrated
at the same atom describing a situation that corresponds to a proton plus a hydrogen
anion H−. For large distances of the two nuclei this term should be absent, however,
since two hydrogen atoms H + H are energetically more favorable that p+H−. Still the
wave function (7.32) gives a good upper bound for the total energy of the hydrogen
molecule because at the molecular distance of the two atoms the approach is better
than for very short and very large distances.
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7.4.2 Heitler-London method

In the Heitler-London method, the singlet and triplet wave fucntions are written as
symmetric and anti-symmetric combinations of atomic states,

Ψs(1, 2) =
1√

2(1 + S2)
[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)] χsinglet (7.34)

Ψt(1, 2) =
1√

2(1− S2)
[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] χtriplet . (7.35)

For large distances, this ansatz describes separated hydrogen atoms, but for very small
distances the same problems as for the molecular orbital method (7.32) occurs. The
quantitative difference in the total energies for the equilibrium molecular distance
between the orbitals (7.32) and (7.34) is in fact small.

The expectation values

εs,t ≡ 〈H〉s,t (7.36)

of the Hamiltonian (7.25) in the singlet and triplet state can be separated into different
parts. First of all there are the one particle terms corresponding to isolated hydrogen
atoms

2∑
i=1

∫
d3xi ψ

∗
i (xi)

(
− ~2

2m
∇2

i +
e2

|xi −Xi|

)
ψi(xi) =

2∑
i=1

∫
d3xi ψ

∗
i (xi)E0ψi(xi)

= 2E0 (7.37)

Furthermore, there is the so-called Coulomb term which corresponds to the classical
Coulomb energy of the charge distribution

Q =
∫
d3x1

∫
d3x2 |ψ1(x1)|2|ψ2(x2)|2

×
[

e2

|x1 − x2|
− e2

|x1 −X2|
− e2

|x2 −X1|
+

e2

|X1 −X2|

]
=− 2

∫
d3x1 |ψ1(x1)|2

e2

|x1 −X2|
+
e2

R

−
∫
d3x1

∫
d3x2 |ψ1(x1)|2

e2

|x1 − x2|
|ψ2(x2)|2 . (7.38)

Here the terms are two times the Coulomb interaction of the electron centered at
the first atom with the second nucleus which equals the interaction of the electron
centered at the second atom with the first nucleus, and then the Coulomb repulsion
between the two nuclei and the two electrons.

Finally, because the electrons are indistinguishable, there is so-called exchange term

A =
∫
d3x1

∫
d3x2 ψ

∗
1(x1)ψ∗2(x2)ψ1(x2)ψ2(x1)

×
[

e2

|x1 − x2|
− e2

|x1 −X2|
− e2

|x2 −X1|
+

e2

|X1 −X2|

]
=− 2S

∫
d3x1 ψ

∗
1(x1)ψ2(x1)

e2

|x1 −X2|
+ S2 e

2

R

+
∫
d3x1

∫
d3x2 ψ

∗
1(x1)ψ2(x1)

e2

|x1 − x2|
ψ∗2(x2)ψ1(x2) . (7.39)
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This term is a consequence of the quantum nature of the electrons and their Coulomb
interaction. In total, the energies of the singlet and triplet state are given by

εs = 2E0 +
Q+A

1 + S2
(7.40)

εt = 2E0 +
Q−A
1− S2

(7.41)

Both the Coulomb energy Q as well as the exchange energy A are functions of the
distance of the nuclei. The Coulomb energy is positive, but due to the compensation of
the different terms relatively small. The exchange energy is except for small distances
negative and overcompensates the Coulomb energies, and therefore the singlet state
is bonding. This shows that it is in fact the exchange energy that is mainly responsible
for the bonding in the H2 molecule.

Using the Heitler-London method, a molecular distance of R = 0.80 Å results which
should be compared to the experimental value ofR = 0.74 Å. Furthermore, the Heitler-
London method also leads to an underestimation of the H2 binding energy which is
given by the difference of the energy at the equilibrium distance and the energy for
infinite separation ( = 2E0 here). The Heitler-London value for the H2 binding energy
is 3.14 eV which is much smaller than the experimentally derived value of 4.75 eV.

7.4.3 Covalent-ionic resonance

According to the ansatz (7.34) for the wave function in the Heitler-London method,
the two electrons are always located at opposite nuclear positions. This correspond to
a covalent type of bonding, i.e, we can rename the spatial part of the wave function as

Ψcov(1, 2) = ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2) . (7.42)

However, it might well be that there is a certain probability that both electrons are
located at the same atom. This would correspond to the situation of a negatively
charged hydrogen atom plus a proton. Therefore this situation is called ionic which is
described by

Ψion(1, 2) = ψ1(x1)ψ1(x2) + ψ2(x1)ψ2(x2) , (7.43)

where we have taken into account that both hydrogen nuclei have to be treated equiv-
alently. The true situation in the hydrogen molecule is neither fully covalent nor fully
ionic. Hence a more appropriate description of the H2 electronic wave function will
be a superposition of the covalent and the ionic function,

Ψ(1, 2) = N(Ψcov(1, 2) + cΨion(1, 2)) , (7.44)

where N is the normalisation constant and c is a parameter that should be determined
in such a way that the expection value of the energy becomes minimal. In fact, all
the three approaches for the construction of the H2 wave function can be regarded
as special cases of a more general ansatz in which we add to any of the atomic wave
function a contribution of the wave function that is localized at the other atom, i.e.,
we make the substitution

ψ1 → ψ1 + b ψ2 , ψ2 → ψ2 + b ψ1 . (7.45)
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Figure 7.4: Illustration of the substitution of the atomic wave function by a wave
function with an additional contribution from the second atom.

This substitution is illustrated in Fig. 7.4. Thus our new ansatz for the singlet wave
function can be written as

Ψs(1, 2) = N [(ψ1(x1) + b ψ2(x1)) (ψ2(x2) + b ψ1(x2))
+ (ψ1(x2) + b ψ2(x2)) (ψ2(x1) + b ψ1(x1))] χsinglet

= N [(1 + b2)(ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1))
+ 2b(ψ1(x1)ψ1(x2) + ψ2(x1)ψ2(x2))] χsinglet . (7.46)

Comparing eq. (7.46) with the previous expressions for the wave function, we see
that molecular orbital expression (7.32) results from eq. (7.46) by setting b = 1, the
Heitler-London method (7.34) is recovered for b = 0, and the mixed covalent-ionic
description of eq. (7.44) can be obtained for

2b
1 + b2

= c . (7.47)

7.5 Hybridization

So far we have assumed that in the bonding only s functions are involved. All bonding
orbitals were constructed from a superposition of such s functions. However, there
are situations where by mixing s and p functions the overlap between adjacent atomic
orbitals can be increased and where the resulting energy gain due to the greater over-
lap in the bonding region between the two nuclei overcompensates the energetic price
that is to pay in order to partially occupy the energetically higher lying p orbital. Such
a scenario is illustrated in Fig. 7.5.

The Li2 molecule is an example where such orbitals do occur. The outermost electron
is a 2s electrons, but it takes relatively little energy to excite this electron to a 2p state.
As trial wave function for the bonding, we assume an orbital of the form

|ψ〉 = |2s〉 + λ |2p〉 . (7.48)

Using a variational approach, one finds that λ ≈ 0.3 leads to a minimum in the Li2
binding energy which means that the probability of the electron being in the 2p state
is 0.32 ≈ 10%. This process of forming orbitals from a combination of states with
different angular momenta is called hybridization.
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a) b)

Figure 7.5: A hybridized state formed from a superposition of a s and a p state shown
in (a) can lead to a greater overlap in a molecular bond (b).

A particular important atom forming the basis of organic chemistry is the carbon
atom that has the electronic ground state (1s)2(2s)2(2p)2. In this state, carbon is
divalent. However, the configuration (1s)2(2s)(2p)3 is very close in energy to the
ground state. In this state, carbon has a valency of four, and it is is this state that
carbon forms most of its compounds. For example, in methane, CH4, the 2s and 2p
states of carbon a completely hybridized, forming a so-called sp3 hybridization.

|1〉 =
1
2
(|2s〉+ |2px〉+ |2py〉+ |2pz〉)

|2〉 =
1
2
(|2s〉+ |2px〉 − |2py〉 − |2pz〉)

|3〉 =
1
2
(|2s〉 − |2px〉+ |2py〉 − |2pz〉)

|4〉 =
1
2
(|2s〉 − |2px〉 − |2py〉+ |2pz〉) (7.49)

Each of these orbitals binds one hydrogen atom. The methane moclecule has a tetrag-
onal structure with a bond angle of exactly 109.6◦ following from symmetry. The
ethylene molecule, C2H4, on the other hand, has a planar structure. The orbitals of
the carbon atom are hybridized as folllows:

|1〉 = |2pz〉

|2〉 =

√
1
3
|2s〉+

√
2
3
|2px〉

|3〉 =

√
1
3
|2s〉 −

√
1
6
|2px〉+

√
1
2
|2py〉

|4〉 =

√
1
3
|2s〉 −

√
1
6
|2px〉 −

√
1
2
|2py〉 (7.50)

The first state is oriented along the ±z direction while the other three orbitals form
angles of 120◦ in the xy plane. The electrons in the orbitals |3〉 and |4〉 bind to hydro-
gens, while those in |1〉 and |2〉 form bonds with the other carbon atom (see Fig. 7.6)
whose orbitals |n′〉 are mirror images of those of the first carbon atom. The orbitals |2〉
and |2′〉 of the two carbon atoms correspond to a singlet state such as (7.34) having
a large overlap. Since this singlet state is now occupied, the second carbon electron
could populate a triplett state with the other carbon atom. However, this antibonding
state is energetically rather unfavorable. It is more favorable if the second electron
is in a orbital that is perpendicular to the C-C axis and the xy plane. Therefore this
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Figure 7.6: The structure of the ethylene molecule, C2H4, including the σ and the π
bonds.

electron is in a |2pz〉 state and forms a spin singlet with the other |2pz〉 electron of
the second carbon atom. While there is not as much overlap as for the |2〉 states, this
configuration still contributes to the bonding.

Note that the angular momentum of the bond formed by the orbitals |2〉 and |2′〉
along the C-C axis, the z axis, is zero. Such a bond is called a σ bond (corresponding to
a s state). In contrast, the angular momentum of the |2pz〉 along the z axis is 1 so that
the electrons in the bond formed by the two |2pz〉 states have a angular momentum
of magnitude 1. This bond is called a π bond (as in p state). π bonds are in general
weaker than σ bonds because of the smaller overlap. To a first approximation, the
bond energies of σ and π bonds can be added in the total energy because of their
localisation.

7.6 Molecular orbitals and symmetry properties

In the last chapter, in section 6.4, we have introduced some basic concepts of group
and representation theory and have illustrated them using a very simple example.
Here we will now apply these concepts in order to construct one-electron functions for
a more complex molecule, water (H2O).

In the previous section, we constructed the molecular orbitals for ethylene more
or less ad hoc. For the water molecule, we will do this more schematically. Again,
we will start with atomic orbitals, but we will try to determine the cofficients in the
LCAO approach based on group theoretical consideration that take into account the
symmetry of the molecule. As a first step, we have to determine the symmetry group
of the water molecule.

In Fig. 7.7, the water molecule and its symmetry operations are illustrated which
form the symmetry group C2v. Both the xz and the yz plane are symmetry planes at
which the reflections σ′v and σv, respectively, can be performed. In addition, the z-axis
corresponds to a twofold rotation axis.

Both the multiplication and the character table of the symmetry group C2v are dis-
played in Teb. 7.1. This is an Abelian group with four elements. Consequently, there
are four one-dimensional representations.

In order to derive a set of molecular orbitals, we have first to determine which
atomic orbitals are involved. As before, for the hydrogen atom we just consider the 1s
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7 Theory of chemical bonding

Figure 7.7: The H2O molecules and its symmetry operations.

orbitals
∣∣1sH1 〉 ∣∣1sH2 〉. As far as the oxygen atom is concerned, the 1s states form a filled

shell that does practically not contribute to any bonding. Hence we just consider the
2s and 2p orbitals

∣∣2sO〉, ∣∣2pO
x

〉
,
∣∣2pO

y

〉
and

∣∣2pO
z

〉
. In principle, we should now set up

the matrix representation of the symmetry operation using the six atomic orbitals just
mentioned. However, as it turns out, the hydrogen and the oxygen orbitals only weakly
couple. Therefore, in a first approximation, we can regard the hydrogen-derived and
the oxygen derived orbitals separately, so that the reducible representation matrices
already break up in a (2× 2) block related to the hydrogen orbitals that we denote by
DH and in a (4× 4) block related to the oxygen orbitals that we denote by DO.

In the following, we will omit the superscripts denoting the elements. If we for
example consider the effect of the rotation c2 on the hydrogen orbitals, we find that

c2

(
s1
s2

)
=
(

0 1
1 0

)(
s1
s2

)
(7.51)

since the rotation by 180◦ exchanges the two 1s orbitals.
In total, we obtain the following representation matrices and the corresponding

Table 7.1: Multiplication and character table of the symmetry group C2v.

C2v E c2 σv σ′v E c2 σv σ′v

E E c2 σv σ′v A1 1 1 1 1
c2 c2 E σ′v σv A2 1 1 -1 -1
σv σv σ′v E c2 B1 1 -1 1 -1
σ′v σ′v σv c2 E B2 1 -1 -1 1
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7.6 Molecular orbitals and symmetry properties

characters

E =
(

1 0
0 1

)
c2 =

(
0 1
1 0

)
σv =

(
0 1
1 0

)
σ′v =

(
1 0
0 1

)
(7.52)

χ(E) = 2 χ(c2) = 0 χ(σv) = 0 χ(σ′v) = 2 (7.53)

As in section 6.4.3, we can use simple combinatorial considerations in order to find
the irreducible reprensentation included in the reprensentation DH that is displayed
in (7.52). Using the characters as illustrated in Tab. 7.2, we find that

DH = A1 +B2 . (7.54)

In order to find out the wave functions that correspond to these irreducible repre-
sentations, we will use the projection operators introduced in Eq. (6.46)

Pi =
1
h

∑
T

χi(T−1)D(T ) .

Applying this formula, we find that

PA1 =
1
4

{
1 ·
(

1 0
0 1

)
+ 1 ·

(
0 1
1 0

)
+ 1 ·

(
0 1
1 0

)
+ 1 ·

(
1 0
0 1

)}
=

1
2

(
1 1
1 1

)
. (7.55)

Equivalently, we obtain

PB2 =
1
4

{
1 ·
(

1 0
0 1

)
− 1 ·

(
0 1
1 0

)
− 1 ·

(
0 1
1 0

)
+ 1 ·

(
1 0
0 1

)}
=

1
2

(
1 −1
−1 1

)
. (7.56)

If we apply the projection operators to the basis of the atomic 1s functions, we
obtain

PA1

(
s1
s2

)
=

1
2

(
1 1
1 1

)(
s1
s2

)
=

1
2

(
s1 + s2
s1 + s2

)
(7.57)

PB2

(
s1
s2

)
=

1
2

(
1 −1
−1 1

)(
s1
s2

)
=

1
2

(
s1 − s2
−s1 + s2

)
(7.58)

Table 7.2: Characters of the representation DH and of the corresponding irreducible
representations that are contained in DH.

Representation E c2 σv σ′v

DH 2 0 0 2
A1 1 1 1 1
B2 1 -1 -1 1

A1 +B2 2 0 0 2
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7 Theory of chemical bonding

Thus we obtain the following basis functions of the irreducible representations A1 and
B2:

A1 : |1〉 =
1
2
(|1s1〉+ |1s2〉) (7.59)

B2 : |2〉 =
1
2
(|1s1〉 − |1s2〉) (7.60)

(7.61)

This is nothing else but the symmetric and antisymmetric combination of the hydrogen
1s orbitals, similar to the case of the H+

2 molecule (Eq. (7.15)), however, here we have
derived it using the technology of group and representation theory.

It is also interesting to consider what happens if we apply Eq. (6.46) for a irre-
ducible representation that is not contained in DH. For example, for the irreducible
representation A2 we obtain

PA2 =
1
4

{
1 ·
(

1 0
0 1

)
+ 1 ·

(
0 1
1 0

)
− 1 ·

(
0 1
1 0

)
− 1 ·

(
1 0
0 1

)}
=

1
4

(
0 0
0 0

)
. (7.62)

This is an confirmation that A2 is not included in DH.
Let us now consider the slightly more complicated case of the four oxygen-derived

orbitals. In fact, it turns out that the representation matrices DO in this case are rather
simple since all oxygen orbitals are centered at the origin which remains fixed under
all symmetry operations of the group C2v. All representation matrices are diagonal
leading to the following relations:

E


2s
2px

2py

2pz

 =


2s
2px

2py

2pz

 , c2


2s
2px

2py

2pz

 =


2s
−2px

−2py

2pz

 ,

σv


2s
2px

2py

2pz

 =


2s
−2px

2py

2pz

 , σ′v


2s
2px

2py

2pz

 =


2s
2px

−2py

2pz

 , (7.63)

χ(E) = 4 χ(c2) = 0 χ(σv) = 2 χ(σ′v) = 2 (7.64)

The irreducible representations that are contained in DO can again be obtained by
combinatorial considerations or by applying Eq. (6.45). This will be left as an exercise
for the reader. It turns that

DO = 2A1 +B1 +B2 . (7.65)

The wave functions that belong to the different irreducible representations are listed
in table 7.3. Thus it becomes evident which functions belong to the same irreducible
representations. Why is this helpful?

The wave functions listed in table 7.3 do not necessarily correspond to molecular
orbitals of the water molecule. Group theory does not tell us anything about the en-
ergy levels,h owever, in order to construct specific molecular orbitals, we only have to
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7.6 Molecular orbitals and symmetry properties

Figure 7.8: Energy scheme of H2O.

consider wave functions that belong to the same irreducible representation. The eas-
iest case is the state belonging to the B1 representation where the molecular orbitals
just consists of the oxygen py orbitals. Since this orbital is oriented perpendicular to
the plane spanned by the hydrogen and oxygen atoms, it does not contribute to the
bonding, i.e., it corresponds to a non-bonding orbital of an intermediate energy.

In the case of the B2 representation, two wave functions have to be considered,
the oxygen px state and the antisymmetric hydrogen-derived state |2〉. The coupling
between these two states leads to a bonding and an anti-bonding state. For A1, there
are three wave functions that lead to three different energy levels. The qualitative
energy scheme of the water molecule illustrating the energetic arrangement of the
state is displayed in Fig. 7.8.

How are the energy levels shown in Fig. 7.8 related to hybridized orbitals shown
in the previous section? It is important to realize that the hybridized orbitals are not
necessarily eigenfunctions of the Hamiltonian. If we for example consider the non-
bonding A1 and B2 orbitals of the water molecule, it is immediately clear that they are
not equivalent since they belong to different irreducible representation; furthermore,
their energies are different. However, from these two orbitals two hybridized orbitals
can be constructed that are equivalent and that correspind to two so-called lone pairs,
i.e., these are orbitals that do not contribute to the intra-molecular bonding. However,
these molecules play a very important role in the interaction with other molecules, i.e.,
in the inter-molecular bonding. They are in fact responsible for the hydrogen bonding
between water molecules and lead to the well-known hexagonal structure of ice.

Table 7.3: Basis functions of the irreducible representations of the water molecule.

Representation O orbitals H orbitals

A1

∣∣2sO〉, ∣∣2pO
z

〉
|1〉 = 1

2 (|1s1〉+ |1s2〉)
A2

B1

∣∣2pO
y

〉
B2

∣∣2pO
x

〉
|2〉 = 1

2 (|1s1〉 − |1s2〉)
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7 Theory of chemical bonding

7.7 Energy levels of diatomic molecules: vibrations and
rotations

In the preceding sections we have focused on the electronic structure of molecules and
the resulting potential energy surface. Using this potential energy surface, the energy
levels of the motion of the nuclei can be determined using the atomic Schrödinger
equation (7.11). Here we illustrate how the vibrational and rotational states of a di-
atomic molecule can be determined. In principle, a diatomic molecule has six degrees
of freedom. Thus the Schrödinger equation is given by[

− ~2

2M1
∇2

1 −
~2

2M2
∇2

2 + V (r)
]

Ψ(X1,X2) = Etot Ψ(X1,X2) . (7.66)

However, the potential V only depends on the distance r = |X1 − X2| of the two
atoms and not on their orientation. Therefore, by introducing center-of-mass coordi-
nates X = (M1X1 + M2X2)/(M1 + M2) and relative coordinates x = X1 −X2, the
Schrödinger equation can be rewritten after some rearrangement as[

− ~2

2M
∇2

X −
~2

2m
∇2

x + V (r)
]

Ψ(X,x) = Etot Ψ(X,x) . (7.67)

Here, m = M1M2/(M1 + M2) is the reduced mass. This form shows that the center-
of-mass motion and the relative motion are independent from each other since the
potential only acts on the relative coordinate. Using a product ansatz

Ψ(X,x) = Φ(X) ψ(x) , (7.68)

the center-of-mass motion can be separated from the relative motion of the two atoms
resulting in a effective one-particle equations[

− ~2

2M
∇2

X

]
Φ(X) = EX Φ(X) , (7.69)[

− ~2

2m
∇2

x + V (r)
]
ψ(x) = E ψ(x) . (7.70)

The center of mass moves as a free particle according to eq. (7.69). Again, it is im-
portant to note that the effective potential energy does only depend on the distance
r = |x| of the two atoms and not on their orientation. Thus we have a central po-
tential problem analogous to the one already treated in section ?? (see eq. (4.101).
Introducing the angular momentum operator L, the Schrödinger equation (7.70) for
the relative motion can be rewritten as[

− ~2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)
+

L2

2mr2
+ V (r)

]
ψ(r, ϑ, ϕ) = Eψ(r, ϑ, ϕ) . (7.71)

Using the ansatz ψ(x) = Rnl(r)Ylm(ϑ, ϕ) we obtain[
− ~2

2m

(
d2

dr2
+

2
r

d

dr

)
+

~2l(l + 1)
2mr2

+ V (r)
]
Rnl(r) = ERnl(r) . (7.72)

The potential terms can be merged into an effective potential

Veff(r) = V (r) +
~2l(l + 1)

2mr2
. (7.73)
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7.7 Energy levels of diatomic molecules: vibrations and rotations

As in section ??, we perform the substitution

Rnl(r) =
Unl

r
, (7.74)

resulting in a simplified one-dimensional Schrödinger equation[
− ~2

2m
d2

dr2
+ Veff(r)

]
unl(r) = E unl(r) (7.75)

For small angular momentum quantum numbers l the effective potential Veff(r) has
a minimum at the position rl which in general depends on the rotational quantum
number. Now we expand Veff(r) close to rl in a Taylor series:

Veff(r) = Veff(rl) +
1
2
mω2

l (r − rl)2 + . . .

= ε(rl) +
~2l(l + 1)

2mr2l
+

1
2
mω2

l (r − rl)2 + . . . , (7.76)

where we introduced the notations ε(rl) = V (rl) and

mω2
l =

d2Veff(r)
dr2

∣∣∣∣
r=rl

. (7.77)

For small displacements, the Taylor expansion (7.76) can be terminated after the
quadratic term. With the definition x ≡ r−rl eq. (7.75) then becomes the Schrödinger
equation of a one-dimensional harmonic oscillator:[

− ~2

2m
d2

dx2
+ ε(rl) +

~2l(l + 1)
2mr2l

+
mω2

l

2
x2

]
u(x) = Eu(x) . (7.78)

This means that the eigenvalues are given by

E = ε(rl) +
~2l(l + 1)

2Il
+ ~ωl

(
v +

1
2

)
, (7.79)

with the effective moment of inertia Il = mr2l and the vibrational quantum num-
ber v. These energy eigenvalues consist of the effective electronic energy, the rota-
tional energy and the vibrational energy. The vibrations correspond to the fastest
motion; therefore they have the highest energies with ~ωl ≈ 0.5 eV. Because of this
high vibrational frequency, at room temperature they are frozen which means that they
are not populated and therefore do not contribute to the specific heat of the hydrogen
molecule. The rotations, on the other hand, have excitations energies that are much
lower, Erot ≥ 0.05 eV.

In reality, the potential curve of a diatomic molecule as a function of the interatomic
distance is not harmonic. For smaller distance than the equilibrium distance the Pauli
repulsion between the electronic clouds leads to an enhanced repulsion while at large
distances the potential curves becomes flat once the dissociation has occured. It is
common practice to describe the potential curve of molecules in terms of a so-called
Morse potential

V (r) = De

[(
1− e−α(r−req)

)2

− 1
]

= De

[
e−2α(r−req) − 2e−α(r−req)

]
, (7.80)
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Figure 7.9: Morse potential curve of the H2 molecule. The dashed line corresponds to
the potential curve of a harmonic oscillator with the same curvature at the
minimum.

which is plotted in Fig. 7.9 with parameters appropriate for the H2 molecule. The in-
verse length α determines the range of the potential. It is related to the frequency and
the reduced mass of a harmonic oscillator with the same curvature at the equilibrium
position req via

α =
√

m

2De
ω . (7.81)

In Fig. 7.9, the potential of the corresponding harmonic potential with the same curva-
ture at the equilibrium position is also plotted. Close to the minimum there is a good
agreement between the harmonic and the Morse potential, but for larger distances
from the minimum the harmonic approximation breaks down. The energy levels of
the Morse potential are given by

Ev = De + ~ω(v +
1
2
) − χe~ω(v +

1
2
)2

= De + ~ω(v +
1
2
) [1− χe(v +

1
2
)] , (7.82)

where χe is the so-called anharmonicity constant

χe =
~ω
4De

, (7.83)

which is typically of the order of 0.01. The frequencies of the vibrations in the Morse
potential are thus given by

ωv = ω [1− χe(v +
1
2
)] (7.84)

which means that the vibrational level spacing is linearly decreasing with the vibra-
tional quantum number v. The expression (7.84) including the anharmonicity gives a
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7.7 Energy levels of diatomic molecules: vibrations and rotations

more realistic description of the vibrational levels of molecules. Furthermore, the ob-
served rotational levels also do not follow the simple relation given in eq. (7.79). This
is caused by the vibrational-rotational coupling since vibrations and rotations are not
really independent. First of all one notes that in the anharmonic potential the mean
H-H distance does not only depend on the rotational state but also on the vibrational
state: For larger vibrational quantum numbers v the mean distance R increases lead-
ing to a smaller moment of inertia. Furthermore, the molecule is not really a rotator
with a fixed bond length. The centrifugal forces acting on the rotating molecules lead
to a further elongation that depends on the vibrational and rotational state and results
in a additional L4 term. Thus the total energy should be written as

E = ε(rl,v) +
~2l(l + 1)

2Il,v
+Dl,vl

2(l + 1)2 + ~ωl

(
n+

1
2

)
− χe~ωl(v +

1
2
)2 . (7.85)
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8 The many-electron problem and quantum
chemistry

So far we have discussed the chemical bonding within an one-electron picture, i.e.
we have just considered electronic orbitals and populated them with electrons. Total
energies had been estimated so far only for two-electron systems such as the hydrogen
molecule. We will now introduce electronic structure methods that allow to calculate
the energies of many-electron systems. These are actually still only approximate meth-
ods, but quantum chemists have developed a whole machinery of different methods
that can give accurate and reliable results. We note in passing that we will find out
that the oribtals that we have used in the previous chapter are in fact only an useful
auxiliary construction, but the basic quantity is the many-body wave function.

In this chapter, we will first discuss the basics about quantum chemistry methods
based on Hartree-Fock theory, but we will also give a brief sketch of density functional
theory which has become quite popular in recent years.

8.1 Hartree Theory

We start the sections about electronic structure methods with the so-called Hartree and
Hartree-Fock methods. This does not only follow the historical development, but it also
allows to introduce important concepts such as self-consistency or electron exchange
and correlation. In this whole chapter we are concerned with ways of solving the
time-independent electronic Schrödinger equation

HelΨ(~r) = EelΨ(~r) . (8.1)

Here we have omitted the parametric dependence on the nuclear coordinates (c.f.
(7.10)) for the sake of convenience. As already stated, except for the simplest cases
there is no way to solve (8.1) in a close analytical form. Hence we have to come up
with some feasible numerical scheme to solve (8.1). Mathematically, it corresponds to
a second order partial differential equation. There are methods to directly integrate
partial differential equations. However, if N is the number of electrons in the system,
then we have to deal with a partial differential equation in 3N unknowns with N
commonly larger than 100. This is completely intractable to solve. The way out is to
expand the electronic wave function in some suitable, but necessarily finite basis set
whose matrix elements derived from (8.1) can be conveniently determined. This will
then convert the partial differential equation into a set of algebraic equations that are
much easier to handle. Of course, we have to be aware that by using a finite basis
set we will only find an approximative solution to the true many-body wave function.
However, by increasing the size of the basis set we have a means to check whether
our results are converged with respect to the basis set. Hence this corresponds to a
controlled approximation because the accuracy of the calculations can be improved in
a systematic way.
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8 The many-electron problem and quantum chemistry

Furthermore, for the moment we are mainly interested in the electronic ground-
state energy E0. There is an important quantum mechanical principle – the Rayleigh–
Ritz variational principle – that provides a route to find approximative solutions for
the ground state energy. It states that the expectation value of the Hamiltonian in any
state |Ψ〉 is always larger than or equal to the ground state energy E0, i.e.

E0 ≤
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (8.2)

Hence we can just pick some suitable guess for |Ψ〉. Then we know that 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉
will always be an upper bound for the true ground state energy. By improving our
guesses for |Ψ〉, preferentially in a systematic way, we will come closer to the true
ground state energy.

Before we proceed, we note that the potential term Vnucl−el (7.5) acts as an effec-
tive external one-particle potential for the electrons. Hence we define the external
potential for the electrons as

vext(~r) = −
∑

I

ZIe
2

|~r − ~RI|
. (8.3)

Now let us assume that the number of electrons in our system is N and that we have
already determined the N lowest eigenfunctions |ψi〉 of the one-particle Schrödinger
equation {

− ~2

2m
∇2 + vext(~r)

}
ψi(~r) = εo

iψi(~r) . (8.4)

Here we have completely neglected the electron-electron interaction. Still, we might
simply consider the product wave function

ΨH(~r1, . . . , ~rN) = ψ1(~r1) · . . . · ψN(~rN) , (8.5)

in which every one-particle state is only occupied once, as a first crude guess for the
true many-particle wave function. Note that here we have not explicitly included the
spin. For the sake of simplicity we consider two wave functions with the same spatial
part, but orthogonal spin parts to be different.

We can now determine the expection value of the electronic Hamiltonian (7.9) using
the wave function (8.5). Thus we obtain

〈ΨH|H|ΨH〉 =
N∑

i=1

∫
d3rψ∗i (~r)

(
− ~2

2m
∇2 + vext(~r)

)
ψi(~r)

+
1
2

N∑
i,j=1

∫
d3rd3r′

e2

|~r − ~r′|
|ψi(~r)|2|ψj(~r′)|2 + Vnucl−nucl . (8.6)

Now we would like to minimize the expectation value (8.6) with respect to more
suitable single-particle functions ψi(~r) under the constraint that the wave functions
are normalized. This is a typical variational problem with the constraint taken into
account via Lagrange multipliers. If we consider the wave functions ψi(~r) and ψ∗i (~r)
as independent, we can minimize (8.6) with respect to the ψ∗i under the constraint of
normalization via

δ

δψ∗i

〈ΨH|H|ΨH〉 −
N∑

j=1

{εi(1− 〈ψj |ψj〉)}

 = 0 . (8.7)

138



8.1 Hartree Theory

The εi act as the so-called Lagrange multipliers ensuring the normalisation of the
eigen functions. The variational problem (8.7) can be reformulated using a func-
tion Q({ψ∗i }, {ψ∗i }) which is defined as

Q({ψ∗i }, {ψi}) = 〈ΨH|H|ΨH〉 −
N∑

j=1

{εj(1− 〈ψj |ψj〉)} . (8.8)

Eq. (8.7) thus corresponds to the relation

δQ({ψ∗i }, {ψi}) = Q({. . . , ψ∗k + δψ∗k, . . .}, {ψi}) − Q({ψ∗i }, {ψi}) = 0 (8.9)

for a arbitrary variation δψ∗k, k = 1, . . . , N . Using (8.6) and (8.8), we obtain∫
d3r δψ∗k(~r)

(
− ~2

2m
∇2 + vext(~r)

)
ψk(~r)

+ 2 · 1
2

N∑
j=1

∫
d3rd3r′

e2

|~r − ~r′|
δψ∗k(~r)ψk(~r)|ψj(~r′)|2

− εk

∫
d3r δψ∗k(~r)ψk(~r) = 0 . (8.10)

Now the variation δψ∗k is arbitrary, i.e., (8.10) is valid for any variation. The variational
scheme thus leads to the so-called Hartree equations:− ~2

2m
∇2 + vext(~r) +

N∑
j=1

∫
d3r′

e2

|~r − ~r′|
|ψj(~r′)|2

ψk(~r) = εkψk(~r) .

(8.11)

The Hartree equations correspond to a mean-field approximation. Equation (8.11)
shows that an effective one-particle Schrödinger equation is solved for an electron
embedded in the electrostatic field of all electrons including the particular electron itself.
This causes the so-called self interaction which is erroneously contained in the Hartree
equations.

Using the electron density

n(~r) =
N∑

i=1

|ψi(~r)|2 , (8.12)

the Hartree potential vH can be defined:

vH(~r) =
∫
d3r′n(~r′)

e2

|~r − ~r′|
. (8.13)

It corresponds to the electrostatic potential of all electrons. With this definition the
Hartree equations can be written in a more compact form as{

− ~2

2m
∇2 + vext(~r) + vH(~r)

}
ψi(~r) = εiψi(~r) . (8.14)

The Hartree equations have the form of one-particle Schrödinger equations. How-
ever, the solutions ψi(~r) of the Hartree equations entering the effective one-particle
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∇2 + vj
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Figure 8.1: Flow-chart diagram of a self-consistent scheme to solve the Hartree equa-
tions

Hamiltionan are in fact used to obtain the solutions. Consequently, the Hartree equa-
tions can only be solved in an iterative fashion: One starts with some initial guess for
the wave functions which enter the effective one-particle Hamiltonian. The Hartree
equations are then solved and a new set of solutions is determined. This cycle is
repeated so often until the iterations no longer modify the solutions, i.e. until self-
consistency is reached. Approximative methods such as the Hartree approximation
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that include a self-consistency cycle are also known as self-consistent field (SCF) ap-
proximations.

Such a self-consistent scheme is illustrated in a flow-chart diagram in Fig. 8.1 where
we have combined the external and the Hartree potential to an effective potential
veff(~r) = vext(~r) + vH(~r). Furthermore, we have included a mixing scheme between
the new effective potential and the one of the previous step for the construction of the
effective potential entering the next iteration cycle. Usually a mixing scheme speeds
up the convergence of the iteration scheme significantly; sometimes convergence can
even not be reached without a mixing scheme. Note that the general self-consistency
cycle depicted in Fig. 8.1 is not only appropriate for the solution of the Hartree scheme
but for any method that requires a self-consistent solution of one-particle equations.

The expectation value of the total energy in the Hartree approximation EH can be
written as

〈ΨH|H|ΨH〉 =
N∑

i=1

εi −
1
2

∫
d3rd3r′

e2n(~r)n(~r′)
|~r − ~r′|

+ Vnucl−nucl

=
N∑

i=1

εi − VH + Vnucl−nucl = EH (8.15)

The integral in (8.15) is the so-called Hartree energy VH. It corresponds to the classical
(or mean-field) electrostatic energy of the electronic charge distribution. It is con-
tained twice in the Hartree eigenvalue; in order to correct for this double-counting it
has to be subtracted in (8.15). In fact, the total energy in (8.15) would only be a sum
over single-particle energies if the particles were non-interacting (except for the term
Vnucl−nucl, which in this context for fixed nuclei just acts as an energy renormalization
constant). If we evaluate the total energy for interacting particles by self-consistently
solving a set of effective single-particle equations, the total energy is not just a sum
over single-particle energies, but there will always be correction terms reflecting the
interaction between the particles.

8.2 Hartree–Fock Theory

Since electrons are fermions, they have to obey the Pauli principle: Any state (n, σ)
where σ denotes the spin can only be occupied by one electron. In other words,
any state characterized by the quantum number n can be occupied by two electrons,
a spin up (↑) and a spin down (↓) electron. Furthermore, electrons have to satisfy
the Fermi-Dirac statistics which requires that the many-body electron wave function
is totally antisymmetrical. This means that the many-body wave function has to be
antisymmetrical with respect to the exchange of any two particles.

The Hartree ansatz obeys the Pauli principle only to some extent by populating each
electronic state once. However, it does not take into account the anti-symmetry of the
wave function. This can be achieved by forming antisymmetrical linear combinations
of the products

ψ1(~r1σ1) · ψ2(~r2σ2) · ψ3(~r3σ3) · . . . · ψN (~rNσN ) ,
ψ1(~r2σ2) · ψ2(~r1σ1) · ψ3(~r3σ3) · . . . · ψN (~rNσN ) , etc. , (8.16)

where we now explicitly include the spin. Note that the spin-up (↑) and a spin down
(↓) states are often denoted as α-spin and β-spin, respectively, by quantum chemists.
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The easiest way to get a totally antisymmetrical wave function is by using the so-
called Slater determinant , which is constructed by taken the determinant of the prod-
ucts of the single-particle wave function

ΨHF(~r1σ1, . . . , ~rNσN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

ψ1(~r1σ1) ψ1(~r2σ2) . . . ψ1(~rNσN)
ψ2(~r1σ1) ψ2(~r2σ2) . . . ψ2(~rNσN)

...
...

. . .
...

ψN(~r1σ1) ψN(~r2σ2) . . . ψN(~rNσN)

∣∣∣∣∣∣∣∣∣∣
. (8.17)

Now we follow the same procedure as for the Hartree ansatz: first we write down
the expectation value of the total energy:

〈ΨHF|H|ΨHF〉 =
N∑

i=1

∫
d3rψ∗i (~r)

(
− ~2

2m
∇2 + vext(~r)

)
ψi(~r)

+
1
2

N∑
i,j=1

∫
d3rd3r′

e2

|~r − ~r′|
|ψi(~r)|2|ψj(~r′)|2 + Vnucl−nucl

−1
2

N∑
i,j=1

∫
d3rd3r′

e2

|~r − ~r′|
δσiσjψ

∗
i (~r)ψi(~r′)ψ∗j (~r′)ψj(~r) . (8.18)

There is now an additional negative term for electrons with the same spin. This extra
term is called the exchange energy Ex. Note that the total-energy expression (??) is
self-interaction free because the diagonal terms of Ex with i = j exactly cancel the
corresponding terms in the Hartree energy EH.

Again, we minimize the expression (??) with respect to the ψ∗i under the constraint
of normalization. This yields the Hartree–Fock equations:{

− ~2

2m
∇2 + vext(~r) + vH(~r)

}
ψi(~r)

−
N∑

j=1

∫
d3r′

e2

|~r − ~r′|
ψ∗j (~r′)ψi(~r′)ψj(~r)δσiσj = εi ψi(~r). (8.19)

The additional term, called the exchange term, introduces quite some complexity to
the equations. It is of the form

∫
V (~r, ~r′)ψ(~r′)d3r′, i.e., it is an integral operator. In

more compact form, the expectation value of the total energy in the Hartree-Fock
approximation is given by

〈ΨHF|H|ΨHF〉 = EHF =
N∑

i=1

εi − VH − Ex + Vnucl−nucl . (8.20)

Analogously to (8.15), the Hartree energy VH and the exchange energy Ex have to be
substracted since they enter the Hartree–Fock eigenvalues twice.

Introducing the notations

hp,q =
∫
d3r ψ∗p(~r)

(
− ~2

2m
∇2 + vext(~r)

)
ψq(~r) (8.21)

Vlm,pq =
∫
d3rd3r′ ψ∗l (~r)ψ∗m(~r′)

e2

|~r − ~r′|
ψp(~r)ψq(~r′) , (8.22)
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the total energy in Hartree-Fock theory can be re-expressed as

EHF =
N∑

i=1

εi −
1
2

N∑
i,j=1

(
Vij,ij − Vij,jiδσiσj

)
+ Vnucl−nucl

=
N∑

i=1

hi,i +
1
2

N∑
i,j=1

(
Vij,ij − Vij,jiδσiσj

)
+ Vnucl−nucl . (8.23)

Note that sometimes also the notations

(p, q) = hp,q, (pq, rs) = Vpq,rs (8.24)

are used.
The equations (??), (8.19) and (8.20) give a general expression of the Hartree-Fock

energy. Solving them is usually called the unrestricted Hartree-Fock (UHF) method.
However, in cases where there is an even number of states and all spatial states are
occupied twice by a spin-up and a spin-down electron, it is sufficient just to focus on
the doubly-occupied spatial orbitals. Before doing so, we first introduce a shorter way
to write down a Slater determinant:

ΨHF = |ψ1ψ2 . . . ψM ψ̄M+1ψ̄M+2 . . . ψ̄N | , (8.25)

where the index i labels the spatial part of the wave function, ψi is a α or spin-up state,
whereas the bar (ψ̄j) denotes the β or spin-down state, M is the number of occupied
spin-up states, and (N −M) the number of ocuupied spin-down states.

If we now have an even number N of electrons and the lowest n/2 electron levels
are occupied twice with a pair of electrons of opposite spin, the corresponding Slater
determinant is given by

ΨRHF = |ψ1ψ2 . . . ψN/2ψ̄1ψ̄2 . . . ψ̄N/2| , (8.26)

This means that in the expression (8.23) for the total energy every one-particle energy
hi,i appears twice, while in the double sum Vij,ij appears four times. However, Vij,ij

has to be counted only twice since the spin quantum numbers of the states have to be
the same. Hence one obtains in the so-called restricted Hartree-Fock (RHF) method

ERHF = 2
N/2∑
i=1

hi,i +
N/2∑
i,j=1

(2Vij,ij − Vij,ji) + Vnucl−nucl . (8.27)

The advantage of the restricted Hartree-Fock method is that in principle only half as
many electronic states have to be explicitly considered compared to the unrestricted
Hartree-Fock method which leads to a significant reduction of the computational ef-
fort.

Note that even if there is an even number of electrons in an atom or molecule, not
all states are necessarily occupied twice. Prominent examples are the oxygen atom and
the oxygen molecule O2 which are both in a spin-triplet state with the two uppermost
degenerate orbitals each only occupied once.

In the most general case of atoms or molecules with open shells, i.e., if the Hartree-
Fock wave function is given by the Slater determinant (8.25), we have to take into
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8 The many-electron problem and quantum chemistry

account that the exchange term only couples electrons with the same spin. Hence the
total energy in the unrestricted Hartree-Fock method is given by

EUHF =
N∑

i=1

hi,i +
1
2

N∑
i,j=1

Vij,ij −
1
2


M∑

i,j=1

Vij,ji︸ ︷︷ ︸
spin up

+
N∑

i,j=M+1

Vij,ji︸ ︷︷ ︸
spin down

 + Vnucl−nucl .

(8.28)
The problem with the general Slater determinant (8.25) is that it is not neccessarily
an eigenstate of the total spin operator S2. This can be most easily seen regarding the
generalisation of eq. (??) for the total spin of N spins:

S2 =

(
N∑

i=1

Si

)2

=
N∑

i=1

S2
i +

N∑
i<j

(2SizSjz + Si+Sj− + Si−Sj+) (8.29)

The ladder operators in the second sum switch the spin of the i-th and j-th electrons, if
they are different. If, for example, in Ψ only the one-electron state ψk is contained, but
not ψ̄k, then S2Ψ is not proportional to Ψ, i.e., Ψ is no eigenstate of S2. On the other
hand, since the total electronic Hamiltonian (7.9) does not explicitly depend on the
spin coordinates, it commutes with S2 and Sz; thus the eigenfunctions of the electronic
Hamiltonian are also eigenfunctions of both spin operators. This means that in general
open-shell systems cannot be represented by one single Slater determinant since it
is contaminated by different spin states. This spin contamination can be measured
by determining the mean expectation value per electron of the spin S2 of an UHF
determinant. If the mean value is exactly or close to the one expected for an eigenstate,
there is no or very little spin contamination. If, one the other hand, the UHF wave
function is contaminated by another spin state by more than 3%, it should be rejected
since it does not give a proper description of the open-shell system.

In order to treat open-shell systems within the Hartree-Fock method, one can only
consider wave functions that are eigenfunctions of S2. This method is then called
restricted open-shell Hartree-Fock (ROHF). If we consider for example a triplet state
where all states are doubly occupied except for the two highest m and n, the triplet
wave function with Sz = −1 is given by

3
−1Ψ

n
m = |ψ1ψ̄1 . . . ψM ψ̄M ψ̄mψ̄n| , (8.30)

where we have used the notation (2S+1)
Sz

Ψ. By applying the ladder operator S+, we
obtain, disregarding any normalization, the 3

0Ψ state:

3
0Ψ

n
m =

(
|ψ1ψ̄1 . . . ψM ψ̄Mψmψ̄n| − |ψ1ψ̄1 . . . ψM ψ̄M ψ̄mψn|

)
. , (8.31)

This shows that a Sz = 0 state of a triplet can not be represented by a single Slater
determinant. For the sake of completeness, we also give the 3

1Ψ state:

3
1Ψ

n
m = |ψ1ψ̄1 . . . ψM ψ̄Mψmψn| , (8.32)
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The expectation value of the total energy of this triplett state which is independent of
the value of Sz is then given by

EROHF =2
M∑
i=1

hi,i +
M∑

i,j=1

(2Vij,ij − Vij,ji)︸ ︷︷ ︸
closed shell

+ hm,m + hn,n + Vmn,mn − Vmn,nm︸ ︷︷ ︸
open shell

+
M∑
i=1

(2Vim,im − Vim,mi) +
M∑
i=1

(2Vin,in − Vin,ni)︸ ︷︷ ︸
interaction open − closed shell

(8.33)

In general, Hartree-Fock theory is a good starting point for the theoretical descrip-
tion of molecules and clusters. The exact total energy of a molecule is often repro-
duced to up to 99%. The Hartree ansatz does not take into account the antisymmetry
of the electronic many-body wave function; consequently it does not yield a proper
solution of the many-body Schrödinger equation. The Hartree–Fock method, on the
other hand, incorporates the antisymmetry requirement and leads to a reduction of
the total energy. Hence it should be a more appropriate solution for the true ground-
state already on the basis of the Rayleigh-Ritz variational principle. However, in the
Hartree–Fock ansatz, electrons of opposite spin are still not correlated. If these elec-
trons are also avoiding each other, the energy can be further reduced. This additional
effect is called electron correlation. The electron correlation energy is defined as the
difference between the exact energy of the system and the Hartree–Fock energy. The
distinction between electron correlation and exchange is somehow artificial because
the Hartree–Fock exchange is in principle also an electron correlation effect.

As mentioned above, Hartree-Fock theory gives usually a good estimate for the total
energy of a molecule. Unfortunately, the missing part, namely the electron correlation
energy, is rather important for a reliable description of chemical bond formation. The
correlation energy per electron can easily be more than 1 eV. Chemists often demand
an accuracy of 1 kcal/mol≈0.04 eV (“chemical accuracy”) for energy differences in or-
der to consider the calculations useful. If the uncertainty of the total energies is already
above several eV, then only by a fortuitous cancellation of errors chemical accuracy can
be achieved. Quantum chemists have therefore developed a whole machinery of so-
called post-Hartree-Fock methods that treat the electron correlation at various levels
of sophistication. Some of the most important concepts will be introduced in the next
section.

8.3 Post–Hartree–Fock Methods

The post-Hartree-Fock methods methods can be devided into to two categories, the
so-called single-reference and the multiple-reference methods. Both methods take into
acount the fact that the electrons do not only experience the mean field of all other
electrons, but that they are constantly interacting which each other. In real space, this
corresponds to the consideration of collisions of the electrons which can be described
as the excitation of virtual excited orbitals. The most probable and therefore most
important processes are the collision of two electrons which is represented by double
or pair excitations.
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8 The many-electron problem and quantum chemistry

In the single-reference methods, one starts with the Slater determinant that is the
solution of the Hartree–Fock equations. This means that the electron correlation be-
tween electrons with opposite spin is neglected. One way to introduce correlation
effects is by considering virtually excited states. These can be generated by replacing
occupied orbitals in the Slater determinant by unoccupied ones, i.e., by states that
do not correspond to the N lowest Hartree–Fock eigenvalues. By replacing one, two,
three, four or more states, single, double, triple, quadruple or higher excitations can
be created. In the Møller–Plesset theory, these excitations are treated perturbatively
by regarding the Hartree–Fock Hamiltonian as the unperturbed Hamiltonian and the
difference to the true many-body Hamiltonian as the perturbation.

To derive the Møller-Plesset theory, we first rewrite the Hartree–Fock equations (8.19)
as

hHF
i ψi(~r) = εi ψi(~r) , (8.34)

where the effective one-electron operator hHF
i acts on the i-th electron. If we neglect

the nuclear-nuclear interaction Vnucl−nucl for a moment, the Hartree–Fock Hamiltonian
HHF can be defined as

HHF =
∑

i

hHF
i − VH − Ex . (8.35)

Here VH and Ex are just treated as constants determined with the true Hartree–Fock
ground state wave-function. Note that HHF does not correspond to the correct many-
body electronic Hamiltonian Hel (7.9) since the correlation effects between electron
with opposite spins are not included. The difference between Hel and HHF is now
treated as the perturbation H ′:

H ′ = Hel −HHF . (8.36)

The expression for the ground-state energy in second-order perturbation theory be-
comes

E(2) = EHF + 〈Ψ0|H ′|Ψ0〉+
∑
l 6=0

|〈Ψl|H ′|Ψ0〉|2

E0 − El
. (8.37)

The sum over states l other than the ground state corresponds to Slater determinants
with single, double, triple, etc. excitations. In fact it can be easily shown that the
Hartree–Fock theory is correct to first order, i.e., the first-order correction 〈Ψ0|H ′|Ψ0〉
vanishes. The second-order expression is given by

E(2) = EHF −
occ∑

l<m

unocc∑
p<q

|Vlm,qp − Vlm,pq|2

εl + εm − εp − εq
, (8.38)

where the sum is performed over all occupied and unoccupied (virtual) orbitals. Second-
order Møller–Plesset theory is usually denoted by MP2. If higher-order corrections are
included, the methods are named MP3, MP4 and so forth.

MP2 is a very popular method due to its conceptual simplicity. However, due to the
perturbative treatment of electron correlation its applicability is still limited.

In order to go beyond pertubation theory, we note that a general Slater determinant
for any given set of wave functions χK1 , χk2 , . . . χkN

can be written as

Ψk1,k2...,kN
= |χk1χk2 . . . χkN

| , (8.39)
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Here we assume that the index ki also includes the spin quantum number and that the
quantum numbers ki are ordered in some suitable form

k1 < k2 < . . . < kN (8.40)

Now, if the χki form a complete set of one-particle functions, then it can be shown
that the Slater determinants (8.39) form a complete set for any antisymmetric wave
function Ψ of N electrons. This means that any N -electron wave function can be
expressed as

Ψ =
∑

k1<k2<...<kN

Ck1k2...kN
Ψk1,k2,...,kN

(8.41)

Using this expansion in the Schrödinger equation HΨ = EΨ, one obtains after some
calculations a set of linear equations for the coefficients Ck1k2...kN

:

N∑
i=1

∑
k′i

hki,k′i
δσkiσk′i

Ck1...k′i...kN

+
N∑

i,j=1

∑
k′ik

′′
j

Vkikj ,k′ik
′′
j
δσkiσk′i

δσkjσk′′j
Ck1...k′i...k

′′
j ...kN

= ECk1...kN
. (8.42)

Every wave function Ψk1,...,k2 is regarded as a configuration. Therefore this method
is called configuration interaction (CI). Eq. (8.42) corresponds to a set of linearly cou-
pled equations which can be solved numerically using standard routines. Usually this
method is coupled with the LCAO approach, i.e., every orbital is expanded in a set of
atomic wave functions

χki
=
∑

l

c
(ki)
l φl (8.43)

Hence both the coefficients Ck1k2...kN
and c(ki)

l have to be determined. The matrix
elements hki,k′i

and Vkikj ,k′ik
′′
j

are then expressed as a sum over the corresponding
integrals of the atomic orbitals which are then stored and which enter the linear equa-
tions (8.42). The numerical effort does of course sensitively depend on the number of
atomic orbitals and the number of configurations Ψk1,...,k2 included in the expansion.

If only single (S) and double (D) excitations are included in the sum (8.41), one
refers to the method as CISD:

ΨCISD = ΨHF +
∑
i,k′i

CS
k1...k′i...kN

ΨS
k1...k′i...kN

+
∑

ij,k′ik
′′
j

CD
k1...k′i...k

′′
j ...kN

ΨD
k1...k′i...k

′′
j ...kN

, (8.44)

where ΨS and ΨD correspond to Slater determinants with one or two occupied orbitals
replaced by unoccupied ones, respectively. The CISD method represents an improve-
ment with respect to the pure Hartree-Fock method, however, this approach does not
obey one important desirable property of electronic structure methods, namely the
so-called size consistency or size extensivity. In principle, with size extensitivity the
linear scaling of the energy with the number of electrons is meant. For infinitely sep-
arated systems, this comes down to additive energies of the separated components.
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This property is not only important for large systems, but even for small molecules.
The CISD method does not fulfil size extensitivity because the product of two frag-
ment CISD wave functions contains triple and quadruple excitations and is therefore
no CISD function. One elegant way to recover size extensitivity is to exponentiate the
single and double excitations operator:

ΨCCSD = exp(T1 + T2) ΨHF . (8.45)

This approach is called coupled cluster (CC) theory, the limitation to single and double
excitations is denoted by CCSD. If also triple excitations are included, the method is
called CCSDT. However, the computational effort of this method has an eighth-power
dependence on the size of the system and is therefore rather impractical. The scaling
is more favorable if the triple excitations are incorporated perturbatively still, this
CCSD(T) method is very accurate.

The single-reference methods can be very reliable in the vicinity of equilibrium con-
figurations, but they are often no longer adequate to describe a bond-breaking process.
One Slater determinant plus excited states derived from this determinant are not suffi-
cient because the dissociation products should be described by a linear combination of
two Slater determinants taking into account the proper spin state. Any many-particle
electronic wave function can in principle be represented by a sum over Slater deter-
minants. Hence by considering more and more configurations in the calculations, the
accuracy can be systematically improved. If all possible determinants are included
in an electronic structure calculation, the method is called full configuration interac-
tion (FCI). Because of the large computational effort required, FCI calculations are
limited to rather small systems. In particular, the treatment of larger clusters neces-
sary to model surface science problems is not possible with FCI. Hence approximate
multi-reference methods are needed.

In the multiconfigurational self-consistent field (MCSCF) approach, a relatively small
number of configurations is selected and both the orbitals and the configuration inter-
actions coefficients are determined variationally. The selection of the configurations
included in a MCSCF calculation cannot be done automatically; usually chemical in-
sight is needed which, however, might introduce a certain bias in the calculations. This
can be avoided by the complete active space (CAS) approach. In a CASSCF calculations
a set of active orbitals is identified and all excitations within this active space are in-
cluded. This method is again computationally very costly. After all, if the active space
is increased to include all electrons and orbitals, we end up with a FCI calculation.

For a proper treatment of the electronic correlation, not only the appropriate method
has to been chosen, but also the basis set has to be sufficiently large enough. Quan-
tum chemical methods usually describe the electrons by a localized basis set derived
from atomic orbitals. The preferred basis functions are Gaussian functions because
they allow the analytical evaluation of the matrix elements necessary to perform an
electronic structure calculations. In fact, the most popular electronic structure code
used in quantum chemistry, the GAUSSIAN program, is named after the type of basis
functions employed in the program.

Quantum chemists have developed a particular nomenclature to describe the quality
of a basis set. It is beyond the scope of this book to give a full introduction into
the terminology. I will only give a short overview. The simplest choice of just one
atomic orbital per valence state is called “minimal basis set” or “single zeta”. If two
or more orbitals are included, the basis set is called “double zeta”(DZ), “triple zeta”
(TZ), “quadruple zeta” (QZ) and so on. Often polarization functions are added which
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correspond to one or more sets of d functions on first row atoms. Then a “P” is added
to the acronym of the basis set resulting in, e.g., DZ2P. These polarization functions
describe small displacements of the atomic orbitals from the nuclear centers. For rather
delocalized states such as anionic or Rydberg excited states, further diffuse functions
are added.

In quantum chemical methods the accuracy of the treatment of electron correlation
can be improved in a systematic way by either choosing a more refined method or by
increasing the basis set. This is a very attractive property of these wave function based
methods. Unfortunately, the accuracy is paid by an immense computational effort.
For example, the CCSD(T) method exhibits an N7 scaling in the computational effort
where N is the number inlcuded elecrons. Also the convergence with the size of the
basis set is rather slow. If one gives cardinal numbers X for the basis sets according to
DZ:X = 2, TZ:X = 3, QZ:X = 4, . . . , then the error of the calculations ∆Eerr shows a
scaling with the basis set size that goes like

∆Eerr ∝ X−4 , (8.46)

which means that any new reliable digit in the calculations requires 10 000 times more
CPU time. Hence accurate calculations in quantum chemistry are usually limited to a
rather small number of atoms, typically about 10–20.

In recent years one method has become more and more popular that is not based on
a representation of the many-body wave function, but on the electron density which
is therefore computationally much more efficient: density functional theory.

8.4 Density Functional Theory

The huge computational effort of quantum chemistry methods is related to the fact that
they are based on the many-body wave function which depends on 3N coordinates,
where N is the number of electrons. Let us consider, e.g., the oxygen atom with
8 electrons. If we use 10 entries for each coordinate, then we need 1024 entries for
the whole wave function. Such an amount of data is almost impossible to store. It
would be much more convenient if not the many-body wave function, but the electron
density could be used as the basic quantity in electronic structure calculations.

Such a connection between the electronic density and the many-body Hamiltonian is
in fact provided by the Hohenberg–Kohn theorem that density functional theory (DFT)
is based upon. This theorem states that the ground-state density n(~r) of a system
of interacting electrons in an external potential uniquely determines this potential.
The proof for this theorem which is rather simple will be presented here in order to
demonstrate that also theories that are based on simple ideas can lead to a Nobel
prize (Walter Kohn, Nobel prize for chemistry 1998). However, the formulation of
its rigorous mathematical foundations was only completed several years after the first
presentation of the Hohenberg–Kohn theorem.

Let us assume for the sake of simplicity that the system of interacting electrons has
a nondegenerate ground state (the extension to degenerate cases is straightforward).
Let the wave function Ψ1 be the nondegenerate ground state of the Hamiltonian H1

with external potential v1(~r) and the corresponding ground-state density n(~r). The
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8 The many-electron problem and quantum chemistry

ground-state energy E1 is then given by

E1 = 〈 Ψ1 | H1 | Ψ1 〉

=
∫

v1(~r)n(~r) d3~r + 〈 Ψ1 | (T + U) | Ψ1 〉 . (8.47)

Here T and U are the operators of the kinetic and the interaction energy. Now let us
assume that there is a second potential v2(~r) which differs from v1(~r) by not just a
constant, i.e. v2(~r) 6= v1(~r) + const., but leads to the same electron density n(~r). The
corresponding ground state energy is

E2 = 〈 Ψ2 | H2 | Ψ2 〉

=
∫

v2(~r)n(~r) d3~r + 〈 Ψ2 | (T + U) | Ψ2 〉 . (8.48)

Now we can apply the Rayleigh-Ritz variational principle. Since the ground state Ψ1

is assumed to be nondegenerate, we obtain the true inequality

E1 < 〈 Ψ2 | H1 | Ψ2 〉

=
∫

v1(~r)n(~r) d3~r + 〈 Ψ2 | (T + U) | Ψ2 〉

= E2 +
∫

(v1(~r) − v2(~r)) n(~r) d3~r . (8.49)

Equivalently, we can use the Rayleigh–Ritz variational principle for H2. We have not
explicitly assumed that Ψ2 is nondegenerate, hence we obtain

E2 ≤ 〈 Ψ1 | H2 | Ψ1 〉

= E1 +
∫

(v2(~r) − v1(~r)) n(~r) d3~r . (8.50)

If we add (8.49) and (8.50), we end up with the contradiction

E1 + E2 < E1 + E2 . (8.51)

Hence the initial assumption that two different external potential can lead to the same
electron density is wrong. This concludes the proof of the Hohenberg–Kohn theorem.

Since the density n(~r) is uniquely related to the external potential and the number
N of electrons via N =

∫
n(~r)d3~r, it determines the full Hamiltonian. Thus in prin-

ciple it determines all quantities that can be derived from the Hamiltonian such as,
e.g., the electronic excitation spectrum. However, unfortunately this has no practical
consequences since the dependence is only implicit.

In the derivation of the Hartree and the Hartree–Fock methods we have used the
Rayleigh-Ritz variational principle. This demonstrated the importance of variational
principles. In fact, there is also a variational principle for the energy functional, namely
that the exact ground state density and energy can be determined by the minimisation
of the energy functional E[n]:

Etot = min
n(~r)

E[n] = min
n(~r)

(T [n] + Vext[n] + VH[n] + Exc[n]) . (8.52)

Vext[n] and VH [n] are the functionals of the external potential and of the classical
electrostatic interaction energy that corresponds to the Hartree energy, while T [n]
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is the kinetic energy functional for non-interacting electrons, i.e. the kinetic energy
functional of a non-interacting reference system that is exposed to the same external
potential as the true interacting system. All quantum mechanical many-body effects
are contained in the so-called exchange-correlation functional Exc[n]. Yet, this non-
local functional is not known; probably it is even impossible to determine it exactly in a
closed form. However, it has the important property that it is a well-defined universal
functional of the electron density, i.e., it does not depend on any specific system or
element. Instead of using the many-body quantum wave function which depends on
3N coordinates now only a function of three coordinates has to be varied. In practice,
however, no direct variation of the density is performed. One of the reasons is that the
kinetic energy functional T [n] is not well-known either.

The density is rather expressed as a sum over single-particle states

n(~r) =
N∑

i=1

|ψi(~r)|2 . (8.53)

Now we make use of the variational principle for the energy functional and minimize
E[n] with respect to the single particle states under the constraint of normalization.
This procedure is entirely equivalent to the derivation of the Hartree and the Hartree–
Fock equations (8.11) and (8.19), respectively. Thus we obtain the so-called Kohn–
Sham equations{

− ~2

2m
∇2 + vext(~r) + vH(~r) + vxc(~r)

}
ψi(~r) = εi ψi(~r) . (8.54)

Thus the effective one-electron potential acting on the electrons is given in the Kohn–
Sham formalism by

veff(~r) = vext(~r) + vH(~r) + vxc(~r) . (8.55)

The exchange-correlation potential vxc(~r) is the functional derivative of the exchange-
correlation functional Exc[n]

vxc(~r) =
δExc[n]
δn

. (8.56)

The ground state energy can now be expressed as

E =
N∑

i=1

εi + Exc[n]−
∫
vxc(~r)n(~r) d3~r − VH + Vnucl−nucl . (8.57)

Here we have added the term Vnucl−nucl in order to have the correct total energy of
the electronic Hamiltonian (7.9). In solid-state applications, the sum over the single-
particle energies in (8.57) is often called the band-structure energy. However, it is
important to keep in mind that the “single-particle energies” εi enter the formalism just
as Lagrange multipliers ensuring the normalisation of the wave functions. The Kohn–
Sham states correspond to quasiparticles with no specific physical meaning except
for the highest occupied state. Still it is almost always taken for granted that the
Kohn–Sham eigenenergies can be interpreted, apart from a rigid shift, as the correct
electronic one-particle energies. This is justified by the success since the Kohn–Sham
eigenenergy spectrum indeed very often gives meaningful physical results, as will be
shown in the next chapters.

Note that if the exchange-correlation terms Exc and vxc are neglected in (8.54)–
(8.57), we recover the Hartree formulation of the electronic many-body problem.
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Figure 8.2: Exchange and exchange-correlation energy per particle in the homoge-
neous electron gas. For example, typical valence electron densities of met-
als are in the range of 5–10× 102 Å−3.

Hence the Kohn–Sham theory may be regarded as a formal extention of the Hartree
theory. In contrast to the total energy expression in the Hartree and the Hartree–Fock
approximation, the ground-state energy (8.57) is in principle exact. The reliability
of any practical implementation of density functional theory depends crucially on the
accuracy of the expression for the exchange-correlation functional.

The exchange-correlation functional Exc[n] can be written as

Exc[n] =
∫
d3~r n(~r) εxc[n](~r) , (8.58)

where εxc[n](~r) is the exchange-correlation energy per particle at the point ~r, but
depends on the whole electron density distribution n(~r). In order to discuss the prop-
erties of Exc[n], it is helpful to introduce the exchange-correlation hole distribution

nxc(~r, ~r′) = g(~r, ~r′)− n(~r′) , (8.59)

where g(~r, ~r′) is the conditional density to find an electron at ~r′ if there is already an
electron at ~r. Every electron creates a hole corresponding to exactly one electron out
of the average density n(~r). This is expressed through the sum rule∫

d3~r′ nxc(~r, ~r′) = −1 . (8.60)

Furthermore, the exchange-correlation hole vanishes for large distances:

nxc(~r, ~r′) −→
|~r−~r′|→∞

0 , (8.61)

and there is an asymptotical result for the integral∫
d3~r′

nxc(~r, ~r′)
|~r − ~r′|

−→
|~r|→∞

− 1
|~r|

. (8.62)

Since the exchange-correlation functionalExc[n] is not known in general, the exchange-
correlation energy εxc[n](~r) cannot be exactly derived either. What is known is the
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Table 8.1: O2 binding energy obtained by DFT calculations using LDA and different
GGA exchange-correlation functionals

functional LDA PW91 PBE RPBE Exp.

O2 binding energy (eV) 7.30 6.06 5.99 5.59 5.23

exchange-correlation energy for the homogeneous electron gas, i.e. for a system with
a constant electron density. This energy is plotted in Fig. 8.2. In the so-called Local
Density Approximation (LDA), the exchange-correlation energy for the homogeneous
electron gas is also used for non-homogeneous situations,

ELDA
xc [n] =

∫
d3~r n(~r) εLDA

xc (n(~r)) , (8.63)

As (8.63) shows, at any point in space the local exchange-correlation energy εLDA
xc (n(~r))

of the homogeneous electron gas is used for the corresponding density, ignoring the
non-locality of the true exchange-correlation energy εxc[n].

In a wide range of bulk and surface problems the LDA has been surprisingly success-
ful. This is still not fully understood but probably due to a cancellation of opposing
errors in the exchange and the correlation expression in the LDA. Furthermore, the
LDA satisfies the sum rule (8.60) which is apparingly also very important. For chemi-
cal reactions in the gas phase and at surfaces, however, the LDA results are not suffi-
ciently accurate. Usually LDA shows over-binding, i.e. binding and cohesive energies
turn out to be too large compared to experiment. This overbinding also leads to lat-
tice constants and bond lengths that are smaller than the experimental values. These
shortcominigs of LDA were the reason why many theoretical chemists were rather re-
luctant to use DFT for a long time. There had been attempts to formulate a Taylor
expansion of the exchange-correlation energy εxc[n], but these first attempts had not
been successful because by a straightforward gradient expansion (8.60) is violated.
Only with the advent of exchange-correlation functionals in the Generalized Gradi-
ent Approximation (GGA) this situation has changed. In the GGA the gradient of the
density is also included in the exchange-correlation energy,

EGGA
xc [n] =

∫
d3~r n(~r) εGGA

xc (n(~r), |∇n(~r)|) , (8.64)

but the dependence on the gradient is modified in such a way as to satisfy the sum rule
(8.60). In addition, general scaling properties and the asymptotic behavior of effective
potentials are taken into account in the construction of the GGA. DFT calculations in
the GGA achieve chemical accuracy (error ≤ 0.1 eV) for many chemical reactions. This
improvement in the accuracy of DFT calculations finally opened the way for Walter
Kohn to be honored with the Nobel prize in chemistry in 1998 for the development of
DFT which is somewhat paradox because DFT was accepted in the physics community
much earlier than in the chemistry community.

Still there are important exceptions where the GGA also does not yield sufficient
accuracy. In Table 8.1 DFT results for the O2 binding energy obtained using LDA
and different GGA exchange-correlation functionals are compared to the experimental
value. The LDA result shows the typical large overbinding. The GGA functional by
Perdew and Wang (PW91) and by Perdew, Burke and Ernzerhof (PBE) have been
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constructed to give similar results. The revised PBE functional (RPBE) follows the
same construction scheme as the PBE functional, just a different interpolation that is
not specified by the construction scheme is used. This leads to a difference of almost
half an eV for the O2 binding energy. This is a rather unsatisfactorily result because this
means that there is an intrinsic uncertainty of up to half an eV for energy differences
obtained within the generalized gradient approximation. And still the theoretical O2

binding energies are much larger than measured in experiment.
The binding energy of O2 is not the only case where DFT calculations are rather

inaccurate. A list of the failures of DFT with present-day functionals includes: (i)
van der Waals forces are not properly described, (ii) negative ions are usually not
bound, i.e. electron affinities are too small, (iii) the Kohn–Sham potential falls off
exponentially for large distances instead of ∝ 1/r, (iv) band gaps are underestimated
in both LDA and GGA by approximately 50%, (v) cohesive energies are overestimated
in LDA and underestimated in GGA, (vi) strongly correlated solids such as NiO and
FeO are predicted as metals and not as antiferromagnetic insulators.

The problem in the development of a more accurate exchange-correlation functional
is the reliable representation of the non-locality of this functional. One could say
that all present formulations of the exchange-correlation functional in principle still
represent an uncontrolled approximation. There is no systematic way of improving
the functionals since there is no expansion in some controllable parameter.

Still the development of more accurate exchange-correlation function is a very active
research field. One route is to include to some extent “exact exchange” in addition to
a standard functional. Another ansatz is the development of so-called meta-GGA’s
that include higher-order powers of the gradient or the local kinetic energy density.
Very accurate results for small molecules can be obtained by methods based on orbital
functionals such as the optimized potential method (OPM) or the optimized effective
potential (OEP) method. In this approach, the exchange-correlational functional does
not explicitly depend on the density but on the individual orbitals. Thus the self-
interaction can be avoided. It is still true that all improved functionals mentioned
above require a significant increase in the computational effort. Therefore they have
not been used yet in standard applications of DFT calculations for surface science
problems.

In any practical implementation of DFT the computational effort of course increases
significantly with the number of electrons that have to be taken into account. However,
most chemical and solid-state properties are determined almost entirely by the valence
electrons while the influence of the core electrons on these properties is negligible.
Indeed there is a way to replace the effect of the core electrons by an effective potential
so that they do not have to be taken into account explicitly, namely by constructing so
called pseudopotentials. Since this significantly reduces the number of electrons that
have to be taken into account, the use of pseudopotentials leads to an enormous saving
of computer time.
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9 Scattering Theory

The interaction potential between two particles cannot be measured directly, only its
consequences in scattering. Therefore it is very important to understand the outcome
of scattering processes. By comparing measured and calculated scattering distribu-
tions, the interaction potentials between the scattering particles might be derived. In
this short chapter we will only cover the basic concepts of scattering theory.

9.1 Wave Packets

We now consider the scattering of particles by a fixed “short range” potential. This
means the particle is free except for the time of interaction. As a consequence, Coulomb
scattering is excluded which requires a special treatment.

Assume that an incident particle with average momentum 〈p〉 = ~k at t = t0 is
described by a wave packet

Ψ(r, t) =
∫

d3k

(2π)3
eik·rak (9.1)

We expand Ψ(r, t) in exact eigenstates of the potential problem.

Ψ(r, t) =
∫

d3k

(2π)3
Ψk(r)Ak (9.2)

with (
~2

2m
∇2 + Ek

)
Ψk(r) = V (r)Ψk(r) (9.3)

with Ek = ~2k2

2m > 0. At later times t > t0, we have

Ψ(r, t) =
∫

d3k

(2π)3
Ψk(r)Ake

−iEk(t−t0)/~ (9.4)

We construct the energy eigenstates Ψk by using the Green’s functions approach,(
~2

2m
∇2 + Ek

)
G(r, k) = δ(r) (9.5)

Insertion into the Schrödinger equation leads to

Ψk(r) = Φ0(r) +
∫
G(r− r′, k)V (r′) Ψk(r′) d3r′ (9.6)

where Φ0(r) is a solution of the homogenous Schrödinger equation, i. e. for a free
particle without any potential acting on it.

Proof
Operate with ~2

2m∇
2 + Ek on both sides of equation (9.6).
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�

We interpret this result as follows: the total wave Ψk(r) consists of the incident wave
Φ0(r) plus the scattered wave. The second term V (r)Ψk(r) acts as a source for the
scattered wave. The propagator G(r − r′,k) gives us the amplitude of the scattered
wave at r due to a unit source at r′. It is given explicitly by solving the equation[

~2

2m
∇2 + Ek

] ∫
d3p

(2π)3
eip·r

Ek − ~2

2mp2
= δ(r) (9.7)

G(r,k) =
∫

d3p

(2π)3
eip·r

Ek − ~2

2mp2
= − m

2π2ir~

∫ ∞

−∞

peipr

p2 − k2
dp (9.8)

The integral is evaluated by the theory of complex functions.

G(r,k) = − m

2~2π2ir
· 2πi · ke

ikr

2k
= − m

2π~2

eikr

r
(9.9)

Let r be far from the potential.

k |r− r′| ≈ kr − kr′ · r̂ = kr − k′ · r′ , (9.10)

where k′ = kr̂ is the wave vector in the far field. The asymptotic solutions are the of
the form

Ψk(r) = eik·r +
eikr

r
fk(Ωr) (9.11)

where Ωr specifies the direction of r. fk(Ωr) is called the scattering amplitude

fk(Ωr) = − m

2π~2

∫
e−ik′·r′V (r′)Ψk(r′) d3r′ (9.12)

Insert (9.11) in (9.4) and use ak = Ak:

Ψ(r, t) = Ψ0(r, t) +
∫

d3k

(2π)3
ak
ei
(
kr−Ek(t−t0)/~

)
r

fk(Ωr) (9.13)

where

Ψ0(r) =
∫

d3k

(2π)3
ake

i(k·r−Ek(t−t0)/~) (9.14)

is the wave packet at time t if there were no potential present.
Now let us take a closer look at the second term of (9.13). Assume that ak is

strongly peaked about k0 and that fk(Ωr) slowly varies around k0. Then we can
replace eikrfk(Ωr) by eik·k̂0rfk0(Ωr) and obtain

Ψ(r, t) = Ψ0(r, t) +
fk0(Ωr)

r
Ψ0(k̂0r, t) . (9.15)

This equation says that the total wave function after scattering is given by the wave
packet which one would have in the absence of any scattering plus a scattered part.
The scattered term has a pictorial interpretation. Ψ0(k̂0r, t) corresponds to the value
of the wave function at point r if all the potential did was to bend the trajectory of
the particle from the forward direction towards r. The probability amplitude that this
bending has occured is just given by the factor fk0(Ωr)/r.
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9.2 Cross Sections

Experimental results are usually expressed in terms of cross sections. The differential
cross section is defined as

dσ

dΩ
≡ # of particles scattered into unit solid angle per unit of time

# of incident particles crossing a unit area per unit of time
(9.16)

With respect to the wave function (9.11), we note that the number of incident particles
crossing a unit area per unit of time is just proportional to the probability flux due to
the first term of Eq. (9.11). Equivalently, the number of particles scattered into an unit
solid angle per unit of time is given by the probability flux according to the second
term of Eq. (9.11). Thus we have

dσ

dΩ
=
r2 |jscatt|
|jincid|

= |fk0(Ωr)|2 . (9.17)

The total cross section given by dσ/dΩ integrated over all angles is the total probability
of a particle being scattered with respect to the total probability that crossed a unit area
in front of the target. Thus

σ =
∫
|fk0(Ωr)|2 dΩ (9.18)

Note that cross sections have the unit of an area.

9.3 Partial Waves

Consider a spherical symmetric potential. Then it is convenient to expand the plane
waves in angular momentum eigenfunctions. Assuming that k is parallel to the ẑ-axis,
the expansion is given by

eik·r =
∞∑

l=0

il(2l + 1)Pl(cosϑ)jl(kr)

=
1
2

∞∑
l=0

il(2l + 1)Pl(cosϑ)
(
hl(kr) + h∗l (kr)

)
(9.19)

where jl is a Bessel function and hl are the Hankel functions. Only m = 0 terms enter
because of k ‖ ẑ:

Pl(cosϑ) =

√
4π

2l + 1
Yl0(ϑ, ϕ) (9.20)

Consequently, fk(Ωr) depends only on ϑ. Asymptotically, the energy eigenstates of the
potential problem can be written as

Ψk(r) =
1
2

∞∑
l=0

il(2l + 1)Pl(cosϑ)
(
h∗l (kr) + ei2δlhl(kr)

)
= eik·r +

1
2

∞∑
l=0

il(2l + 1)Pl(cosϑ)(ei2δl − 1)hl(kr) (9.21)
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where we have used the representation (9.19) for eik·r. The factors δl appearing in
the exponential term are called phase shifts. Thus, the scattering process is completely
described in terms of the phase shifts. ei2δl is called the partial wave scattering ampli-
tude.

Total cross sections can be expressed as

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl =
∞∑

l=0

σl (9.22)

One can show that if 0 < δl < π/2, the potential is attractive, i. e. V < 0. Here, the
frequency of the wave functions increases. If δl < 0, the potential is predominantly
repulsive.

9.4 Born Approximation

We assume that the potential has only a small effect on all partial waves. Approximate
Ψk(r) by eik·r in (9.12). Then we have

fk(Ωr) = − m

2π~2

∫
ei(k−k′)·r′V (r′) d3r′ = − m

2π~2
V (k′ − k) , (9.23)

where V (k) corresponds to the Fourier transform of V (r). This approximation is
known as the Born approximation. As an example, we will apply this approximation
to the so-called Yukawa potential.:

V (r) = a
e−κr

r
=⇒ V (q) =

4πa
q2 + κ2

⇒ dσ

dΩ
=

a2

4Ek sin2 ϑ
2 + ~2 κ2

2m

(9.24)

For a = e2 and κ → 0 this results reduces to the classical Rutherford cross section for
Coulomb scattering. However, this is just accidental since the Born approximation is
not valid for the long-range Coulomb potential.
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