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The semiclassical treatment of reactions at surfaces with electronic transitions based on
the fewest-switches algorithm is compared with full quantum mechanical results. As a
model system the ionization probability in scattering from a diamond surface is chosen.I2
In the calculations we treat the molecular distance from the surface and one surface
oscillator coordinate explicitly. Furthermore, we also consider molecular rotation in the
semiclassical calculations. The semiclassical results agree with the quantum results
although some discrepancies remain, as far as the phase coherence is concerned. We
identify energy transfer to molecular and surface degrees of freedom as a possible
mechanism that could explain the experimental dependence of the ionization probability
on the incident kinetic energy of the molecule.

I. Introduction
There has been tremendous progress in the theoretical treatment of reactions at surfaces in recent
years. In particular, for hydrogen dissociation on metal surfaces, high-dimensional dynamical cal-
culations have been performed on potential energy surfaces which were derived from density-
functional calculations.1h4 These calculations allow quantitative comparison with experiment.
However, they rely on one basic approximation, namely the BornÈOppenheimer approximation,
i.e. in these simulations it is assumed that the electrons follow the motion of the nuclei adia-
batically.

Dynamical calculations in the BornÈOppenheimer approximation exclude the treatment of pro-
cesses such as surface photochemistry or charge transfer at surfaces. In these Ðelds theory is far
behind experiment since the theoretical treatment of reactions at surfaces with electronic tran-
sitions still represents a great challenge. Any reasonable theoretical description faces three major
problems : (i) the potential energy surface of the ground and the excited states has to be deter-
mined ; (ii) matrix elements between the di†erent electronic states or the lifetimes of the excited
states, respectively, have to be known; (iii) a simulation of the reaction dynamics including the
electronic transitions has to be performed.

Quantum chemical algorithms still represent the main method to address the Ðrst two problems
(see, e.g., ref. 5), but methods based upon density-functional theory are also starting to be used to
address this issue.6,7 However, in this contribution we will focus on the third problem, reaction
dynamics with electronic transitions at surfaces. On the one hand, these processes should be
treated quantum mechanically because of the light mass of the electrons. On the other hand, to get
a full and accurate understanding of dynamical processes on surfaces, a high-dimensional treat-
ment including all relevant degrees of freedom is necessary. Low-dimensional studies might not
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only be quantitatively wrong, they can even prevent the detection of the correct qualitative mecha-
nisms (see, e.g., ref. 2). Unfortunately, despite all the progress in quantum dynamical methods in
recent years a high-dimensional quantum treatment of reactions of interest with electronic tran-
sitions is not yet possible. These systems often involve oxygen or heavier atoms. Now the
quantum e†ects in the motion of the nuclei are often negligible as long as hydrogen is not con-
cerned, hence semiclassical schemes might be the method of choice to tackle these high-
dimensional problems. In semiclassical methods the motion of the nuclei should be treated by
classical methods, while the electronic transitions have to be described quantum mechanically.
Still in such a scheme the feedback between classical and quantum mechanical degrees of freedom
has to be treated self-consistently.

There have been quite a number of di†erent methods proposed for the semiclassical treatment
of reactions with electronic transitions which are not necessarily able to reproduce the correct
quantum results (see, e.g., ref. 8). Here we present a semiclassical study of charge transfer processes
in the scattering of molecules at surfaces using the fewest-switches algorithm proposed by Tully.9
This algorithm, which has already been tested for a number of model potentials,10h12 impresses by
its elegance and conceptual simplicity.

The goal of this investigation is twofold. On the one hand we want to check the performance
and accuracy of this semiclassical treatment of reactions with electronic transitions. In particular,
we are focusing on a situation with more than one nuclear degree of freedom that is treated
classically and compare it with the exact quantum mechanical solution, i.e., we are going beyond
one-dimensional two-surface problems that is usually done.9h15 On the other hand, we are also
interested in gaining some qualitative insight into a particular reaction. Hence we have chosen the
ionization probability in scattering from a diamond surface as our model system. This ioniza-I2tion probability has been measured as a function of the incoming kinetic energy of the scattered
molecule by Danon and Amirav.16

For a low-dimensional treatment of the scattering process we compare semiclassical results with
full quantum results. The comparison shows that the semiclassical method is capable of ade-
quately reproducing the quantum results. Quantitative di†erences are identiÐed, as far as quantum
interference phenomena are concerned. In higher-dimensional applications, however, these di†er-
ences will disappear. This becomes evident in the semiclassical calculations in which the rotational
motion of the molecule is also taken into account.

In contrast to the quantum method, the semiclassical treatment can easily be extended to take
into account surface degrees of freedom in the simulation. This makes a rather realistic description
of the charge transfer in moleculeÈsurface scattering possible. The method is, however, not limited
to scattering processes. It represents a versatile tool for the description of reaction dynamics with
electronic transitions. For example, we are currently planning to apply the semiclassical method to
the description of electron-stimulated or photon-stimulated desorption from surfaces.

This paper is organized as follows. In the next section we brieÑy introduce the semiclassical and
quantum methods that we have used. Then we describe the model system that we have chosen. In
the main part of the paper the results of the semiclassical and quantum calculations are compared
and discussed.

II. Method
In this section we brieÑy summarize the most important aspects of the theoretical methods that
are essential for the following discussion.

The total Hamiltonian is written as

H \ TR] H0(r, R), (1)

where R and r refer to the coordinates of the nuclei and the electrons, respectively. The wave
function t(r, R, t) is expanded in terms of some electronic basis functions

t(r, R, t)\;
j

c
j
(t)/

j
(r, R). (2)

The matrix elements with respect to the electronic Hamiltonian are given byH0
V
ij
(R)\ S/

i
(r, R) oH0(r, R) o/

j
(r, R)T. (3)
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describes the potential energy surface of the system in the electronic state In surfaceV
ii
(R) /

i
.

hopping methods the system evolves for a particular period of time on one speciÐc potential
energy surface and the classical particles follow a trajectory R(t) that is determined by the integra-
tion of the classical equation of motion

M
d2
dt2

R \ [$
R
S/

i
oH0(r, R) o/

i
T (4)

Along the trajectory R(t) sudden hops between di†erent potential energy surfaces occur according
to some instruction that has to be speciÐed. In the diabatic representation the non-diagonal
matrix elements lead to these transitions to other potential energy surfaces. In the adiabaticV

ij
(R)

picture it is the change of the eigenfunctions that cause these transitions. This change is described
by the nonadiabatic coupling vector d

ij
:

d
ij
\ S/

i
(r, R) o$

R
o/

j
(r, R)T (5)

The electronic coefficients are determined according to the time-dependent equa-c
j

Schro� dinger
tion for the electronic Hamiltonian R) which is now time dependent through the trajectoryH0(r,R(t). This time-dependent equation can be written as9Schro� dinger

i+c5
k
\ ;

j
c
j
(V

kj
[ i+R0 Æ d

kj
). (6)

In this equation the basis functions can be any mixture of diabatic and adiabatic states. The/
iprobability of Ðnding the system at time t in the electronic level k is then given by

P
k
(t)\ o c

k
(t) o2. (7)

In TullyÏs fewest-switches algorithm,9 electronic transitions between di†erent levels can occur at
any point along the trajectories R(t). The transition probability is constructed in such a way that
the number of state switches is minimized, under the constraint that in an ensemble of trajectories
the average population of each level is given by the square modulus of the expansion coefficients

(eqn. (7)).c
k Since transitions can occur at any point along the trajectories, the potential energies of the

electronic states can well be di†erent at the moment of the state switch, i.e. InV
kk

(R(t))D V
ll
(R(t)).

order to conserve the total energy of the system, the velocities of the classical degrees of freedom
have to be readjusted. It is not a priori clear how this adjustment has to be done. In the fewest
switches algorithm as suggested by Tully the velocities are changed in the direction of the non-
adiabatic coupling vector This choice has been proposed by Herman17 and later been re-d

ij
.

conÐrmed by Coker and Xiao.18
Per total energy, 1000 to 2000 trajectories are calculated to determine the transition probabil-

ities. This means that all semiclassical probabilities have a statistical uncertainty of ^0.02 to
^0.03. The quantum mechanical calculations of the ionization probability have been performed
by solving the time-independent equation within a coupled-channel scheme.19 TheSchro� dinger
convergence of the quantum dynamical results with respect to the basis set has been carefully
tested. In the calculations including the surface oscillator (see below) up to 250 oscillator channels
per electronic level had to be taken into account to reach convergence.

III. Model system
As already stated in the Introduction, the goal of this investigation is twofold : to test the semi-
classical treatment in comparison to full quantum calculations and, rather than just study some
theoretical model system, to try to learn something about a real system. We have chosen the
ionization probability in scattering from surfaces as our model system. This ionization prob-I2ability has been measured as a function of the incoming kinetic energy of the scattered molecule
by Danon and Amirav.16 The results are plotted in Fig. 1. They show a threshold at D3.0 eV and
an absolute yield of D1% at a kinetic energy of 10 eV.I2~To our knowledge, there are no theoretical data on the interaction potential of with aI2diamond surface. Hence we are left with inventing potential energy surfaces based on empirical
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Fig. 1 Experimental results of the ionization probability in the scattering of as a function of theI2/diamond
incident kinetic energy of the molecule (after ref. 16).

data, experience and intuition. In our simulation we model the molecular center of mass distance
from the surface z and one surface oscillator coordinate x. Without the surface oscillator the
one-dimensional two-surface potential can be written as

V1D(z)\
AV11(z) V12(z)
V12(z) V22(z)

B
(8)

Our chosen model potential is plotted in Fig. 2. It corresponds to a typical one-dimensional
curve-crossing problem. The diabatic potential energy surfaces are parametrized as MorseV

iipotentials

V
ii
(z)\ D

ii
(e~2aii(z~zii) [ 2e~aii(z~zii)) ] S

ii
(9)

while the diabatic coupling between the surfaces has an exponential formV12
V12(z)\ D12e~a12z. (10)

The parameters we have chosen are listed in Table 1. We assume that in the experiment the
diamond surface has been hydrogen-covered.16 Due to this passivation we have chosen only a

Fig. 2 One-dimensional model potential for the ionization of in the scattering from diamond surfaces.I2 V11corresponds to the potential energy surface for the neutral molecule (ÈÈ) and to the potential for theV22charged molecule (È ÉÈ). is the coupling between the two potentials (È È).V12

102 Faraday Discuss., 2000, 117, 99È108



Table 1 Parameters of the model potential for
scattering according to eqn. (9)I2/diamond

Potential D
ij
/eV a

ij
/A� ~1 z

ii
/A� S

ii
/eV

V11 0.1 3.0 1.0 0.0
V22 4.0 3.0 0.5 3.0
V12 0.2 2.0 È È

small physisorption well of 0.1 eV for neutral As for the well-depth, we have toI2 . I2~/diamond
rely on speculation. Since diamond has a large band gap of 5.4 eV, image charge e†ects should be
small. However, during the charge transfer process there will be a locally charged complex at the
surface which could cause an attractive potential of the order of 1 eV. The strength of the coupling

had to be guessed. The shift of eV between the two Morse potentials for z] O wasV12 S22 \ 3.0
chosen to reproduce the threshold of the ionization at a kinetic energy of D3.0 eV.I2The surface oscillator is coupled to the molecular motion via The whole 2DV1D(z) ] V1D(z [ x).
potential is given by

V2D(z, x)\
AV11(z[ x)] Vosc(x)

V12(z[ x)

V12(z[ x)

V22(z[ x) ] Vosc(x)

B
(11)

with

Vosc(x)\
mosc
2

u2x2 (12)

For the surface oscillator we have chosen +u\ 50 meV and u. These parameters aremosc\ 180
not very realistic for a diamond surface. For example, corresponds to 15 times the mass of amosccarbon atom. Usually one selects one to two times the mass of a surface atom for the surface
oscillator model.20h23 We had tried more realistic parameters like for example used in ref. 22.
However, with these parameters the surface oscillator did not really participate dynamically in the
scattering process. It mainly recoiled adiabatically upon impingement of the iodine molecules with
very little energy transfer. This is caused by the sti†ness of the diamond surface. We have selected
parameters for the surface oscillator that result in a larger energy transfer from the impinging
molecule to the surface ; this oscillator should, rather, be regarded as a general mode for energy
transfer during the scattering process.

We have, furthermore, coupled the molecular rotation to the scattering process via

V1D(z)] 12
C
V1D
A
z[

r
2

cos h
B

] V1D
A
z]

r
2

cos h
BD

, (13)

where r \ 2.66 is the bondlength of and h is the angle of the molecular axis with the surfaceA� I2normal. Note that in this model is treated as a rigid rotor, i.e. no molecular vibrations areI2included. We would like to emphasize at this point that we are trying to reproduce qualitative
trends of the experiment. We are looking for a qualitative explanation that is consistent with the
experiment. This does not necessarily exclude that the true explanation might be quite di†erent.
However, by such an approach the number of possible mechanisms underlying an experimental
Ðnding can be narrowed down.

IV. Results and discussion
The quantum and semiclassical results using the one-dimensional two-surface potential of eqn. (8)
are plotted in Fig. 3. The semiclassical results have been obtained in the adiabatic representation.
First, the oscillatory structure of the quantum and semiclassical results is evident. These are
typical oscillations due to the fact that the molecule can be ionized on the way eitherStu� ckelberg
to or from the surface, and these two paths interfere. It is evident that the quantum and semiclassi-
cal results show the same amplitude of the oscillations, the phase, however, does notStu� ckelberg
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Fig. 3 Theoretical results of the ionization probability of as a function of the incident kineticI2/diamond
energy of the molecule using the one-dimensional two-surface potential of eqn. (8). (ÈÈ) Quantum mechani-
cal result ; (È È) semiclassical result ; (È ÉÈ): LandauÈZener approximation.

agree. In addition, in the semiclassical calculation one peak of the oscillations atStu� ckelberg
approximately 4 eV is missing. The fact that the phases do not agree is not too surprising con-
sidering that the semiclassical approximation breaks down at the classical turning points where
the de Broglie wavelength of the molecule becomes inÐnite.

In addition, we have included results according to the LandauÈZener approximation.24 In this
approximation the transition between two adiabatic states which we denote by a and b is given by

wab \ exp
1
[

2pV 122

+v
K dV11

dz
[

dV22
dz

K
2

, (14)

where the values of the coupling of the derivatives of the potentials and of the velocity v areV12 ,
all taken at the curve-crossing between the diabatic states. Now the molecule passes the location
of the curve-crossing twice before it is scattered back into the gas phase, hence the total probabil-
ity of the ionization in the LandauÈZener approximation is given by

P12\ 2wab(1[ wab). (15)

Note that in the gas phase the diabatic states which we have denoted by 1 and 2 and the corre-
sponding adiabatic states are the same. In the LandauÈZener approximation the Stu� ckelberg
oscillations are absent since no phase information is included. But the LandauÈZener results cor-
respond rather accurately to the averaged quantum and semiclassical results. This tells us that
indeed surface hopping occurs in both methods rather close to the surface crossing point. This is
also conÐrmed by an analysis of the semiclassical trajectories. The LandauÈZener probability wabalone rises with increasing kinetic energies. However, has its maximum for (see eqn.P12 wab\ 0.5
(15)). Hence the decreasing ionization probability is due to the fact that is larger than 0.5.wabThe experimental results, on the other hand, showed an increase with increasing energy. From
eqn. (14) and (15) we see directly that the coupling between the diabatic curves actually has toV12become larger so that becomes smaller than 0.5 in order to reproduce the rising behavior ofwabthe experimental ionization probability. This means that we would get closer to the adiabatic
limit. In fact, with eV we can almost exactly reproduce the experimental curve. But Ðrst,D12\ 1.5
this coupling seems to be unrealistically large, however, as there are no reliable calculations for the
coupling such a value cannot be excluded. Even more importantly, very simple low-dimensional
model calculations should not try to reproduce experimental data exactly in order to leave enough
room for the inÑuence of all the other neglected degrees of freedom. In fact, we believe that the
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electronic coupling is not responsible for this rising behavior but energy transfer to other degrees
of freedom, as we will discuss below.

There are no oscillations apparent in the experimental results. Usually one arguesStu� ckelberg
that quantum mechanical interference e†ects wash out in realistic high-dimensional situation
(although this is not always true3). And indeed, if the surface oscillator is included in the quantum
mechanical calculations these oscillations disappear almost entirely as is shown in Fig. 4. These
results correspond to the surface oscillator initially in its ground state. It is remarkable how close
the quantum mechanical results follow the simple LandauÈZener expression at higher kinetic
energies (note that in the LandauÈZener results the surface oscillator is not considered).

Now the quantum mechanical results actually show an initial increase at low kinetic energies.
This is simple due to energy transfer to the oscillator. Due to this energy transfer the number of
molecules that have enough energy to become ionized is reduced. In fact we believe that this is the
qualitative explanation for the rising behavior of the ionization probability in the experiment.
Regarding the facts that has very soft vibrational modes with +u\ 20 meV, that the disso-I2ciation energy of is only 1.5 eV which results in a large dissociation probability25 and alsoI2 I2that rotations can be excited very efficiently in the scattering (see ref. 26 and below), we see that a
lot of energy is transfered to other degrees of freedom during the scattering event. This limits the
number of molecules that have enough energy to be ionized, in particular close to the threshold
energy.

Turning to the semiclassical results, we see that the oscillations are not washed outStu� ckelberg
at all, their amplitude is almost the same as in the rigid surface case. It seems to be a paradox that
in the semiclassical calculations more phase coherence is retained than in the quantum calcu-
lations, however, this has already also been observed in one-dimensional two-surface calcu-
lations.9 Now in these calculations the surface oscillator has been treated fully classically, i.e., the
surface oscillator was initially at rest. In the quantum calculations, on the other hand, the surface
oscillator has zero-point motion according to a zero-point energy of 25 meV. This actually corre-
sponds to a temperature of 300 K in a classical picture. It is possible that this uncertainty in the
position and momentum of the oscillator contributes to the suppression of the oscil-Stu� ckelberg
lations. Hence we have performed semiclassical calculations in which the surface initially had a
vibrational energy of 25 meV and in which the initial phase of the oscillator was sampled random-
ly. Indeed, the oscillations are reduced signiÐcantly if the zero-point energy is takenStu� ckelberg
into account in the semiclassical calculations, as is demonstrated in Fig. 5. But still these oscil-
lations are much stronger than in the full quantum calculations. However, the mean value of the
semiclassical results closely follows the quantum results.

Fig. 4 Theoretical results of the ionization probability of as a function of the incident kineticI2/diamond
energy of the molecule including the surface oscillator according to eqn. (11). The notation is the same as in
Fig. 3. No zero-point energy corrections for the surface oscillator have been taken into account. The results in
the LandauÈZener approximation in which no surface oscillator is considered are also plotted as a guide to
the eye.

Faraday Discuss., 2000, 117, 99È108 105



Fig. 5 Theoretical results of the ionization probability of as a function of the incident kineticI2/diamond
energy of the molecule including the surface oscillator according to eqn. (11). The notation is the same as in
Fig. 1. In the semiclassical calculations a zero-point energy of 25 meV of the surface oscillator was taken into
account.

There may be several reasons why the oscillations in the semiclassical calculationsStu� ckelberg
are not suppressed in the same way as in the quantum calculations. First, in the scattering at the
surface oscillator a superposition of oscillator states is excited in the quantum dynamics which
causes a distribution in the kinetic energy of the scattered molecule. In the semiclassical calcu-
lations, for a Ðxed kinetic energy a Ðxed amount of kinetic energy is transferred to the surface
oscillator, if the surface oscillator is initially at rest, so that no distribution of kinetic energies
results which could suppress the oscillations. If the surface oscillator is initiallyStu� ckelberg
already vibrating with the zero-point energy, a certain distribution in the energy transfer is the
consequence, but apparently this distribution is not wide enough to fully suppress the Stu� ckelberg
oscillations, as Fig. 5 demonstrates.

Secondly, the coupling also leads to transitions between di†erent surface oscillatorV12(z[ x)
states in the quantum dynamics. One can show27 that

Sm o V12(z[ x) o nT \ Sm oD12e~a12(z~x) o nT

\ D12* (z)a8 @m~n@ ;
k/0

= a8 2k
k !(k ] om[ n o ) ! o

(max(m, n) ] k) !

(m !n !)1@2
, (16)

with

D12* (z)\ D12e~a12zeŠ2@2 (17)

and

a8 \ a12
A +
2mosc u

B1@2
, (18)

where o mT and o nT are harmonic oscillator states.
Eqn. (16) demonstrates that there is a non-vanishing probability that the transition between the

two electronic states is accompanied by a change in the surface oscillator states at any point along
the trajectories. This leads to a change in the kinetic energy of the molecule in the quantum
dynamics even if at the point of the transition between the two electronicV11(R(t))\ V22(R(t))
states in the quantum dynamics. On the other hand, in the semiclassical calculations the kinetic
energy of the molecule will not be altered in such a situation. These oscillator transitions will
contribute to the loss of phase coherence in the quantum dynamics, while it is absent in the
semiclassical calculations.
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Fig. 6 Theoretical results of the ionization probability of as a function of the incident kineticI2/diamond
energy of the molecule taking the molecular rotation into account according to eqn. (13) (ÈÈ). In addition,
the experimental results from ref. 16 (È È) and the LandauÈZener results without rotations (È ÉÈ) are
plotted as a guide to the eye.

However, instead of trying to change the semiclassical algorithm in order to suppress the artiÐ-
cial oscillations we are led by the notion that, in a high-dimensional application which we have in
mind, such oscillations will be washed out. Indeed, if we consider the molecular rotation in the
semiclassical calculations according to eqn. (13) instead of the surface oscillator, there are no
longer any oscillations evident, as Fig. 6 demonstrates. First, in the semiclassicalStu� ckelberg
calculation the initial orientation of the molecule is sampled randomly, which increases the sto-
chastic nature of the scattering event ; and secondly, while the energy transfer to the surface oscil-
lator is less than 1 eV at all kinetic energies for the chosen parameters, up to more than 3 eV is
transferred to the molecular rotation in the scattering. Both e†ects cause a suppression of the

oscillations. Note that we have not performed quantum dynamical calculations takingStu� ckelberg
into account the molecular rotation. Due to the small rotational energy quantum of more thanI21000 channels have to be considered in the quantum calculations per electronic levels which
makes these calculations computationally much too expensive. This is actually precisely the
reason why we are applying the semiclassical treatment to the electron transfer problem.

In Fig. 6 we have also included the experimental results. Due to the low dimensionality of the
calculations we have not tried to reach quantitative agreement with experiment. However, it is
evident that due to the energy transfer to the molecular rotation the ionization probability is
suppresssed by more than one order of magnitude close to the ionization threshold compared to
the LandauÈZener probability without rotations. The qualitative trend in the calculated ionization
probability is rather similar to experiment. The inclusion of the molecular vibrations and also the
molecular dissociation channel will further suppress the ionization probability. This conÐrms our
qualitative explanation of the experiment that it is not the electronic coupling per se that causes
the strong increase in the ionization probability with rising kinetic energy. Instead, the large
energy transfer to other degrees of freedom during the scattering event leads to a large suppresion
of the ionization probability, in particular for energies close to the ionization threshold.

V. Conclusions
We have calculated the ionization probability in the scattering of molecules from surfaces by a
quantum mechanical and a semiclassical treatment. In our low-dimensional description the molec-
ular center of mass distance from the surface and either a surface oscillator coordinate or the
molecular orientation have been considered. The parameters of the model potential have been
chosen to resemble the system I2/diamond.

The semiclassical results agree with the quantum results although some discrepancies remain as
far as the phase coherence is concerned. These discrepancies, however, will most probably be
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absent in high-dimensional applications, as our semiclassical calculations in which the molecular
rotation is taken into account demonstrate. Thus the semiclassical method opens the way to the
description of electronically non-adiabatic processes in realistic high-dimensional simulations.

The results of these particular low-dimensional simulations suggest that the strong increase in
the ionization probability in the scattering of with increasing kinetic energy observedI2/diamond
in the experiment is not caused by the electronic coupling per se. Due to the efficient energy
transfer to other degrees of freedom in the scattering process the number of molecules that have
enough kinetic energy to become ionized is strongly reduced, in particular for energies close to the
ionization threshold. At higher kinetic energies the fraction of molecules retaining sufficient kinetic
energy in the scattering process becomes larger, leading to the increase in the ionization probabil-
ity.
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