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Abstract

Recent years have seen a tremendous progress in the microscopic theoretical treatment of
surfaces and processes on surfaces. While some decades ago a phenomenological thermody-
namic approach was dominant, a variety of surface properties can now be described from first
principles, i.e. without invoking any empirical parameters. Consequently, the field of theoretical
surface science is no longer limited to explanatory purposes only. It has reached such a level of
sophistication and accuracy that reliable predictions for certain surface science problems have
become possible. Hence both experiment and theory can contribute on an equal footing to the
scientific progress.

In this lecture, the theoretical concepts and computational tools necessary and relevant for
theoretical surface science will be introduced. A microscopic approach towards the theoretical
description of surface science will be presented. Based on the fundamental theoretical entity,
the Hamiltonian, a hierarchy of theoretical methods will be introduced in order to describe
surface structures and processes at different length and time scales. But even for the largest
time and length scales, all necessary parameters will be derived from microscopic properties.

1 Introduction

It is the aim of theoretical surface science to contribute significantly to the fundamental under-
standing of the underlying principles that govern the geometric and electronic structure of surfaces
and the processes occuring on these surfaces such as growth of surface layers, gas-surface scattering,
friction or reactions at surfaces [1]. Processes on surfaces are play a tremendous technological role
since every device interacts with the environment through its surface. Some processes at surfaces
are very beneficial. For example, chemical reactions can be enormously facilitated at the surface
of a catalyst. Some processes at surfaces, however, are harmful, such as corrosion or also friction.

On the experimental side, modern surface science is characterized by a broad variety of tools with
microscopic resolution, the most prominent being the scanning tunneling microscope (STM) [2]
which allows to image single atoms of a surface. Integrating techniques based on scattering such
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Figure 1: Simulation of surface structures and processes at surfaces on the computer.

as low energy electron diffraction (LEED) also give precise information about atomic positions
on surfaces. As far as theory is concerned, while some decades ago theory could more or less
only give qualitative explanations for surface science problems, the considerable improvement of
computer power and the development of efficient algorithms have made it possible to describe
many surface properties qualitatively and even quantitatively from first principles, i.e. without
invoking any empirical parameters. It is true that the solution of the theoretical problems requires
a computational approach. However, this approach is advanced enough that computational surface
science may act as a virtual chemistry and physics lab at surfaces (see Fig. 1). Hence there is now
a very fruitful give-and-take situation between experiment and theory with theory also being able
to make reliable predictions [3].

In this chapter, I will give an introduction into the current status of theoretical surface science
based on electronic structure theory. I will follow a hierarchical approach. First the basic theoretical
entity, the Hamiltonian, will be discussed, and then methods to solve the corresponding Schrödinger
equation will be introduced on microscopic properties. Using prototypical examples, I will give an
overview over the geometric and electronic structure of surfaces and the interaction of molecules
with surfaces.

2 The Hamiltonian

In solid state physics as well as in chemistry, the fundamental particles are nuclei and electrons
interacting with each other through electrostatic forces. Neglecting relativistic and magnetic effects,
the Hamiltonian describing a system of nuclei and electrons is given by

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el , (1)

where Tnucl and Tel are the kinetic energy of the nuclei and the electrons, respectively, and the
other terms describe the electrostatic interaction between the positively charged nuclei and the
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electrons. Explicitly, the single terms are

Tnucl =
L∑

I=1

P2
I

2MI
, Tel =

N∑
i=1

p2
i

2m
, (2)

and
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1
2

∑
I 6=J

ZIZJe
2

|RI −RJ |
, Vnucl−el = −

∑
i,I

ZIe
2

|ri −RI |
, Vel−el =

1
2

∑
i6=j

e2

|ri − rj |
. (3)

Here, atomic positions are denoted by capital letters, and CGS-Gaussian units have been used. In
principle, we could stop here because all what is left to do is to solve the many-body Schrödinger
equation using the Hamiltonian (1)

HΦ(R, r) = EΦ(R, r) , (4)

taking the proper quantum statistics such as the Pauli principle for the electrons into account.
Unfortunately, the solution of the Schrödinger equation (4) in closed form is not possible, except
for textbook examples such as the harmonic oscillator or the hydrogen atom. In order to solve this
Schrödinger equation, a hierarchy of approximations is necessary. Usually the first approximation
is the Born–Oppenheimer or adiabatic approximation [4] which is based on the separation in the
time scale of processes involving electrons and atoms because of their large mass mismatch. Hence
one assumes that the electrons follow the motion of the nuclei almost instantaneously.

In practice, one splits up the full Hamiltonian and defines the electronic Hamiltonian Hel for fixed
nuclear coordinates {R} as follows

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (5)

The eigenvalues Eel({R}) of the electronic Schrödinger for a given fixed configuration {R} of the
nuclei

Hel({R})Ψ(r, {R}) = Eel({R})Ψ(r, {R}) . (6)

then define the Born–Oppenheimer energy surface which acts as the potential for the nuclear
motion. It is important to realize that within the Born-Oppenheimer approximation electronic
excitations and electronically non-adiabatic effects are entirely suppressed. In order to describe
these processes, one has to go beyond the Born-Oppenheimer approximation.

The electronic Schrödinger equation (6) is still complex enough that its solution is not trivial. As
indicated in Fig. 1, in surface science one typically deals with systems where a finite object, a
molecule, is interacting with a semi-infinite substrate whose ideal three-dimensional periodicity is
broken in one direction. Historically, quantum chemists were the first to treat surfaces theoretically
describing the surface in the cluster approach as a big molecule with wave-function based meth-
ods. In recent years, periodic calculations using density functional theory (DFT) [5] have become
dominant in this field since their computational effort scales much more favorably with system size
than wave-function based methods.

Before addressing methods to solve the electronic Schrödinger equation in more detail, we will first
discuss the symmetry properties of surfaces. This is directly relevant for solving the Schrödinger
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Figure 2: Structure of surfaces. Left panel: fcc crystal with (100) faces and one (111) face, right
panel: fcc crystal with (100) faces and one (110) face. The surface unit cells of the corresponding
faces are also indicated in the figure.

equation since every symmetry present in the Hamiltonian reduces the required computational
effort significantly. Furthermore, thereby we will also introduce the notation used for the charac-
terization of surfaces. The periodicity of a crystal lattice leads to the existence of the reciprocal
space which reflects the translational symmetry of a lattice. Its lattice vectors are defined by

b1 = 2π
a2 × a3

|a1 · (a2 × a3)|
. (7)

where the ai are the basis vectors of the real space. The other two basis vectors of the reciprocal
lattice b2 and b3 are obtained by a cyclic permutation of the indices in (7). By construction, the
lattice vectors of the real space and the reciprocal lattice obey the relation

ai · bj = 2πδij , (8)

where δij is the Kronecker symbol. Further details can be found in any textbook about solid state
physics [6, 7].

A surface can be thought as being created by just cleaving an infinite crystal along one surface
plane. A bulk-terminated surface, i.e. a surface whose configuration has not changed after cleavage,
is called an ideal surface. Surface planes in a crystal are denoted by the so-called Miller indices
hkl which are defined through the shortest reciprocal lattice vector hb1 + kb2 + hb3 that is
perpendicular to the particular plane. In Fig. 2, a fcc crystal with (100) faces is shown which have
a square symmetry. Furthermore, a (111) face with a hexagonal symmetry and a (110) face with a
rectangular symmetry are created by additional cuts. Together with the centered rectangular and
the oblique lattices these symmetry types form the five possible two-dimensional Bravais lattices.

It is important to realize that there is no surface that remains ideal. This is due to the fact
that at the surface compared to the periodic bulk there are nearest-neighbor atoms missing so
that the bonding situation is changed. If the atoms at the surface just change there position
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vertically without altering the surface symmetry, the surface is called to be relaxed. If, however,
the rearrangement of the surface atoms changes the symmetry and periodicity of the surface, the
surface is called to be reconstructed.

The symmetry of the surface of course also enters the Hamiltonian. It is always advantageous to
take into account all symmetries of the Hamiltonian since only states that belong to a particular
irreducible representation of the symmetry group of the Hamiltonian couple to each other through
the Hamiltonian. One consequence of the existence of the two-dimensional periodicity along the
surface is that the Bloch theorem is applicable in two dimensions. This means that the electronic
single-particle wave functions form two-dimensional Bloch states

ψk‖(r) = eik‖·ruk‖(r) , (9)

where uk‖(r) has the two-dimensional periodicity of the surface.

3 Electronic structure calculations

The first calculations of surface structures were done by quantum chemists in the cluster approach
in which the surface is regarded as a big molecule and not as an infinite periodic structure. This
ansatz is guided by the idea that bonding on surfaces is a local process. However, these wave-
function based calculations become prohibitively expensive for larger systems. Furthermore, this
cluster approach is not really reliable for the description of extended electronic state [8] as present
in, e.g., metals.

Nowadays, electronic structure calculations dealing with surfaces are predominantly performed in
the framework of density functional theory (DFT) [9, 10]. They offer a good compromise between
computational efficiency and sufficient accuracy for many systems. DFT can be regarded as an
extension of the Thomas-Fermi theory [11] to inhomogeneous situations [9]. It is based on the
Hohenberg-Kohn theorem which states that the exact ground-state density and energy can be
determined by the minimization of the energy functional E[n],

Etot = min
n(r)

E[n] = min
n(r)

(T [n] + Vext[n] + VH[n] + Exc[n]) . (10)

From the Hohenberg-Kohn theorem also follows that there is a one-to-one correspondence be-
tween the electron ground-state density n(r) and the external potential vext(r). Vext[n] and VH [n]
are the functionals of the external potential and of the classical electrostatic interaction energy,
respectively, while T [n] is the kinetic energy functional for non-interacting electrons. All quan-
tum mechanical many-body effects are contained in the so-called exchange-correlation functional
Exc[n], which is an universal functional of the density, i.e., it does not depend on any particular
element, but unfortunately it is not known in general.

Since the kinetic energy functional T [n] is not precisely known for inhomogeneous situations, the
Hohenberg-Kohn theorem is not useful for a direct implementation of the DFT (however, there is
recently a renewed interest in so-called orbital-free DFT calculations [12]). Instead, one expresses
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the electron density n(r) as the sum over so-called single-particle Kohn-Sham states

n(r) =
N∑

i=1

|ψi(r)|2 , (11)

which are obtained by a self-consistent solution of a set of coupled effective one-particle equations,
the Kohn-Sham equations [10]{

− ~2

2m
∇2 + vext(r) + vH(r) + vxc(r)

}
ψi(r) = εi ψi(r) , (12)

where vext is the external potential. The Hartree potential vH is given by

vH(r) =
∫
d3r′n(r′)

e2

|r− r′|
. (13)

Furthermore, the exchange-correlation potential vxc(r) is the functional derivative of the exchange-
correlation functional Exc[n]

vxc(r) =
δExc[n]
δn

. (14)

The ground state energy can then be expressed as

E =
N∑

i=1

εi + Exc[n]−
∫
vxc(r)n(r) d3r− VH . (15)

The first term in the total-energy expression (15) is also called the band structure term Ebs since
it corresponds to the sum over the single-particle energies. The Kohn-Sham equations have to be
solved iteratively in a self-consistent scheme since the solutions of the Kohn-Sham equations also
enter the effective one-particle Hamiltonian. Initially the electron density is guessed, for example
as a superposition of atomic densities. The Kohn-Sham equations are then solved and the resulting
density is compared to the initial guess. If the difference is larger than some pre-specified value,
the new density enters the Kohn-Sham equations (often using some mixing scheme), and the cycle
is repeated so often until the iterations no longer modify the solutions, i.e. until self-consistency is
reached.

In principle, DFT provides an exact expression of the total energy. Unfortunately, this is of no great
practical advantage since the correct form of the non-local exchange-correlation functional and the
related exchange-correlation potential vxc is not known. Therefore, approximative expressions are
needed. For bulk situations, the local density approximation (LDA), in which at any position r the
exchange-correlation potential of the homogeneous electron gas with the corresponding electron
density is used, has been surprisingly successful [13]. However, for chemical reactions at surfaces the
LDA not sufficiently reliable [14]. For large scale DFT calculations of surfaces and nanostructures
the so-called generalized gradient approximation (GGA) [15] represents the state of the art. In
the GGA, the gradient of the density also into account in the exchange-correlation functional,
but in such a way that important electronic sum rules are obeyed. The GGA yields a satisfactory
accuracy for many applications, although there are still exceptions [16, 17]. There is certainly a
strong need for further improvements of the exchange-correlation functionals.
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Figure 3: Illustration of the supercell approach. A substrate of a fcc crystal with a (410) surface
termination and an adsorbed periodic atomic layer in a (2 × 1) geometry is represented by an
infinite array of slabs. The supercell and the surface unit cell are indicated in the figure.

It is numerically very efficient to use a plane-wave expansion of the Kohn-Sham single-particle
states, but such an approach usually requires a three-dimensional periodicity of the considered
system. Still, plane-wave codes can be used to model surface problems in the so-called supercell
approach: the surfaces are modeled by periodically repeated slabs. In Fig. 3, a typical supercell
describing the adsorption of atoms at the step sites of a nanostructured fcc(410) surface in a
(2× 1) geometry is shown. The slabs have to be thick enough to reproduce the correct electronic
structure of the substrate, and they have to be separated enough in order to avoid any interaction
between the slabs. One advantage of the slab approach is that the substrates are infinitely extended
in lateral directions which yields a correct description of the delocalized nature of the electronic
states of metals, a feature that is not present when the substrate is modeled by finite clusters [8].

4 Electronic and geometric structure of surfaces

At a surface of a solid, the electronic structure is strongly modified with respect to the bulk
electronic structure. Although the periodicity parallel to the surface is conserved, along the surface
normal the periodicity is broken so that the wave number kz of the Bloch waves no longer is a
good quantum number. There is a very simple model which is able to illustrate some fundamental
properties of the electronic structure of surfaces, in particular simple metal surfaces, namely the
so-called jellium model. In this model, the positive ion charges are replaced by a uniform charge
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Figure 4: Charge density as a function of the distance from the surface in Fermi wavelengths
determined within the jellium model for two different background densities denoted by the Wigner–
Seitz radius in atomic units, i.e., in multiples of the Bohr radius (after [18]).

background,

n+(r) =

{
n̄, z ≤ 0

0, z > 0
. (16)

Here z denotes, as usual, the direction perpendicular to the surface. The bulk charge density in
the jellium model is commonly specified by the Wigner–Seitz radius

rs =
(

3
4πn

)1/3

, (17)

which corresponds to the radius of the sphere whose volume V/N = 1/n equals the volume per
electron in the homogeneous electron gas.

Using DFT, the charge density within the jellium model has been determined for several different
different bulk charge densities [18]. Two examples corresponding to a high-density (rs = 2) and
a low-density metal (rs = 5) are shown in Fig. 4. The electron distribution does not follow the
sharp edge of the positive background but rather exhibits a damped oscillatory structure inside the
jellium which is stronger in the low-density case. These Friedel oscillations are a consequence of
the sharp edge of the background density in the jellium model [1]. Furthermore, it is obvious that
some electronic charge density spills out into vacuum, thereby creating a dipole layer. This dipole
layer contributes to the so-called work function of the metal Φ which is defined as the minimum
work that must be done to remove an electron from a solid at 0 K.

The jellium model has been used to evaluate the work function of simple and noble metals [19]
which is typically in the range of 2 to 5 eV. For simple sp-bonded metals such as Na, K or Cs
with rather delocalized electron orbitals, the jellium model is surprisingly successful, however, for
metals with d electrons which are much more localized the jellium model is no longer appropriate.
Furthermore, the jellium model can also not describe the occurrence of surface states which are
electronic states localized near the surface. These states are a consequence of a band gap in the
projected bulk band structure which allows for metal states that are delocalized parallel to the
surface but decay exponentially into the bulk.
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Figure 5: Layer-resolved, local d-band density of states of Pd(210) determined by GGA-DFT
calculations. The Fermi level and the center of the d-band are indicated by vertical lines. The
third-layer PDOS is already very close to the bulk density of states of palladium (after [23]).

Furthermore, at a surface the local density of states (LDOS)

n(r, ε) =
∑

i

|φi(r)|2 δ(ε− εi) . (18)

is also modified compared to the bulk. In a simple tight-binding picture, the width of an electronic
band is directly related to the coordination and the overlap of the orbitals. Surface atoms have
a lower coordination than bulk atoms, hence the local band width will become narrower. In fact,
the same is also true for pseudomorphic overlayers under tensile strain which reduces the overlap
between the electronic orbitals [20, 21, 22]). If the band is more than half-filled but not completely
filled and the band center is kept fixed, the number of states below the Fermi energy will increase.
This would lead to an higher occupation of the band. However, the number of electrons is conserved.
In order to obey charge conservation, the narrower band has to shift up so that the number of
occupied states remains unchanged.

This effect is illustrated in Fig. 5 where the results of GGA-DFT calculations concerning the layer-
resolved, local d-band density of states of the stepped Pd(210) surface are shown [23]. The LDOS
of the third layer is still rather similar to the Pd bulk density of states. This is due to the good
screening properties of metals [6] which lead to a rapid recovery of bulk properties in the vicinity
of imperfections such as surfaces. However, the width of the d-band of the second and first layer
are significantly reduced, and this reduction in band width is accompanied by an upshift of the
d-band centers indicated by the vertical dashed lines.

Such an upshift of the d-band has significant consequences for the reactivity which can be un-
derstood within the so-called d-band model [24, 25]. This scheme is closely related to the frontier
orbital concept developed for gas-phase reactions [26, 27]. In the d-band model, the whole d-band
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Figure 6: First-principles surface energies for the 4d transition metals calculated using density
functional theory within the local density approximation [32]. The energies have been determined
for the (111), (100) and (110) surfaces in the fcc structure even for the hcp metals Y, Zr, Tc and
Ru and for the bcc metals Nb and Mo. (a) surface energy in eV/atom, (b-d) structure of the fcc
(111), (100) and (110) surface, respectively; (e) electron density of a Cu(001) surface along a (010)
plane calculated by DFT-GGA calculations [1] together with the notation of the layer spacing dij .

is replaced by an effective level located at the center of the d-band εd. This level then interacts
with the molecular orbitals of an adsorbate. If the interaction is sufficiently strong, the molecular
levels split because of the strong hybridization with the metal d-states into a bonding and an
anti-bonding contribution. The closer the d-band center is to the Fermi energy, the more reac-
tive the system usually is because the less any anti-bonding contribution is occupied. If relatively
similar systems are compared which only differ in the position of the d-band center, to first order
a linear relationship between the d-band center shift and the change in the chemisorption strength
∆Ed [28, 29] results,

δEd = − V 2

|εd − εa|2
δεd , (19)

which means that an upshift of the d-band leads to a stronger interaction or larger energy gain.
This explains why low-coordinated sites such as for example step sites can exhibit a significantly
higher reactivity than flat terrace sites [30, 31].

Energetically, however, stepped metal surfaces are unfavorable. In fact, the more densely packed
a certain lattice plane and the higher coordinated the atoms in that plane, the less bonds have to
be broken upon cleavage. Hence the most densely packed surface should have the lowest surface
energy. This is indeed the case for almost all 3d, 4d and 5d transition metals. We have illustrated
this trend in Fig. 6 where calculated surface energies for the fcc(111), (100) and (110) termination of
the 4d transition metals are plotted in eV/atom [32] together with an illustration of their structure.
The densely packed (111) surfaces with their ninefold coordinated surface atoms have the lowest
surface energy per atom, i.e. they correspond to the most stable structure, while the more open
(100) surfaces (eightfold coordination) and the (110) (sixfold coordination) are less stable.

Figure 6 also indicates the chemical trend in the surface energies. There is a parabolic shape of the
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surface energies as a function of the d-band occupation. In order to make this dependence more
obvious, all surface energies have been calculated for the fcc structure, even for the hcp metals
Y, Zr, Tc and Ru and for the bcc metals Nb and Mo. The surface energies are maximal for a
half-filled d-band, while they are minimal for either an empty or a completely filled d-band. The
same trend is also observed for the 3d and the 5d transition metals [33] and is already well-known
for the cohesive energies [6]. The relationship between the cohesive and the surface energies can
be made quantitative within the so-called bond-cutting model which takes into account that the
bond strength varies with the coordination number. For a low-coordinated atom the single bonds
are stronger than for a high-coordinated atom.

In a simple tight-binding picture, the energy per bond can be assumed to scale with (Nc)1/2. If we
denote the surface energy per atom by σ, we can estimate it by

σ =

√
N bulk

c −
√
N surf

c√
N bulk

c

E′
coh , (20)

where N bulk
c and N surf

c are the coordination number of the bulk and the surface, respectively,
and E′

coh is the cohesive energy related to a non-magnetic atom for a non-magnetic surface. For
a fcc(111) surface Eq. (20) yields a surface energy per atom of σ = 0.134E′

coh which gives results
rather close to the ones plotted in Fig. 6a.

The electron density at a metal surface is rather smooth, as illustrated in Fig. 6e. This is due to
the fact that at the surface the electrons are free to lower their kinetic energy by becoming more
uniformly distributed which results in the so-called Smoluchowski smoothing [34]. In addition, in
Fig. 6e the notation of the layer spacing dij is introduced. For an ideal surface, the layer spacing
would be the same as the bulk layer spacing. Real surfaces, however, show relaxation effect: due to
the modified environment compared to the bulk, the layer spacing is changed. Still the changes are
rather small for most metal surfaces, as is illustrated in table 1 for the low-index copper surfaces.
At metal surfaces, the smoothening of the electron density usually leads to a contractive relaxation
of the first layer. For the densely packed (111) and (100) Cu surfaces, this contraction is negligible,
but for the more open surfaces (see Cu(110)) it can be already rather significant. Furthermore,

Table 1: Surface energies γ and relaxations of the uppermost layer of various Cu surfaces. The
relaxations are given in percent relative to the bulk layer spacing d0(hkl).

Surface Method γ (J/m2) ∆d12 ∆d23 ∆d34 d0(hkl) (Å)

Cu(111) Theorya 1.30 -0.9 -0.3 2.10
Cu(111) Exp. ∼1.79b -0.7c

Cu(100) Theorya 1.45 -2.6 1.5 1.821
Cu(100) Exp. ∼1.79b -2.1d 0.4d 0.1d 1.807
Cu(110) Theorye 1.53 -10.8 5.3 0.1 1.29
Cu(110) Exp. ∼1.79b -8.5f 2.3f

References: a) [35], b) [36], c) [37], d) [38], e) [39], f) [40],
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Figure 7: Structural models for the GaAs(100) surface. Dark, filled circles and bright, empty circles
represent As and Ga atoms, respectively. (a) Ball and stick model of the ideal (1×1) As-terminated
GaAs(100) surface. (b) Schematic top and side view of the β2(2×4) reconstruction. Larger circles
correspond to atoms closer to the surface.

many metal substrates respond to the contraction of the first interlayer spacing by an expansion
of the second interlayer, as for example the Cu(100) and (110) surfaces. However, this oscillatory
behavior does not necessarily occur.

In addition, in table 1 the surface energies are included. The experimental values are derived
from surface tension measurements which are made in the liquid phase and extrapolated to zero
temperature [36]. This does also mean that these surface energies are not related to any particular
crystal face, but it is obvious that the measured surface energy has the same order of magnitude as
the calculate ones. Furthermore, for the low-index surfaces of Cu the trend γ(111) < γ(100) < γ(110)

is confirmed.

While for the transition metals the modified bond-cutting model Eq. (20) gives a reliable estimate
of the surface energies, the situation for the divalent fcc and bcc sp-metals is not that simple.
For metals such as Ca, Sr or Ba the surface energies of the second most close packed surface are
consistently smaller than the ones of the most closed packed surface [33]. Even more complex is
the situation for semiconductor surfaces. Truly directional bonds between atoms will be broken
upon cleavage which creates an highly unstable state. The surface will try to minimize the number
of unsaturated bonds, the so-called dangling bonds. A prominent example of the resulting surface
reconstruction is provided by the GaAs(100) surface.

The evaluation of the most stable surface structure for compound materials is more complex than
for elemental materials, because the relevant entity is no longer the total energy but rather the
free energy which at zero temperature is given by

γ =
1
A

(Esurf −
∑

i

µiNi) . (21)

The chemical potentials µ reflect the specific thermodynamic conditions of the preparation of the
surface, i.e., the reservoir with which the atoms are exchanged in a structural transition. For gas-
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Figure 8: Al2O3(0001) surface. a) Side view of the ideally Al-terminated surface structure showing
the Al-O-Al trilayer structure. b) Surface energies of different Al2O3(0001) (1 × 1) structure in
J/m2 as a function of the difference of the oxygen chemical potential (after [43]). The uppermost
layers of the corresponding structures are indicated in the figure. The perpendicular lines indicate
the range of possible oxygen chemical potentials.

phase deposition, they can be directly related to the partial pressure at a certain temperature.
Esurf is the total energy of the surface per unit cell. As far as the structure of GaAs(100) is
concerned, the ideal surface structure (Fig. 7a) is highly unstable because of the large number of
broken bonds. The GaAs surface tries to minimize the number of dangling bonds by dimerization.
Still, at the dimer atoms of a (100) surface one dangling bond per atom remains. In general, polar
semiconductors exhibit surface reconstructions with the anion dangling bonds filled and the cation
dangling bonds empty. This so-called electron-counting principle leads to a semiconducting surface
since the occupation of Ga dangling bonds which are higher than As dangling bonds would result
in a metallic surface which is energetically unfavorable. The β2(2×4) surface structure (see Fig. 7b)
fulfilling these requirements is stable over a wide range of As chemical potentials [41, 42].

Finally the structure of ionic surfaces shall be addressed. Typically alkali halide crystals in equilib-
rium are almost ideally terminated by non-polar surfaces without any dipole moment perpendicular
to the surface. A typical example is the {100} surface of the sodium chloride structure. Since the
formation of a dipole layer is energetically rather costly, polar surfaces are usually highly unsta-
ble. Because of that reason salt grains have an almost perfect cubic shape. Surface structures are
more complicated for insulating oxide materials where the bonds still have a covalent character
although there is a significant charge transfer between the constituents. As an example, we consider
the (0001) surface of α-Al2O3 (corundum or sapphire) which has been studied extensively by both
theory [43, 44, 45, 46] and experiment [47, 48].

α-Al2O3 (sapphire) crystallizes in the corundum structure that can be described by a primitive
rhombohedral unit cell with two Al2O3 formula units, but more convenient is the hexagonal unit
cell that contains 12 Al atoms and 18 O atoms. The hexagonal cell corresponds to a layered
structure with six oxygen planes associated with aluminum planes above and below it, forming
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stoichiometric triple Al-O-Al layers with three O atoms and just one Al atom in each layer per
unit cell, as can be seen in a side view of the ideally Al-terminated α-Al2O3(0001) surface shown in
Fig. 8a. Because of this layered structure, there is no non-polar termination of the α-Al2O3(0001)
surface.

Figure 8b shows the calculated surface energies as a function of the oxygen chemical potential for
different (1×1) terminations [43, 46]. These surface free energies have been determined using Eq. 21.
In fact, the total energy of every surface structure has to be calculated only once, and the slope
of the curves is given by the stoichiometry of the surface with respect to the bulk stoichiometry.
The two perpendicular lines indicate the range of possible oxygen chemical potentials. For larger
oxygen chemical potentials molecular oxygen is more stable, for smaller chemical potentials bulk
Al becomes the preferred phase. Within the range of possible chemical potentials the structure
with the lowest free energy is the one that is stable. According Figure 8b, over the entire range
of oxygen chemical potentials the stoichiometric AlO3Al-termination is by far the energetically
most favorable one. This can be understood by simple electrostatic arguments because the triple
AlO3Al layer does not have a dipole moment while all other (1× 1) surface terminations have one.
However, it should be noted that there is a strong inward relaxation of the first Al-layer so that
it practically becomes coplanar with the oxygen layer [43, 49]. In contrast, the interlayer spacing
between the second and third layer is only slightly modified compared to the bulk spacing.

5 Interaction of atoms and molecules with surfaces

The interaction of atoms and molecules with surfaces is ubiquitous since all materials interact with
their environment via their surfaces. Certain chemical reactions can be significantly accelerated
at surfaces which is used in heterogeneous catalysis. However, for many devices and applications
any interaction with the environment should be rather avoided. One example is the high energetic
exchange between the atmosphere and rockets or high-speed missiles which causes significant tem-
perature rises that lead to chemical reactions and particle ionizations. Hence a deeper knowledge
about the principles underlying gas-surface interactions and adsorption is not only of fundamental
interest, but it is also technologically very relevant.

Basically one distinguishes two kinds of adsorption at surfaces. If true chemical bonds between
substrate and adsorbate are formed, it is called chemisorption, otherwise it is called physisorption
which is usually much weaker. We will start by discussing the nature of physisorption.

Any molecule in front of a surface experiences an attraction towards the surface caused by the van
der Waals forces, i.e., the attraction is due to the induced dipole moment interacting with its own
image charges in the polarizable solid. Although this interaction is usually rather weak (∼ 0.1 eV),
it is in fact crucial for the bonding in a wide range of matter. Although the van der Waals interaction
is a quantum phenomenon, some basics about this interaction can be understood within a purely
classical picture. In Fig. 9, a hydrogen atom in front of a metal surface is schematically drawn.
This hydrogen atom is interacting with its image charges of both the nucleus and the electron in
the conductor. If one adds up the electrostatic interaction of all charges and performs a Taylor
expansion in the small parameter |r|/|R|, where |R| = Z and |r| are the atom-surface and the
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Figure 9: Van der Waals interaction: schematic illustration of a hydrogen atom in front of a perfect
conductor interacting with its image charges.

proton-electron distance, respectively, one obtains

Vim = − e2

8Z3

[
x2 + y2

2
+ z2

]
+

3e2

16Z4

[z
2
(x2 + y2) + z2

]
+O(Z−5) . (22)

Here, x, y and z are the components of r. Introducing the atomic polarizability

α =
e2

meω2
vib

. (23)

and the van der Waals constant Cv = ~ωvibα/8, the electrostatic interaction can be written as

Vim(Z) = −Cv

Z3
− 3CvZ0

Z4
+O(Z−5) = − Cv

(Z − Z0)3
+O(Z−5) (24)

where Z0 is the so-called dynamical image plane. This expression confirms the long-range nature
of the van der Waals interaction which is proportional to Z−3. In this derivation, we have treated
the hydrogen atom as a dipole interacting with its image dipole at a distance 2Z. However, a
hydrogen atom in the ground state has no permanent dipole moment. Therefore a rigorous quantum
mechanical derivation of the long-range interaction between a neutral atom and a solid surface is
necessary. Still, such a quantum treatment results in an analogous expression as Eq. (24) with the
van der Waals constant also basically proportional to the polarizability of the atom [50].

The attractive van der Waals force is always present for any molecule interacting with surfaces,
but if close to the surface true chemical bonds are formed, then the additional, relatively weak
van der Waals interaction is negligible. Only for inert atoms and molecules with closed valence
shells such as the noble gas atoms, the van der Waals interaction is the main source of binding to
the surface. Close to the surface, the molecular wave functions start to overlap with the substrate
orbitals. Because of the Pauli principle the wave functions have to be orthogonal to each other
leading to the short-range Pauli repulsion. The balance between the short-range Pauli repulsion
and the long-range van der Waals attraction leads to the existence of a physisorption minimum.
Figure 10 shows the physisorption potential for He interaction with jellium surfaces with densities
corresponding to Ag, Cu and Au where the Pauli repulsion has been evaluated using Hartree–Fock
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Au and the simple metal Li, respectively (after [51]).

theory [51]. It is obvious that the physisorption minimum for He is rather far away from the surface
(>∼ 3 Å) and shallow (below 10 meV).

In contrast to physisorption, chemisorption corresponds to the creation of a true chemical bond
between adsorbate and substrate. This means that the electronic structure of both the substrate
and adsorbate are strongly perturbed by the interaction. As far as the energy gain upon adsorption
is concerned, the adsorption or bonding energy, there can be a delicate balancing between different
opposing effects so that it is not always easy to develop a true understanding. We will discuss here
some basic mechanisms, namely ionic and covalent bonding. Again we will use DFT calculations
addressing adsorption on a jellium surface in order to illustrate the main trends.

In order to identify the energetic contributions to chemisorption within density functional theory,
we regroup the different energetic terms in the total energy expression (15) yielding

Etot =
N∑

i=1

εi + Exc[n]−
∫
vxc(r)n(r)d3r− VH + Vnucl−nucl

=
N∑

i=1

εi + Exc[n]−
∫
veff(r)n(r)d3r + Ees . (25)

Here we have included the interaction between the nuclei or ion cores Vnucl−nucl (see Eq. 3) which
acts as a renormalization constant in any electronic structure calculation so that Ees corresponds
to the total electrostatic energy of the system. The sum

∑
εi = Ebs is the band-structure term.

The adsorption energy is given by the energy difference between the energies of the separate
constituents and the interacting system

Eads = (Etot(substrate) + Etot(atom))− Etot(adatom/substrate) . (26)

Here the adsorption energy is positive if the adsorption is stable. However, there is no consis-
tency in the literature as far as the sign of the adsorption energy is concerned. There are several
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Figure 11: Charge density and charge density difference plots of chemisorption systems calculated
with DFT methods. a) Contours of constant charge density calculated for Li, Si and Cl adsorbed
on a high-density jellium substrate. The solid vertical line indicates the jellium edge. Upper panel:
Total charge density of states; lower panel: charge density difference, broken lines correspond to
charge depletion (after [52]). b) Charge density difference plot of H2 adsorbed on the top site above
a Pd atom of a H(1×1)/Pd(210) surface. Regions of charge depletion are denoted by a minus sign
(after [23]).

terms contributing to the total energy and consequently to the energy difference. Most often, the
chemical interaction is analyzed in terms of the electronic band structure term and electrostatic
contributions.

The upper panel of Fig. 11a shows contours of constant charge density calculated for Li, Si and
Cl adsorbed on a high-density jellium substrate representative for Al[52]. Although there are some
differences, these plots still look rather similar for the three adsorbates. It is much more instructive
to look at the charge density difference between the interacting system and the superposition of
the bare atom and the substrate which corresponds to the adsorption induced charge density
redistribution and rehybridization. These plots exhibit regions of charge depletion and charge
accumulation indicating the charge transfer upon the adsorption.

The lower panel of Fig. 11a illustrates that there is charge transfer from the vacuum side of the
Li adatom towards the metal while for Cl there is a significant charge transfer from the substrate
to the adsorbate. This charge flow is caused by the difference in the electronegativity between the
metal and the adsorbates leading to positive ionic chemisorption in the case of Li and to negative
ionic chemisorption in the case of Cl. The adsorbed silicon atom, on the other hand, shows charge
transfer from the region close to the nucleus to both the vacuum and the bond region. Such a
charge accumulation in the bond region is typical for the formation of a covalent bond with the
maximum charge density in between the two bonding partners.

For realistic systems, charge density difference plots can reveal much more details of the interaction
between substrate and adsorbate. Figure Fig. 11b shows the adsorption induced charge redistri-
bution upon the adsorption of molecular hydrogen on top of a Pd atom of a hydrogen covered
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Figure 12: Change of the density of states upon the adsorption of Cl, Si and Li on jellium with an
electron density corresponding to Al (after [52]).

H(1×1)/Pd(210) surface [23, 53]. The main bonding occurs via the d3z2−r2 orbital of the Pd atom
which can already be deduced from the pattern of the charge redistribution. Furthermore, the
strong polarization of the adsorbed H2 molecule is visible leading to a significant reduction of the
work function [23, 53].

In addition to the spatial information about the charge redistribution upon adsorption, the change
in the density of states can give insight into the delicate energetic balance between band-structure
and electrostatic contributions to the chemical bonding. The change of the density of states upon
the adsorption of Li, Si and Cl is plotted in Fig. 12. There are several peaks that correspond
to adatom levels which have been shifted and broadened due to the interaction with the jellium
substrate.

The Cl 3p derived state is basically fully occupied since it is almost entirely below εF indicating the
negative ionic chemisorption, whereas the Li 2s derived state which is singly occupied in the free
atom lies primarily above the Fermi energy εF . This confirms the charge transfer from the Li atom
to the substrate and hence the positive ionic chemisorption. The density of states of Si adsorbed
on jellium shows two prominent peaks which can be associated with the Si 3s and 3p atomic levels.
The Si 3p derived state is only half-filled. Typically the lower part of such a resonance adds charge
to the bond region while the upper parts substract charge from this region [1]. The lower parts can
therefore be associated with a bonding contribution while the upper parts have an antibonding
character. Hence a half-filled resonance level corresponds to a covalent bonding interaction in weak
chemisorption cases. These considerations also explain why d-band metals with a half-filled d band
show the largest cohesive and surface energies (see Fig. 6). For Cl adsorption, both the bonding
and antibonding contributions are occupied. In this case it is the electrostatic attraction between
the Cl core and the transferred electron that stabilizes the adsorption.

In order to illustrate the possible complexity of the molecule-surface interaction, we will use the
dissociative adsorption of methanol on Cu(110) as an example [54]. The interaction of methanol
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Cu substrate (after [54]).

with copper surfaces is of strong current interest in the context of the catalytic oxidation and
synthesis of methanol. On oxygen-covered Cu(110), methanol (CH3OH) dissociates spontaneously
into methoxy (CH3O) and hydroxyl (OH, see Fig. 13a). The methoxy radical is strongly interacting
with the copper surface. The 2e orbital which corresponds to a nonbonding π orbital on oxygen
is only partially filled in the gas-phase [55]. As Fig. 13b shows, this 2e orbital is significantly
broadened by the direct coupling to the Cu d-states which causes the high adsorption energy. The
oxygen px and py (1e) states are no longer degenerate, but split by the reduced symmetry at the
adsorption site. Furthermore, the pz (5a1) orbital is shifted down by about 2 eV between the two
1e-derived peaks.

Such a significant rearrangement of the electronic structure is always indicative of a strong inter-
action between adsorbate and substrate. This is also reflected in the relatively large adsorption
energy of almost 3 eV [54]. However, a strong interaction is not always associated with a large bind-
ing energy. For example, formaldehyde (CH2O) adsorbed above the short-bridge site of Cu(110)
also exhibits a considerable rehybridization of its levels upon adsorption. Still, it is only bound by
0.6 eV to Cu(110). This is due to the fact that the adsorbed formaldehyde is significantly distorted
so that the energy gain upon adsorption is compensated to a large extent by the energetic cost of
the deformation of the molecule [54].

6 Conclusions

In this short introduction into theoretical surface science I have given a brief overview over the main
theoretical tools to address surface problems from a microscopic point of view. Some illustrative
examples have been used in order to discuss the main mechanisms underlying the structure of
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surfaces and the interaction of atoms and molecules with surfaces. Of course, surface science
is a much broader field that also covers, e.g., phase transitions at surfaces or the dynamics and
kinetics of gas-surface interactions and reactions at surfaces. A decription of these processes requires
further theoretical methods and tools. However, the combination of methods such as molecular
dynamics simulations or thermodynamical approaches with information from electronic structure
calculations permits to address complex stuctures and processes at surfaces from first principles,
even on rather long length and time scales. This makes theoretical surface science to a very active
and fruitful research field in close collaboration with the experiment allowing detailed insights into
the microscopic world at surfaces.
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