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Abstract4

Due to the ever-increasing improvement in computer power and the development of more efficient5

codes, atomistic first-principles calculations have become an indispensable tool in materials and interface6

chemistry. They are no longer limited to explanatory purposes but have gained predictive power, so that7

computational modelling and experiment can collaborate on the same footing. Still, quantum chemical8

first-principles methods are computationally expensive, and there are certain limitations as far as their9

scaling behavior in high-performance computing is concerned. Hence computational methods based on10

machine learning have become increasingly popular as an alternative approach to study materials and11

interfaces. Here some success stories of both approaches will be presented and their respective advantages12

and disadvantages will be critically discussed.13

1 Introduction14

In recent years, first-principles quantum chemical calculations have tremendously contributed to further our15

understanding of structures and processes in materials [10], at surfaces and interfaces [8], in catalysis [22], in16

electrochemical energy storage and conversion [11], just to name a few. They have become an indispensable17

tool in research, but they also play an increasingly important role for example in the materials development.18

Still, in spite of the ever-increasing computer power and the development of more efficient codes, quantum19

chemical studies are still restricted to at most a few thousand atoms, either in total or per unit cell in periodic20

codes, because of the exponential scaling of these codes with the number of considered atoms.21

With the advent of methods and techniques based on articial intelligence (AI) and machine learning (ML),22

there have been also numerous attempts to use these techniques in computational materials and interface23

chemistry [5]. One of the earliest applications has been to use artificial neural networks (NNs) in the construc-24

tion of chemical interaction potentials [14] as a reliable substitute for classical force fields, allowing to perform25

simulations at much longer time and length scales compared to first-principles simulations. Signficant progress26

has been made in the meantime, also allowing to reproduce long-range charge transfer employing advanced27

NN potentials [4].28

Another more recent application of AI and ML techniques to materials and interface problems is the29

identification of so-called descriptors [25] which correspond to a correlation between a fundamental materials30

property and a functional property in the sense of structure-property relationships. Here, we will present31

recent examples of studies in computational materials and interface chemistry and compare first-principles32

with AI-based approaches.33

2 Modelling of electrochemical interfaces34

Electrochemical interfaces between electrodes and electrolytes play an essential role in the electrochemical35

energy conversion and storage [11]. However, their theoretical modelling is computationally rather expensive,36

in particular when liquid electrolytes are involved, as their proper theoretical treatment requires demanding37

statistical sampling of complex and extended systems [19]. This numerical demand can be addressed by38
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Figure 1: Schematic architecture of a feed-forward neural network with the neurons arranged in layers.
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(from Ref. [14] under the terms of the Creative Commons

Attribution 3.0 License).

representing the chemical interaction between the atomic species in the system through adjusting fitting39

functions.40

Artificial neural networks have become rather popular in this regard as they can in principle approximate41

any continuous function to arbitrary accuracy. Neural Networks can be regarded as an expansion in general,42

non-linear fitting functions that do not require any assumptions about the functional form of the underlying43

problem [4, 14]. The functions are chosen to mimic the functioning of neurons in the brain. A schematic44

presentation of an artificial NN is shown in Fig. 1. It is constructed from a number of artificial neurons or45

nodes that are typically arranged in layers and interconnected via a set of links. The particular functional form46

used in the construction of NNs is given in the captions of Fig. 1.47

NN potentials constructed in this way from density functional theory input data have been used, among48

many other applications [5], to model structures and processes at the interface of water with low-index metal49

surfaces [16, 13]. The left panel of Fig. 2 illustrates these simulations. NN molecular dynamics simulations50

have been performed for several water layers on Cu surfaces including about 2000 atoms in the periodic cell51

for run times of about 1 ns. Figure 2 shows contour plots of the distribution of the oxygen atoms of the52

water molecules in the first hydration layer of Cu(111)–water interfaces [13]. In this particular study, the53

self-diffusion of surface defects such as adatoms and vacancies at copper–water interfaces was studied. This54

study demonstrated that water structures close to adatoms and vacancies differ strongly from those at flat55

metal surfaces. Systems sizes and time scales considered in this NN study can not be realized by first-principles56

simulations.57

However, for electrochemical applications one has to take into account that the electrolytes contain ions58

that can strongly interact with electrodes, in particular as far as anions are concerned [7, 6]. Therefore, in order59

to realistically model electrochemical interfaces, additional elements have to be included in the NN potential.60

Unfortunately, the construction of NN potentials exhibits an unfavorable scaling with the number of elements,61

as all possible permutations of the elements have to be taken into account in the construction of the NN62

potentials [4]. Furthermore, the modelling of electrochemical interfaces often requires to take the electronic63

degrees of freedom explicitly into account. This is illustrated in the right panel of Fig. 2 where results of ab64

initio molecular dynamics (AIMD) simulations of a water film at Pt(111) [19] are illustrated. The water metal65

interface was modeled by six water layers within a 6×6 surface unit cell corresponding to 144 water molecules66

on a five-layer Pt(111) slab, and the AIMD simulations could just been run for 40 fs.67

Averaging the work function, i.e., the energy to extract an electron from the electrode to the vacuum68
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Figure 2: Simulation of water/metal interfaces. Left panel: Contour plots showing the distribution of the
oxygen atoms of the water molecules of NN simulations of the first hydration layer of the Cu(111)–water
interface for the ideal surface (a), the surface with an adatom (b), and a surface with a vacancy (c). (Reprinted
with permission from Ref. [13]. Copyright 2017 American Chemical Society.) Right panel: (a) snapshot and
(b) time evolution of the work function along an AIMD trajectory of the water/Pt(111) interface equilibrated
at 298 K. (c) Electrostatic potential V (z) of Pt(111) in vacuum (dashed line) and averaged in water together
with the difference δV (z). (Reprinted from Ref. [19], with the permission of AIP Publishing.)

region through an ion-free water film along the simulations yields the so-called potential of zero charge of69

the particular metal electrode. The results of the AIMD simulations have been in good agreement with70

experimental results [19]. A closer analysis of the charge distribution furthermore shows that the resulting71

dipole layer at the Pt/water interface dominating the work functions is not only governed by the reorientation72

of the polar water molecules in the first water layer above the Pt electrode but also by a strong charge transfer73

from the water layers to the Pt surface [19, 21] which is not trivial to reproduce using NN potentials.74

3 Descriptors75

Technological advances are often closely connected to the development of materials with improved properties.76

Atomistic computational studies play an increasingly important role in the study of materials [9], insights from77

such simulations and calculations can accelerate materials discovery. A particularly helpful concept to speed78

up materials development is based on the concept of so-called descriptors.79

Descriptors can defined as a fundamental materials property that is directly correlated to a desired (or80

undesired) functional property. As a very prominent example, the oxygen binding energy on metal catalysts81

can be used as a descriptor for the activity of the oxygen reduction reaction on these catalysts [17, 20], but82

also metal self-diffusion barriers have been proposed to act as a descriptor for the so-called dendrite growth83

in batteries [12], which is supposed to be the origin for battery fires. The determination of descriptors can84

considerably speed up the search for novel materials with desired functional or multifunctional properties,85

because, once they are identified, only the particular descriptor needs to be optimized in a first step to86

preselect promising candidate materials.87
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Figure 3: (a) Van Arkel-Ketelaar triangle for MgnXm binaries plotted as a function of the mean electronega-
tivity and the difference in the electronegativity of the two components. (b) Calculated migration barriers of
A = Li, Mg, and Ca in AnXm binaries as a function of the migration number NAX

migr for various elements X
according to Eq. (1). Linear regressions of the results are plotted as solid lines. (From Ref. [24] under the
terms of the CC BY 4.0 License.)

Traditionally, descriptors have been derived based on rational arguments and a concept of the principles88

underlying the connection between structural and functional properties [17]. Here we will present a recent89

example related to the ion mobility in crystalline electrodes and solid electrolytes [24]. Ion mobility is a critical90

parameter significantly influencing the efficiency of batteries [3]. Typically, this mobility has been discussed91

using the size of the migrating ions and the charge state, but no true understanding of the factors influencing92

the ion mobility across different classes of materials has been derived yet [3]. However, periodic density93

functional theory calculations of the ion site preference in spinel materials have shown that the charge carrier94

mobility in such materials can not be fully understood solely based on ionic concepts [23]. These findings95

have motivated more detailed investigations [24] of the ion mobility in a series of different materials. In fact,96

the bonding characteristics in materials can be classified in so-called Van Arkel-Ketelaar triangles [1] in which97

compounds are arranged according to the mean electronegativity χmean (x-axis) and the electronegativity98

difference ∆χ (y-axis) of the constituting elements (see Fig. 3a).99

Based on this notion, the migration parameter or number Nmigr was defined combining the square of the100

electronegativity with the known dependence of the diffusion barriers on the ionic radii (ri) and oxidation101

states (ni) of the involved compounds,102

NAX
migr = (rA + rX)nAnX∆χ2

AX/(NA +NX) , (1)

as the product of these three quantities. Figure 3b shows the dependence of migration barriers as a function103

of the migration parameter for the three migrating ions Li+, Mg2+ and Ca2+ in a number of binary materials,104

yielding a satisfactory linear scaling in all three cases. Such linear scaling relations can be rather helpful because105

once the scaling factor is known, promising candidates with a high ion mobility can be identified just based106

on materials parameters that are readily available from openly accessible tables without further computations.107

However, as such descriptors in principle correspond to a correlation between two properties, they can also108

be identified by statistical methods based, e.g., on machine learning techniques. And indeed such methods109

have been developed within the framework of compressed-sensing-based dimensionality reduction: The sure110

independence screening and sparsifying operator (SISSO) gives stable results for descriptors, also with small111

training sets [18]. This approach has been applied to the data presented in Fig. 3. Interestingly enough, this112

machine learning approach yielded a descriptor with some other functional dependencies which in fact was113

associated with a slightly larger root mean square error than the rationally derived descriptor Nmigr [24]. In114

order to understand this descrepancy, one has to take into account that the training set presented to the115

SISSO operator was still rather small. This is a common problem in many areas of materials and interface116

chemistry in which the number of reliable quantitative functional properties, derived either from experiment117

or from calculations, is still rather low [2].118

4



4 Discussion and Conclusions119

In this contribution, quantum chemical and machine learning approaches in computational materials and in-120

terface chemistry were compared with each other using a few selected example. As far as machine learning121

potentials derived from quantum chemical calculations are concerned, they allow to perform simulations of122

complex systems at much larger length and time scales as quantum chemical calculations, but with a com-123

parable reliability. However, the construction of the these potentials still scales rather unfavorably with the124

number of elements typically restricting these studies to systems with a small number of different elements.125

Furthermore, properties that explicitly depend on electronic degrees of freedom can still hardly be derived from126

these potentials. As an alternative approach to quantum chemical calculations, the implementation of the127

these methods on quantum computer is intensively discussed with first examples already available [15]. How-128

ever, these applications still suffer from the low fidelity of present quantum computers and the fact that still129

substantial input from quantum chemical calculations performed on classical computers is needed. Therefore,130

quantum chemical simulations on classical computers will most probably remain the basis for computational131

materials and interface chemistry studies for a long time.132

Artifical intelligence and machine learning methods are typically rather capable to find correlations in large133

data sets. Hence they should for example be well-suited to identify descriptors in materials and interface134

chemistry. Yet, in these fields the number of really reliable quantitative data is still limited. Consequently, a135

blended learning approach combining rational and numerical approaches might correspond to the method of136

choice at the moment.137
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