Electric Mobility

After far more than 100 years of development of combustion engines for road transport, electric mobility suggests to be the start of a technological transition in traffic systems. Electrification of the power trains is an important key to a sustainable future. It offers the possibility to reduce the dependency on oil, to minimize emissions, and to integrate the vehicle much easier into a multi-modal traffic system.


Dr.-Ing. Michael Buchholz
Room: 41.2.219
Phone: +49 (0)731 50 27003
E-mail | Homepage

Research Focus

Methods for vehicles with electric power trains and their components have successfully been developed applied since many years at the Institute of Measurement, Control an Microtechnology. The scope of vehciles reaches from commercial vehicles via passenger cars to electric two-wheelers. For these vehicle, real-time applicable and centralized operation strategies have been developed. These supervisory controls realize the acceleration and braking forces as well as the yaw moment requested by either the driver or the automated vehicle itself in a predictive, safe, and energy efficient manner. Furthermore, the model-based monitoring of the electric power train and its components has been addressed.

Another focus is laid on data-driven modelling of batteries and fuel cells for real-time applications on-board a vehicle. To achieve the goal of simple and accurate models for these complex components, new methods are developed to extract the required information from test rig measurements. This accurate and computationally cheap models are additionally used as a basis to develop and implement monitoring methods,  e.g. aging detection or fault detection and diagnosis.

Simulation: Predictive Operation Strategy
Simulation: Enhanced Safety for Motorbikes by All-wheel Drive

Test Vehicles and Test Rigs

The Electric Mobility group at the Institute of Measurement, Control and Microtechnology operates the test vecile EVA-MRM ("Elektrisches Versuchsfahrzeug mit Allradantrieb am Institut für Mess-, Regel- und Mikrotechnik", Electric Vehicle with All-wheel driven power-train at the MRM institute), an all-wheel driven electric moped as well as a battery cell test rig and an electric power train test bench. Both test vehicles have an official approval and homologation for road service, offer access to power train, braking system, as well as energy storage system,  and can be used for research and evaluation easily due to their central rapid-prototyping electronic control units. A more detailed description of the vehciles can be found on the page Electric Experimental Vehicles.

The battery cell test rig with a temperature chamber allows for a connected operation with the power train test rig for realistic cycling of battery cells. Both test rigs as well as the networked operation are described in detail on the page Electric Mobility Test Rigs.



Picture of electric experimental vehicle
Electric experimental vehicle
Picture of electric power train test rig and battery cell test rig
Electric power train test rig and battery cell test rig

Model Library

Within the project "XiL-BW-e - Frameworkbasiertes XiL-Labornetzwerk BW für Elektromobilität" (XiL-BW-e - framework-based XiL laboratory network Baden-Württemberg for electric mobility), which has been funded by the Ministery of Science, Research and the Arts of Baden-Württemberg, we developed three simple energy storage cell models. This models are freely available as ZIP archives without any kind of warranty. All models have been implemented in MATLAB/Simulink format and are only valid for dynamic cycling operation. The models have been parametrized from measurements of real cells. All further information including the information for correct citing if used in publications or theses are available within the comments of the start-up script of the respective model.

XiL-BW-e logo
Laboratory network XiL-BW-e