Current areas of research

The institute is in the process of building up a test-cluster system built with different hardware elements from energy efficient CPU over accelerators up to manycore systems to evaluate different approaches and methods for optimization of cloud image placement and programming models.

Research Areas

  • Autonomous Infrastructure Management

    • Collecttion of Data and Metris for Cluster Management based on the co-developed TIMACS framework
      (more information)
  • Energy efficient Computing

    • Context-Aware Topology Optimisation and Virtual Machine Placement for Cloud Environment
    • Energy efficient Compute System architectures
      • Energy efficient component integration e.g. low power CPUs
      • Integration with the facility environment (heat re-use)
  • Cloud Computing

    • Cloud executionware dealing with the platform specific mapping of the application to the architectural model and Application Programming Interfaces (APIs) of the execution infrastructure of the Cloud provider, and with capabilities of monitoring the running application and possible reconfiguration to optimise its behavior in particular within the EU project PaaSage (see
    • Future Cloud Architectures
  • Heterogeneous Computing Systems

    • Programming models for heterogeneous systems for embedded and high performance computing incorporating notions of cost for communication, data usage and access, algorithmic description
    • Operating Systems for large scale heterogeneous infrastructures that create minimal overhead for the system and thus exploits the resources best
    • Real-Time Systems & Scheduling with adaptive resource reservations and quality management for dynamic environments with unpredictable and fluctuating computational loads
Wikimedia Foundation Servers-8055 17