2020

Hybrid Microwave-Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions – I. Arrazola, M.B. Plenio, E. Solano, and J. Casanova, Physical Review Applied, 13, 024068 (2020)
DOI: doi.org/10.1103/PhysRevApplied.13.024068

Quantum coherence and state conversion: theory and experiment – K.-D. Wu, T. Theurer, G.-Y. Xiang, C.-F. Li, G.-C. Guo, M. B. Plenio, and A. Streltsov, npj Quantum Information, 6, 22 (2020)
DOI: doi.org/10.1038/s41534-020-0250-z

Protecting Quantum Spin Coherence of Nanodiamonds in Living Cells – Q.-Y. Cao, P.-C. Yang, M.-S. Gong, M. Yu, A. Retzker, M.B. Plenio, C. Müller, N. Tomek, B. Naydenov, L.P. McGuinness, F. Jelezko, and J.-M. Cai, Physical Review Applied, 13, 024021 (2020)
DOI: doi.org/10.1103/PhysRevApplied.13.024021

The gist of it

Because of its excellent coherent and optical properties at room temperature, the nitrogen-vacancy (NV) center in diamond, especially when located in nanodiamonds, represents a promising tool for sensing applications in biological environments. However, in nanodiamonds the relatively short NV electron spin coherence times require microwave control to decouple the electron spin of the NV center from its noisy environment. In a biological environment this needs to be achieved with minimal microwave power in order to reduce possible heating effects. Building on earlier work from our group here we demonstrate energy-efficient protection of NV spin coherence in nanodiamonds using concatenated continuous dynamical decoupling. When this is applied to nanodiamonds in living cells, we are able to extend the spin coherence time by an order of magnitude to the T1 limit of 30 μs. Further analysis demonstrates concomitant improvements of sensing performance, which shows that our results provide an important step toward in vivo quantum sensing using NV centers in nanodiamond.

Most Recent Papers

Hybrid Microwave-Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions, Physical Review Applied, 13, 024068 (2020)

Quantum coherence and state conversion: theory and experiment, npj Quantum Information, 6, 22 (2020)

Protecting Quantum Spin Coherence of Nanodiamonds in Living Cells, Physical Review Applied, 13, 024021 (2020)

Contact

Ulm University
Institute of Theoretical Physics
Albert-Einstein-Allee 11
D - 89069 Ulm
Germany

Tel: ++49 / 731 / 50 - 22911
Fax: ++49 / 731 / 50 - 22924

Office: Building M26, room 4117

Click here if you are interested in applying to the group