

ulm university universität

Dr. H. Lanzinger K. Stucke SoSe 2010

Gesamt: 20 Punkte

Übungen zur Höheren Mathematik II für Physiker

Übungsblatt 4

Abgabe Donnerstag, 27.05.2010 vor den Übungen

16. Es seien die folgende Matrizen gegeben:

[8+4]

$$\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -3 & 1 \\ 3 & -3 & -1 \\ 3 & -5 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$$

- (a) Bestimme für die angegebenen Matrizen jeweils das charakteristische Polynom, die Eigenwerte einschließlich ihrer geometrischen und algebraischen Vielfachheiten, sowie Basen der zugehörigen Eigenräume.
- (b) Entscheide, ob die angegebenen Matrizen diagonalisierbar sind. Bestimme gegebenenfalls eine reguläre Matrix $S \in \mathbb{C}^{n \times n}$ so, dass $S^{-1}AS$ eine Diagonalmatrix ist.
- 17. Es seien $A \in K^{n \times n}, n \in \mathbb{N}$, K ein Körper und $\sigma(A) = \{$ Eigenwerte von $A \}$ bezeichne das Spektrum von A. Zeige: [5]
 - (a) Ist A idempotent, d.h. $A^2 = A$, dann gilt $\sigma(A) \subset \{0, 1\}$.
 - (b) A und A^T haben dasselbe charakteristische Polynom, also $P_A = P_{A^T}$.
 - (c) $\sigma(A)=\sigma(A^T),$ d.h. A und A^T haben dieselben Eigenwerte. Gilt dies auch für die Eigenvektoren?
 - (d) A ist genau dann regulär, wenn $0 \notin \sigma(A)$.
 - (e) Wenn A nilpotent ist, d.h. $A^m = 0$ für ein gewisses $m \in \mathbb{N}$, dann folgt $\sigma(A) = \{0\}$.
- 18. Es seien $A, B \in K^{n \times n}, n \in \mathbb{N}, K$ ein Körper. Weiterhin sei B regulär. Zeige: [2]
 - (a) AB und BA sind ähnlich.
 - (b) AB und BA haben dasselbe charakteristische Polynom, also $P_{AB} = P_{BA}$.
- 19. Es sei $A \in K^{n \times n}$, $n \in \mathbb{N}$, K ein Körper und A regulär. Zeige: $P_{A^{-1}}(\lambda) = \frac{(-\lambda)^n}{\det A} P_A(1/\lambda)$. [1]