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MOTIVATION 4

Exercises by Thomas Liebmann, �rst exercise class 28.10.08, 16-18h.

Lecture notes will be available on the website.

Outline

(1) Basic properties of Levy processes (LP)
(2) Stochastic calculus for Levy processes
(3) Financial market models based on LP

Motivation

Standard �nancial market model is a Black-Scholes (or Black-Scholes-Merton, BSM)
model with a risky asset dSt = St (rdt+ σdWt) , S0 = p0 and a bank account
dBt = rBtdt; B0 = 1. This implies St = S0 exp

((
r − 1

2σ
2
)
t+ σWt

)
. A European

call option on St has the time T payo� CT = (ST −K)+
, where K denotes the

strike and T the expiry time. Risk neutral valuation implies that the price at time

0 is given by C0 = E
(
e−rT (ST −K)+

)
= S0Φ (d1) − Ke−rTΦ (d2) , where Φ is

the standard normal cumulative distribution function.

However, market data on European call options gives di�erent σ for di�erent K
and T , the volatility surface. This shows that the model is inconsistent.

Di�erent attempts have been made to correct for the volatility smile, such as time
dependent volatility, volatility depending on ST , or stochastic volatility models.
However, these approaches cannot cope with the problem that markets can exhibit
extreme valuation moves which are incompatible with the Black-Scholes model.



CHAPTER 1

Lévy Processes

1.1. Basic De�nitions and Notations

Definition 1.1.1. (Stochastic basis, stochastic process, adapted, RCLL)
Let (Ω,F ,P) be a complete probability space and F = (Ft)t≥0 a �ltration, i.e. an

increasing family of σ-algebras Fs ⊆ Ft ⊆ F , s ≤ t. A stochastic basis (Ω,F ,P,F)
satis�es the usual conditions:

(1) F0 contains all the P-null sets of F .
(2) F is right-continuous, i.e. Ft = Ft+ :=

⋂
s>t Fs ∀t.

A stochastic process X = (Xt)t≥0 is a family of random variables on (Ω,F ,P,F) :

X(t, ω) : [0,∞)× Ω→ R on B(R)⊗F

which is adapted, meaning that Xt is Ft measurable for every t, in an abuse of
notation we will write Xt ∈ Ft. X is called right-continuous with left limits (RCLL)
if it is continuous to the right a.s..

Now we will consider di�erent concepts for the �sameness� of two stochastic pro-
cesses X and Y :

Definition 1.1.2. (Sameness of stochastic processes)

(1) X and Y have the same �nite-dimensional distributions, if for all n and {t1, . . . , tn}
we have

(X (t1) , . . . , X (tn)) d= (Y (t1) , . . . , Y (tn))

(2) Y is a modi�cation of X, if P (Xt = Yt) = 1 for every t.1

(3) X and Y are indistinguishable if almost all their sample paths agree, i.e.
P (Xt = Yt; ∀ 0 ≤ t ≤ ∞) = 1.

Remark 1.1.3. For RCLL processes, 2 and 3 are equivalent.

Definition 1.1.4. (Stopping time, optional time)
A random variable τ : Ω→ [0,∞) is a stopping time if the set {τ ≤ t} ∈ Ft, ∀t. It
is an optional time if {τ < t} ∈ Ft ∀t.

Remark 1.1.5.

(1) For a right-continuous F, every optional time is a stopping time.
(2) A hitting time τA := inf {t > 0 : Xt ∈ A} , (where A is a Borel set) is a

stopping time.

Definition 1.1.6. (Stopped σ-Algebra, Martingale)

1This does not imply equality for almost all ω for all t.
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1.2. CHARACTERISTIC FUNCTIONS 6

(1) For RCLL-processes, we de�ne the stopped σ-Algebra Fτ as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0} .

(2) X is a (sub-/super-) martingale (with respect to F and P) if
(a) X is adapted, E(|X(t)|) <∞ ∀t and

(b) E(X(t)|Fs)


≤ X(s) (super-martingale)

= X(s) (martingale)

≥ X(s) (sub-martingale)

a.s. for all 0 ≤ s ≤ t.

Lemma 1.1.7. Let X be a (sub-) martingale and φ a convex function with E(|φ(Xt)|) <
∞. Then φ(Xt) is a sub-martingale.

Proof. E (φ (Xt) |Ft) ≥ φ (E (Xt|Fs)) ≥ φ (Xs) , the �rst inequality by Jensens
inequality. �

Exercise 1.1.8. ξ a random variable with E (|ξ|) < ∞ then E (ξ|Ft) = Xt is a
martingale.

Definition 1.1.9. (Brownian Motion)
X = (Xt)t≥0 is a standard Brownian motion (BM) if

(1) X (0) = 0 a.s.
(2) X has independent increments: X (t+ u)−X (t) is independent of σ (X(s); s ≤ t)

for any u ≥ 0.
(3) X has stationary increments: the law of X(t+u)−X(t) depends only on

u.
(4) X has Gaussian increments: X(t+ u)−X(t) ∼ N(0, u).
(5) Xt(ω) has continuous paths for all ω.

Theorem 1.1.10. (Wiener) Brownian motion exists.

Notation. We will use W as a symbol for Brownian motion.

Fact. (Properties of Brownian motion)

(1) Cov (Ws,Wt) = min (s, t) .
(2) (W (t1), . . . ,W (tn)) is multivariate Gaussian.
(3) BM can be identi�ed as Gaussian process with continuous paths.
(4) W is a martingale with respect to its own �ltration Ft = σ (Ws, s ≤ t):

E (Wt|Fs) = E (Wt −Ws|Fs) + E (Ws|Fs) = Ws

Lectures: 4.11., 11.11, 25.11, 2.12, 16.12.

Exercises 28.10., 18.11., 9.12.

1.2. Characteristic Functions

Definition 1.2.1. (Characteristic function)
IfX is a random variable with cumulative distribution function F , then its characteristic function
(cf) φX (or φ if we do not need to emphasize X) is de�ned as

φX(t) = E
(
eitX

)
=
ˆ ∞
−∞

eitxF (dx), t ∈ R.
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Note 1.2.2. Here i =
√
−1, the imaginary unit. The characteristic function always

exists.

Fact 1.2.3. (Some properties of the characteristic function)

(1) If X and Y are independent, then

φX+Y (t) = E
(
eit(X+Y )

)
= E

(
eitXeitY

)
(∗)
= E

(
eitX

)
E
(
eitY

)
= φX(t)φY (t),

where (∗) follows from independence. So characteristic functions take con-
volution into multiplication.

(2) φ(0) = 1.
(3) |φ(t)| =

∣∣∣´∞−∞ eitxF (dx)
∣∣∣ ≤ ´∞−∞ ∣∣eitx∣∣F (dx) ≤ 1

(4) φ is continuous:

|φ(t+ u)− φ(t)| =
∣∣∣∣ˆ ∞
−∞

(
ei(t+u)x − eitx

)
F (dx)

∣∣∣∣
≤
ˆ ∞
−∞

∣∣eitx∣∣︸ ︷︷ ︸
≤1

∣∣eiux − 1
∣∣︸ ︷︷ ︸

≤2

F (dx)
(∗)→ 0

For u → 0 we have
∣∣eiux − 1

∣∣ → 0, so by Lebesgue's dominated conver-

gence theorem, the last term tends to 0 (∗).2 Since the whole argument
does not depend on t, we have in fact uniform continuity.

(5) Uniqueness theorem: φ determines the distribution function F uniquely.
(6) Continuity theorem: If (Xn)∞n=0 and X are random variables with corre-

sponding cumulative distribution functions (φn)∞n=0 and φ, then conver-

gence of (φn) to φ, i.e. φn(t)
(n→∞)−→ φ(t) ∀t, is equivalent to convergence

of Fn to F .

Example 1.2.4. (Characteristic function of normally distributed random variables)

(1) N (0, 1), the normal density f(x) = 1√
2π

exp
(
− 1

2x
2
)

:

ˆ ∞
−∞

etxf(x)dx =
1√
2π

ˆ ∞
−∞

exp
(
tx− 1

2
x2

)
dx

(∗)
=

1√
2π
e

1
2 t

2
ˆ ∞
−∞

exp
(
−1

2
(x− t)2

)
dx = e

1
2 t

2
.

Thus substituting it for t we have φN (0,1)(t) = exp
(
− 1

2 t
2
)
.

(2) N (µ, σ2) : X ∼ N (0, 1)

E
(
eit(µ+σX)

)
= eitµE

(
eiσtX

)
= eitµ−

1
2σ

2t2

2The last term is dominated by
´∞
−∞ 2F (dx) = 2 < ∞. By the DCT, integrals and limits

(u→ 0) can then be interchanged.
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1.3. Point Processes

1.3.1. Exponential Distribution.

Definition 1.3.1. (Exponential distribution)
We say that the random variable T has an exponential distribution with parameter
λ, T ∼ exponential(λ), if P(T ≤ t) = 1− e−λt for t ≥ 0.

Fact 1.3.2. Recall that E(T ) = 1
λ and Var(T ) = 1

λ2 .

Proposition 1.3.3. (Properties of the exponential distribution)

(1) �Lack of memory�: P(T > s+ t|T > t) = P(T > s).
(2) Let T1, T2, . . . , Tn be independent exponentially distributed random vari-

ables with parameters λ1, λ2, . . . , λn. Then
min {T1, . . . , Tn} ∼ exponential (λ1 + . . .+ λn) .

(3) T1, T2, . . . , Tn i.i.d. exponential(λ) random variables. Then G = T1 +T2 +
. . .+ Tn ∼ Gamma(n, λ) with density λe−λ (λt)n−1

(n−1)! for t ≥ 0.

1.3.2. Poisson Process.

Definition 1.3.4. (Poisson process)
Let (ti)

∞
i=1 be independent, exponentially distributed random variables with pa-

rameter λ. Let Tn = t1 + . . .+ tn for n ≥ 1, T0 = 0, then de�ne

N(s) = max {n : Tn ≤ s} .

N(s) is called a Poisson process.

Lemma 1.3.5. N(s) has a Poisson distribution.

Theorem 1.3.6. (Properties of the Poisson process)
If {N(s), s ≥ 0}is a Poisson process, then

(1) N(0) = 0,
(2) N(t+ s)−N(t) ∼ Poisson(λs),
(3) N(t) has independent increments.

Conversely if (1), (2), and (3) hold, then {N(s)} is a Poisson process.

Definition 1.3.7. (Non-homogeneous Poisson process)
We say that {N(s), s ≥ 0} is a Poisson process with rate λ(r) if

(1) N(0) = 0,
(2) N(t+s)−N(s) ∼ Poisson

(´ t+s
s

λ(r)dr
)
, λ : R+ → R+, a deterministic

process.
(3) N(t) has independent increments.

Note 1.3.8. The Poisson distribution with parameter λ has probability mass func-

tion P(X = k) = e−λ λ
k

k! , k ∈ N0. Its characteristic function is

φ(t) = E
(
eitX

)
=
∞∑
n=0

e−λλn

n!
eitn = e−λ

∞∑
n=0

(
λeit

)n
n!

= e−λ exp
{
λeit

}
= exp

{
−λ
(
1− eit

)}
.
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Definition 1.3.9. (Compound Poisson process)
The process S(t) = Y1+. . .+YN(t), S(t) = 0 ifN(t) = 0, is called a compound Poisson process,
where N is a Poisson process and Yi are i.i.d. random variables.

Theorem 1.3.10. Let (Yi) be i.i.d., N an independent non-negative integer-valued
random variable and S as above, then

(1) E(N) <∞, E (|Yi|) <∞, then E(S) = E (N)E (Y1).
(2) E

(
N2
)
<∞, E

(
|Yi|2

)
<∞, then Var(S) = E(N)Var(Y1)+Var(N)E(Y 2

1 ).

(3) If N = N(t) is Poisson(λt), then Var(S) = tλ (E (Y1))2
.

1.4. In�nitely Divisible Distributions and the Lévy-Khintchine Formula

1.4.1. Lévy processes.

Definition 1.4.1. (Lévy process)
A process X = (Xt, t ≥ 0) on (Ω,F ,P) is called a Lévy process (LP), if it possesses
the following properties:

(1) The paths of X are P-almost surely right-continuous with left limits
(RCLL).

(2) X(0) = 0 a.s.
(3) X has independent increments: X(t+u)−X(t) is independent of σ ({X(s), s ≤ t})

for any u ≥ 0.
(4) X has stationary increments, i.e. the law of X(t+u)−X(t) depends only

on u.

Prime examples are Brownian motion and the Poisson process.

Say we have X ∼ N
(
µ, σ2

)
⇒ cf: φ(t) = φX(t) = exp

{
iµt− 1

2σ
2t2
}
. For each n

we have φ(t) = (φn(t))n = exp
{
iµ tn −

1
2
σ2t2

n

}n
. So X = X

(n)
1 + · · · + X

(n)
n with

X
(n)
i ∼ N

(
µ
n ,

σ2

n

)
, i.i.d.

Also Y ∼ Poi (λ) , then φY (t) = exp
{
−λ
(
1− eit

)}
= exp

{
−λn

(
1− eit

)}n
so the

product of the characteristic function of n Poi
(
λ
n

)
random variables Y = Y

(n)
1 +

· · ·+ Y
(n)
n with Y

(n)
i ∼ Poi

(
λ
n

)
, i.i.d.

Definition 1.4.2. (In�nitely divisible)
A random variable X (or its distribution function F ) is in�nitely divisible if for
each n = 1, 2, . . . there exist independent indentically distributed Xn,i i = 1, . . . , n
with Xn,i ∼ Fn such that X = Xn,1 + . . .+Xn,n or equivalently

F = Fn ∗ · · · ∗ Fn︸ ︷︷ ︸
n times

= ∗nFn.

Fact 1.4.3. Recall that ψ(u) := − logE
(
eiuX

)
is the characteristic exponent of a

random variable X.

Theorem 1.4.4. (Levy-Khintchine formula)

A probability law µ of a real-valued random variable is in�nitely divisible if and only
if there exists a triple (a, σ, π), where a ∈ R, σ ≥ 0, and π is a measure concentrated
on R\ {0} satisfying

´
R\{0}(1∧x

2)π(dx) <∞ such that the characteristic exponent

of µ (resp. X ∼ µ) is given by
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ψ(θ) = iαθ +
1
2
σ2θ2 +

ˆ
R

(
1− eiθx + iθx1{|x|<1}

)
π(dx)

for every θ ∈ R.

Proof. (Parts)

(1) Observe that for a compound Poisson process X(t) =
∑N(t)
j=1 ξj with ξi

i.i.d. and independent of N and ξi ∼ F with no atoms at zero. Then

E
(
eiθX(t)

)
=
∑
n≥0

E
(
eiθ

Pn
j=1 ξj

)
e−λ

λn

n!

=
∑
n≥0

(ˆ
R
eiθxF (dx)

)n
e−λ

λn

n!

= exp
{
−λ
ˆ

R

(
1− eiθx

)
F (dx)

}
.

Thus we have the triple a = λ
´
{|x|<1} xF (dx), σ = 0, π(dx) = λF (dx).

(2) De�ne ψn (θ) = iaθ + 1
2σ

2θ2 +
´
|x|> 1

n

(
1− eiθx + iθx1{|x|≤1}

)
π(dx) this

is the convolution of a Gaussian and a compound Poisson and hence it is
the characteristic exponent of an in�nitely divisible distribution (because
the sum of in�nitely divisible distributions is in�nitely divisible: F ∗G =
∗nFn ∗ ∗nGn = ∗n (Fn ∗Gn)).

(3) Property of characteristic functions: If a sequence of characteristic func-
tions φn(t) converges to a function φ(t) for every t and φ(t) is continuous
at t = 0, then φ(t) is the characteristic function of some distribution.

So we only need to show that ψ (θ)is continuous in θ = 0.

|ψ (θ)| =

∣∣∣∣∣
ˆ
{|x|<1}

(
1 + iθx− eiθx

)
π(dx) +

ˆ
{|x|≥1}

(
1− e−iθx

)
π(dx)

∣∣∣∣∣
Taylor
≤ 1

2
|θ|2
ˆ
{|x|<1}

|x|2 π(dx) +
ˆ
{|x|≥1}

∣∣1− e−iθx∣∣︸ ︷︷ ︸
≤2

π(dx)

By dominated convergence we have ψ (θ)→ 0 as θ → 0.

�

Let X be a Levy process, then for every t

Xt = X t
n

+
(
X 2t

n
−X t

n

)
+ · · ·+

(
Xnt

n
−X (n−1)t

n

)
so Xtis in�nitely divisible (from the de�nition of a Levy process: stationary and
independent increments). De�ne for θ ∈ R, t ≥ 0

ψt(θ) = − logE
(
eiθXt

)
.

For m,n positive integers

m · ψ1(θ) = ψm(θ) = n · ψm
n

(θ)

so for any rational t: ψt (θ) = t · ψ1 (θ) (∗). For t irrational we can choose a
decreasing sequence of rationals (tn) such that tn ↓ t. Almost sure right continuity
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of X implies right-continuity of exp {−ψt(θ)}. By dominated convergence and so
(∗) holds for every t.
For any Lévy processE

(
eiθXt

)
= e−tψ(θ) where ψ(θ) = ψ1(θ) is the charactersitic

exponent of X1.

Definition 1.4.5. ψ(θ) is called the characteristic exponent of the Levy process
X.

Theorem 1.4.6. (The Levy-Khintchine formula for Levy processes)

Suppose that a ∈ R, σ ≥ 0, and π is a measure concentrated on R\ {0} such that´
R(1 ∧ x2)π(dx) <∞. From this triple de�ne for each θ ∈ R

ψ(θ) = iaθ +
1
2
σ2θ2 +

ˆ
R

(
1− e−iθx + iθx1{|x|<1}

)
π(dx).

Then there exists a probability space (Ω,F ,P) on which a Levy process is de�ned
having the characteristic exponent ψ.



CHAPTER 2

The Levy-Ito decomposition and the path structure

2.1. The Levy-Ito decomposition

ψ (θ) =
{
iaθ +

1
2
σ2θ2

}
︸ ︷︷ ︸

=:ψ(1)

+

{
π (R\ (−1, 1)) +

ˆ
{|x|≥1}

(
1− eiθx

) π(dx)
π (R\ (−1, 1))

}
︸ ︷︷ ︸

=:ψ(2)

+

{ˆ
{0<|x|<1}

(
1− eiθx + iθx

)
π(dx)

}
︸ ︷︷ ︸

=:ψ(3)

for all θ ∈ R, a ∈ R, σ ≥ 0 and π as above.

ψ(1) corresponds to X
(1)
t = σWt − at, t ≥ 0.

ψ(2)corresponds to X
(2)
t =

∑Nt
i=1 ξi, t ≥ 0 with {Nt, t ≥ 0} is a Poisson process

with rate π (R\(−1, 1)) and {ξi, i ≥ 1} are i.i.d. with distribution π(dx)
π(R\(−1,1)) con-

centrated on {|x| ≥ 1}. (In case of π (R\ (−1, 1)) = 0, think of ψ(2) as being absent.

We need to indentify ψ(3) as the characteristic exponent of a Levy process X(3).
ˆ
{0<|x|<1}

(
1− eiθx + iθx

)
π(dx) =

∑
n≥0

{
λn

ˆ
2−(n+1)≤|x|<2−n

(
1− eiθx

)
Fn(dx)

+iθλn
ˆ

2−(n+1)≤|x|<2−n
xFn(dx)

}
,

where λn = π
({
x : 2−(n+1) ≤ |x| ≤ 2−n

})
and Fn(dx) = π(dx)

λn
.

2.2. Poisson Random Measures

X = {Xt : t ≥ 0} a compound Poisson process with drift Xt = µt+
∑Nt
i=1 ξi, t ≥ 0,

µ ∈ R, {ξi, i ≥ 1} are i.i.d., Nt is a Poisson process with intensity λ. Let {Ti, i ≥ 1}
be the times of arrival of the Poisson process. Pick a set A ∈ B[0,∞)×B (R\{0}) ,
de�ne N (A) := # {i ≥ 0 : (Ti, ξi) ∈ A} . Since X experiences an almost surely
�nite number of jumps over a �nite timeperiod it follows that N(A) < ∞ a.s. for
any �nite A.

12
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Lemma 2.2.1. Choose k ≥ 1. If A1, . . . , Ak are disjoint sets in B[0,∞)×B (R\{0}) ,
then N (A1) , . . . , N (Ak) are mutually independent and Poisson distributed with
parameter λi = λ ·

´
Ai
dt× F (dx).

Furthermore for almost every realization of X the corresponding

N : B[0,∞)× B (R\{0})→ {0, 1, 2, . . .} ∪ {∞}

is a measure.

Definition 2.2.2. (Poisson random measures)

Let (S,A, η) be an arbitrary σ-�nite measure space. LetN : A → {0, 1, 2, . . .}∪{∞}
be such that the family {N (A) , A ∈ A} are random variables de�ned on some
probability space (Ω,F ,P) and then N is called a Poisson random measure on
(S,A, η) if

(1) For mutually disjointA1, . . . , Ak ∈ A the random variablesN (A1) , . . . , N (Ak)
are independent.

(2) For each A ∈ A, N(A) is Poisson distributed with parameter η(A).
(3) N is P− a.s. a measure.

(N is sometimes called a Poisson random measure on A with intensity η.)

Theorem 2.2.3. There exists a Poisson random measure.

Fact. For N a Poisson random measure (S,A, η)

(1) ∀A ∈ A, N(.∩A) is a Poisson random measure on (S ∩A,A ∩A, η(. ∩A)).
If A,B ∈ A and A ∩B = ∅, then N(. ∩A)and N(. ∩B) are independent.

(2) The support of N is P− a.s. countable. If in addition η is �nite then the
support of N is a.s. �nite.

As N is P-a.s. a measure, we haveˆ
S

f(x)N(dx)

is a [0,∞)-valued random variable for measurable functions f : S → R. (De�ne for
f+ = f ∨ 0, and f− = (−f) ∨ 0 in the usual way.)

Theorem 2.2.4. Let N be a Poisson random measure on (S,A, η) and f : S → R
be a measurable function. Then

(1)

X =
ˆ
f(x)N(dx)

is almost surely absolutely convergent if and only if

(2.2.1)

ˆ
S

(1 ∧ |f(x)|)η(dx) <∞.

(2) When condition (2.2.1) holds, then

E
(
eiβX

)
= exp

{
−
ˆ
S

(
1− eiβf(x)

)
η(dx)

}
∀β ∈ R.
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(3) Furthermore

E (X) =
ˆ
S

f(x)η(dx)

when
´
|f(x)| η(dx) <∞ and

E(X2) =
ˆ
S

f(x)2η(dx) +
(ˆ

S

f(x)η(dx)
)2

if
´
f(x)2η(dx) <∞.

2.3. Square Integrable Martingales

Consider ([0,∞)× R︸ ︷︷ ︸
S

,B[0,∞)× B (R)︸ ︷︷ ︸
A

, dt× π(dx)︸ ︷︷ ︸
η

), where π is a measure concen-

trated on R\{0}.

Lemma 2.3.1. Suppose N is a Poisson random measure where π is a measure
concentrated on R\{0} and B ∈ B(R) such that 0 < π(B) <∞. Then

Xt :=
ˆ

[0,t]

ˆ
B

xN(ds× dx), t ≥ 0

is a compound Poisson process with arrival rate π(B) and jump distribution
π(B)−1π(dx)|B .

Proof. Xt is RCLL by the properties of Poisson random measures as a count-
ing measure. For 0 ≤ s < t <∞ we have

Xt −Xs =
ˆ

(s,t]

ˆ
B

xN (ds× dx)

which is independent of σ {Xu : u ≤ s} , because N gives independent counts on
disjoint regions.

From Theorem 2.2.4

E
(
eiθX

)
= exp

{
−t
ˆ
B

(
1− eiθx

)
π(dx)

}
.

From independent increments we see that

E
(
eiθ(Xt−Xs)

)
=
E
(
eiθXt

)
E (eiθXs)

= exp
{
− (t− s)

ˆ
B

(
1− eiθx

)
π(dx)

}
= E

(
eiθXt−s

)
,

which shows stationarity.

We introduce π(B)
π(B)

E
(
eiθX

)
= exp

{
−tπ(B)

ˆ
B

(
1− eiθx

) π(dx)
π(B)

}
and obtain the characteristic function of a compound Poisson process. �

Lemma 2.3.2. Let N and B be as in lemma 2.3.1 and assume that
´
B
|x|π(dx) <∞.
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(1) The compound Poisson process with drift

Mt =
ˆ

[0,t]

ˆ
B

xN(ds× dx)− t
ˆ
B

xπ(dx) t ≥ 0

is a P-martingale w.r.t the �ltration

Ft = σ (N(A) : A ∈ B[0, t]× B(R))

(2) If furthermore
´
B
X2π(dx) <∞, then it is a square-integrable martingale.

Proof.

(1) Mt is Ft-measurable. Also for t ≥ 0

E (|Mt|) ≤ E

(ˆ
[0,t]

ˆ
B

|x|N(ds× dx)

)
+ t

ˆ
B

|x|π(dx) <∞

by theorem 2.2.4 (3).

E(Mt −Ms | Fs)
(∗)
= E(Mt−s)

= E

[ˆ
[0,t−s]

ˆ
B

xN(ds× dx)− (t− s)
ˆ
B

xdπ(dx)

]
= 0

where (∗) follows from the independence of the increments for Xt and
stationarity and the last equation follows from theorem 2.2.4 (3).

(2) From
´
B
x2π(dx) <∞, then Theorem 2.2.2. (3) says E

(
X2
t

)
<∞ and

E

((
Mt + t

ˆ
B

xπ(dx)
)2
)

= t

ˆ
B

x2π(dx) + t2
(ˆ

B

xπ(dx)
)2

but the left-hand side also gives

E

M2
t + 2t

ˆ
B

xπ(dx)E (Mt)︸ ︷︷ ︸
=0

+t2
(ˆ

B

xπ(dx)
)2


so E
(
M2
t

)
= t
´
B
x2π(dx) <∞, this shows that Mt is a square integrable

martingale. In the following, we need to consider sets Bε of the type
Bε = (−1,−ε) ∪ (ε, 1).

�

Theorem 2.3.3. Assume that N is as in lemma 2.3.1 and
´

(−1,1)
x2π (dx) < ∞.

For each ε ∈ (0, 1) we de�ne the martingale

Mε
t =
ˆ

[0,t]

ˆ
Bε

xN (ds× dx)− t
ˆ
Bε

xπ (dx) , t ≥ 0

and let F∗t be equal to the completion of
⋂
s>t Fs by the null sets of P where Ft is

given as above. Then there exists a martingale M = {Mt, t ≥ 0} with the following
properties:

(1) for each T > 0,there exists a deterministic subsequence
{
εTn , n = 1, 2, . . .

}
with εTn ↓ 0along which P

(
limn→∞ sup0≤t≤T

(
M

εTn
s −Ms

)2

= 0
)

= 1.
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(2) It is adapted to the �ltration {F∗t , t ≥ 0}.
(3) It has right-continuous paths with left limits.
(4) It has at most a countable number of discontinuities in [0, T ].
(5) It has stationary and independent increments.

In short, there exists a Lévy process, which is a martingale with a countable number
of jumps in each interval [0, T ]in which for each T > 0 the sequence of martingales
{Mε

T , t ≤ T} converges almost uniformly on [0, T ] and with probability 1 along a
subsequence ε which may depend on T .

We need some facts on square-integrable martingales. Assume that we have (Ω,F ,F∗t ,P)
is a stochastic basis satisfying the usual conditions.

Definition 2.3.4. Fix T > 0 and de�neM2
T =M2

T (Ω,F ,F∗t ,P) to be the space
of real-valued, right-continuous, square integrable martingales with respect to the
given �ltration over the �nite time period [0, T ] .

SoM2
T is a vector sapce over R with zero element Mt ≡ 0. Indeed it is a Hilbert

space with respect to the inner product < M,N >= E (MTNT ) .
Note that if we have < M,M >= 0 then by Doob's inequality E

(
sup0≤t≤T M

2
t

)
≤

4E
(
M2
T

)
, so sup0≤t≤T Mt = 0 a.s.. By right-continuity Mt = 0 ∀t ∈ [0, T ].

Assume that
{
M (n), n = 1, 2, . . .

}
is a Cauchy sequence. Then for any

{
M

(n)
T , n = 1, 2, . . .

}
is a Cauchy sequence in L2 (Ω,F ,P) . Hence there exists a limiting variableMT such
that

E

[(
M

(n)
T −MT

)2
]1/2

→ 0 (n→∞) .

De�ne the martingale M to be the right-continuous version of Mt := E (MT | F∗t )

for t ∈ [0, T ]. By de�nition
∥∥M (n) −M

∥∥ =< M (n)−M,M (n)−M >1/2= E

((
M

(n)
T −MT

)2
)1/2

→

0 (n→∞).
Clearly Mt is F∗t adapted and by Jensen's inequality

E
(
M2
t

)
= E

(
(E (MT | F∗t ))2

)
≤ E

(
E
(
M2
T | F∗t

))
<∞.

Proof. (Theorem 2.3.3)

(1) Choose 0 < η < ε < 1, �x T > 0 and de�ne Mε := {Mε
t : t ∈ [0, T ]} .

With the standard calculation (cf lemma 2.3.2)

E
(

(Mε
T −M

η
T )2
)

= E

{ˆ
[0,T ]

ˆ
η≤|x|≤ε

xN (ds× dx)

}2


= T

ˆ
η≤|x|<ε

x2π (dx)

The left-hand side is ‖Mε −Mη‖2. So limε→0 ‖Mε −Mη‖ = 0, since´
(−1,1)

x2π (dx) < ∞ and hence {Mε : 0 < ε < 1}is a Cauchy family in

M2
T .
As M2

T is a Hilbert space, we know there exists a martingale M =
{Ms : s ∈ [0, T ]} ∈ M2

T such that limε→0 ‖M −Mε‖2 = 0.
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By Doob's maximal inequality we �nd that

lim
ε→0

E

(
sup

0≤s≤T
(Ms −Mε

s )2

)
≤ 4 lim

ε→0
‖M −Mε‖ = 0.

So the limit does not depend on T.
Now L2-convergence implies convergence in probability, which in turn

implies a.s. convergence along a deterministic subsequence, thus (1) fol-
lows.

(2) Fix 0 ≤ t ≤ T then M
εTn
t is F∗t -measurable and the a.s. limit Mt is

F∗t -measurable as well.
(3) The same argument as in (2) for RCLL.
(4) RCLL implies only countable many discontinuities
(5) Uniform convergence implies the convergence of the �nite dimensional

distributions. Then for 0 ≤ u ≤ v ≤ s ≤ t ≤ T <∞ and θ1, θ2 ∈ R

E
(
eiθ1(Mv−Mu)eiθ2(Mt−Ms)

)
DCT= lim

ε→0
E

(
e
iθ1

„
M
εTn
v −M

εTn
u

«
e
iθ2

„
M
εTn
t −M

εTn
s

«)

= lim
n→∞

E

(
eiθ1M

εTn
v−u

)
E

(
eiθ2M

εTn
t−s

)
DCT= E

(
eiθ1Mv−u

)
E
(
eiθ2Mt−s

)
�

2.4. The Levy-Ito Decomposition

Theorem 2.4.1. Given a ∈ R, σ ≥ 0, π a measure concentrated on R\ {0} satisfying´
R
(
1 ∧ x2

)
π (dx) < ∞, there exists a probability space on which independent Levy

processes X(1), X(2)and X(3)exist, X
(1)
t = σBt − at, t ≥ 0, a linear Brownian mo-

tion with drift, X
(2)
t =

∑Nt
i=1 ξi, t ≥ 0 is a Poisson process with rate {Nt, t ≥ 0}

is a Poisson process with rate π (R\(−1, 1)) and {ξi, i = 1, 2, . . .} are i.i.d with dis-
tribution π(dx)/π(R\(−1,1)) concentrated on {|x| ≥ 1} and X(3) is a square integrable
martingale with an almost surely countable number of jumps on each �nite time
interval, which are of magnitude less than unity and charactersitic exponent given
by ψ(3).

Remark. By taking X = X(1) +X(2) +X(3) we have the Levy-Khintchine formula
(theorem 1.4.2) holds.

Proof.

(1) X(1) is clear,
(2) large jumps in theorem 2.2.1

(3) According to theorem 2.3.1 we have X(3). Dependence of �small� and
�large� jumps from PRM BM independent, use a di�erent probability
space. Combine on the product space.

�



CHAPTER 3

Financial Modelling with Jump-Di�usion Processes

3.1. Poisson Process

Theorem 3.1.1. Let N(t)be a Poisson process with intensity λ, then the compen-
sated Poisson process M(t) = N(t)− λt is a martingale.

Proof. E (M(t) | Fs) = E (M(t)−M(s) | Fs) + M(s) = E (N(t)−N(s)) −
λ(t− s) +M(s) = M(s). �

Let Y1, Y2, . . . be a sequence of iid random variables with E (Yi) = β which are

also independent of N(t). De�ne the compound Poisson process Q (t) =
∑N(t)
i=1 Yi.

E (Q(t)) = βλt.

Theorem 3.1.2. The compensated compound Poisson process Q(t)−βλt is a mar-
tingale.

Proof. E (Q(t)− βλt | Fs) = E (Q(t)−Q(s) | Fs)+Q(s)−βλt = βλ(t−s)+
Q(s)− βλt = Q(s)− βλs. �

3.2. Jump Processes and Their Integrals

Definition 3.2.1. Let (Ω,F ,P) be a probability space, F = (Ft) a �ltration on the
space, satisfying the usual conditions. We assume that W is a Brownian motion
w.r.t. (P,F), N is a Poisson process, and Q is a compound Poisson process on this
space.

We de�ne ˆ t

0

Φ(s)dX(s)

where X(0) = x0 is a non-random initial condition, I(t) =
´ t

0
Γ(s)dW (s) is an

Ito-integral, called the Ito-integral part,

R(t) =
ˆ t

0

θ(s)ds

is a Riemann-integral, called the Riemann-integral part and J(t) is an adapted
right-continuous pure jump process with J(0) = 0 andX(t) = x0+I(t)+R(t)+J(t).

The continuous part of X is Xc = X(0) + I(t) + R(t) and the quadratic of this
process is

[Xc, Xc] (t) =
ˆ t

0

Γ2(s)ds

or d [Xc] (t) = Γ2(t)dt. J(t) right-continuous means J(t) = lims↓t J(s) and the
left-continuous version is J(t−), i.e. the value immediately before the jump. We

18
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assume that J has no jump at 0 and only �nitely many jumps in each interval (0, T ]
and is constant between the jumps ( pure jump process).

Definition 3.2.2. X(t) will be called a jump process. Observe that X(t) is right-
continuous and adapted. Its left continuous version is X(t−) = x0 + I(t) +R(t) +
J(t−). The jump size of X and t is denoted by 4X(t) = X(t)−X(t−) = 4J(t) =
J(t)− J(t−).

Definition 3.2.3. Let X(t) be a jump process and Φ(t) an adapted process. The
stochastic integral of Φ with respect to X is de�ned by

ˆ t

0

Φ(s)dX(s) =
ˆ t

0

Φ(s)Γ(s)dW (s) +
ˆ t

0

Φ(s)θ(s)ds+
∑

0≤s≤t

Φ(s)4J(s).

In di�erential notation we write

Φ(t)dX(t) = Φ(t)dI(t) + Φ(t)dR(t) + Φ(t)dJ(t)

= Φ(t)dXc(t) + Φ(t)dJ(t)

Example. X(t) = M(t) = N(t) − λt, N a Poisson process with intensity λ. So
I(t) ≡ 0, R(t) = −λt = Xc(t), J(t) = N(t). Let Φ(s) = 4N(s) = 1{4N(s)6=0} =
N(s)−N(s−).

´ t
0

Φ(s)dXc(s) = −λ
´ t

0
Φ(s)ds = 0, since Φ(s) = 0 except for �nitely

many points.
´ t

0
Φ(s)dN(s) =

∑
0≤s≤t Φ(s)4N(s) =

∑
0≤s≤t (4N(s))2 = N(t)

Theorem 3.2.4. Assume that the jump process X(t) is a martingale, the integrand

Φ(t) is left-continuous and adapted and E
[´ t

0
Γ2(s)Φ2(s)ds

]
<∞ for all t ≥ 0.

Then the stochastic integral
´ t

0
Φ(s)dX(s) is well-de�ned and also a martingale.

Proof. Sketch: Use the martingale transform lemma, properties of a Hilbert
space and the Ito isometry. �

Example. Let M(t) = N(t) − λt be as above and let Φ(s) = 1[0,S1](s), that is
Φ is 1 up to and including the time of the �rst jump of N (S1 ∼ Exp(λ)) and 0
afterwards. Then ˆ t

0

Φ(s)dM(s) =

{
−λt , 0 ≤ t ≤ S1

1− λS1 , t ≥ S1

is a martingale.

Definition 3.2.5. Choose 0 = t0 < t1 < . . . < tn = T , set π = {t0, t1, . . . , tn}
denote by ‖π‖ = max {tj+1 − tj} the length of the larges subinterval of the partition
π. De�ne

Qπ (X) =
n−1∑
j=1

(X(tj+1)−X(tj))
2
.

The quadratic variation ofX on [0, T ] is de�ned to be [X,X] (T ) = lim‖π‖→0Qπ(X).
We know [W,W ] (T ) = T for Ito-integrals [I, I] (T ) =

´ T
0

Γ2 (s) ds.
We also need the cross variation of X1 and X2 which is de�ned Cπ (X1, X2) =∑n−1
j=0 (X1(tj+1)−X1(tj)) (X2(tj+1)−X2(tj)) and [X1, X2] (T ) = lim‖π‖→0 Cπ (X1, X2).
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Theorem 3.2.6. Let Xi (t) = Xi (0) + Ji (t) + Ri (t) + Ji (t) , i = 1, 2 be jump
processes (with the usual conditions) Then

[X1, X1] (T ) = [Xc
1 , X

c
1 ] (T ) + [J1, J1] (T ) =

ˆ T

0

Γ1 (s)2 +
∑

0≤s≤T

(4J1 (s))2

and

[X1, X2] (T ) = [Xc
1 , X

c
2 ] (T ) + [J1, J2] (T )

=
ˆ T

0

Γ1 (s) Γ2 (s) ds+
∑

0≤s≤T

(4J1(s)) (4J2(s))

Proof.

Cπ (X1, X2) =
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj) + J1(tj+1)− J1(tj))

· (Xc
2(tj+1)−Xc

2(tj) + J2(tj+1)− J2(tj))

=
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (Xc
2(tj+1)−Xc

2(tj))︸ ︷︷ ︸
→[Xc1 ,Xc1 ](T )=

´ T
0 Γ1(t)Γ2(t)dt for |π|→0

+
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (J2(tj+1)− J2(tj))︸ ︷︷ ︸
|.|≤max0≤j≤n−1|Xc1(tj+1)−Xc1(tj)|·Pn−1

j=0 |J2(tj+1)−J2(tj)|→0 for |π|→0

+
n−1∑
j=0

(Xc
2(tj+1)−Xc

2(tj)) (J1(tj+1)− J(tj))︸ ︷︷ ︸
|.|≤max0≤j≤n−1|Xc2(tj+1)−Xc2(tj)|·Pn−1

j=0 |J1(tj+1)−J1(tj)|→0 for |π|→0

+
n−1∑
j=0

(J1(tj+1)− J1(tj)) (J2(tj+1)− J2(tj))︸ ︷︷ ︸
only 6=0 when J1 and J2 jump together

�

Corollary 3.2.7. LetW be Brownian motion andM(t) = N(t)−λt a compensated
Poisson process. Then [W,M ] (t) = 0 for t = 0.

Corollary 3.2.8. For i = 1, 2 X̃i(t) = X̃i (0) +
´ t

0
Φi (s) dXi (s). Then[

X̃1, X̃2

]
(t) =

ˆ t

0

Φ1 (s) Φ2 (s) d [X1, X2] (s)

=
ˆ t

0

Φ1 (s) Φ2 (s) Γ1 (s) Γ2 (s) ds+
∑

0≤s≤t

Φ1 (s) Φ2 (s)4J1 (s)4J2 (s) .
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3.3. Stochastic Calculus for Jump Processes

Theorem 3.3.1. (Itô-Doeblin formula for jump processes)

Let X(t) be a jump process and f(x) a function for which f
′
and f ′′exist and are

continuous, i.e. f ∈ C2. Then

f(X(t)) = f(X(0)) +
ˆ t

0

f ′ (X(t)) dX ′(s)

+
1
2

ˆ t

0

f ′′(X(s))d [Xc
1 ] (s) +

∑
0≤s≤t [f(X(s))− f(X(s−))] .

Proof. Fix ω ∈ Ω and let 0 < τ1 < τ2 < . . . < τn−1 < t be the jump times in
[0, t] . We set τn = 0 if there is no jump and otherwise τn = t. Whenever we have
to points u < v such that u, v ∈ [τj , τj+1] for arbitrary j = 1, . . . , n− 1 there is no
jump between u and v and Ito's formula for continuous processes applies.

⇒ X (f (0))−X (f (u)) =
ˆ v

u

f ′ (X(s)) dXc (s) +
1
2

ˆ v

u

f ′′ (X (s)) d [Xc] (s)

Letting u→ τ+
j and v → τ−j+1 then by the right continuity of X we obtain

f
(
X
(
τ−j+1

))
− f

(
X
(
τ+
j

))
=
ˆ τj+1

τj

f ′ (X (s)) dXc (s)

+
1
2

ˆ τj+1

τj

f ′′ (X (s)) d [Xc] (s) .

Then by adding the jump at τj+1, i.e. f (X (τj+1))− f
(
X
(
τ−j+1

))
, we get

f
(
X
(
τj+1

))
− f

(
X
(
τ+
j

))
=
ˆ τj+1

τj

f ′ (X (s)) dXc (s)

+
1
2

ˆ τj+1

τj

f ′′ (X (s)) d [Xc] (s) + f (X (τj+1))− f
(
X
(
τ−j+1

))
.

Since there is only a countable number of jumps, we obtain the claim by summing
over all jumps. �

Corollary 3.3.2. LetW (t) be a Brownian Motion and N(t) a Poisson process with
intensity λ > 0, both de�ned on the same probability space (Ω,F ,P) and relative to
the same �ltration (Ft)t≥0 .

Then the processes W (t) and N(t) are independent.

Proof. Let u1 and u2be �xed numbers, t ≥ 0 �xed and de�ne

Y (t) = exp
{
u1W (t) + u2N(t)− 1

2
u2

1t− λ (eu2 − 1) t
}

To show: LT(W + N) = LT(W )LT(N) ⇔ W and N are independent⇔ Y (t) is a
martingale.

De�ne X(s) = u1W (s) + u2N(s) − 1
2u

2
1s − λ (eu2 − 1) s and f(x) = ex.⇒ Y (t) =

f(X(t)). We have dXc(s) = u1dW (s) − 1
2u

2
1ds − λ (eu2 − 1) ds (∗) and

d [Xc] (s) = m2ds (∗∗).
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If Y has a jump at time s, then

Y (s) = exp
[
u1W (s) + u2 (N (s−) + 1)− 1

2
u2

1s− λ (eu2 − 1) s
]

= Y (s−)eu2 .

⇒ Y (s) − Y (s−) = (eu2 − 1)Y (s−) 4N(s)︸ ︷︷ ︸
=N(s)−N(s−)=1

. According to the Ito-Doeblin

formula we have

Y (t) = f(X(t)) = f(X(0)) +
ˆ t

o

f ′ (X (s)) dXc (s)

+
1
2

ˆ t

0

f ′′ (X (s)) d [Xc] (s) +
∑

0≤s≤t

(f(X(s))− f(X(s−)))

= 1 + u1

ˆ t

0

Y (s)dW (s)− 1
2
u2

1

ˆ t

0

Y (s)ds− λ (eu2 − 1)
ˆ t

0

Y (s)ds

+
1
2
u2

1

ˆ t

0

Y (s)ds+
∑

0≤s≤t

(Y (s)− Y (s−))

= 1 + u1

ˆ t

0

Y (s) dW (s)− λ (eu2 − 1)
ˆ t

0

Y (s−) ds

+ (eu2 − 1)
ˆ t

0

Y (s−)dN(s)

= 1 + u1

ˆ t

0

Y (s)dW (s) + (eu2 − 1)
ˆ

0

Y (s−)dM(s),

where M(s) = N(s)− λs is a martingale, so the integral is also a martingale.

⇒ Y (t) is a martingale and E (Y (t)) = E (Y (0)) = 1. By taking expectations, we
get

E (exp {u1W (t) + u2N(t)}) = exp
(

1
2
u2

1t

)
exp (λ (eu1 − 1) t)

⇔ LT (W +N) = LT (W )LT (N) .

By the identity property of the moment generating function the factorizing yields

the independence of W (t) and N(t). The same argument for (W (t1), . . . ,W (tn))T

and (N(t1), . . . , N(tn))T ∀n ∈ N, tn > . . . > t1 ≥ 0 yields that the processes
themselves are independent. �

Theorem 3.3.3. (Ito-Doeblin in higher dimensions)

Let X1 (t) and X2 (t) be jump processes and the function f ∈ C1,2,2 (R+ × R× R) .
Then

f(t,X1(t), X2(t) = f (0, X1 (0) , X2 (0)) +
ˆ t

0

ft (s,X1 (s) , X2 (s)) ds

+
ˆ t

0

fX1dX
c
1 +
ˆ t

0

fX2dX
c
2 +

1
2

2∑
i,j=1

ˆ t

0

fXiXjd
[
Xc
i , X

c
j

]
+
∑

0≤s≤t

(f(s,X1 (s) , X2 (s))− f (s,X1 (s−) , X2 (s−)) .
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Corollary 3.3.4. (Product Rule)

Let X1, X2 be jump processes. Then

X1(t) ·X2(t) = X1 (0)X2 (0) +
ˆ t

0

X2dX
c
1 +
ˆ t

0

X1dX
c
2 + [Xc

1 , X
c
2 ] (t)

+
∑

0≤s≤t

(X1 (s)X2 (s)−X1(s−)X2 (s−)) .

Proof. Theorem 3.3.3 with f(t, x1, x2) = x1x2. �

X(t) = X(0)︸ ︷︷ ︸
=x0

+I(t) +R(t)

︸ ︷︷ ︸
Xc(t) continuous part

+J(t)

I(t) =
´ t

0
Γ(s)dW (s) the Ito integral part

R(t) =
´ t

0
θ(s)ds the Rieman integral part

J(t) adapted, right-continuous pure jump process

We de�ne
´ t

0
Φ(s)dX(s) for a suitable class of processes Φ to be a martingale.

Corollary 3.3.5. (Doleans-Dade exponent)

Let X(t) be a jump process. The D-D exponent of X is de�ned to be the process

ZX(t) = exp
{
Xc(t)− 1

2
[Xc, Xc] (t)

} ∏
0<s≤t

(1 +4X(s)).

The process is the solution of the SDE

dZX(t) = ZX(t−)dX(t)

or in integral from

ZX(t) = 1 +
ˆ t

0

ZX(s−)dX(s).

Proof. De�ne

Y (t) = exp
{ˆ t

0

Γ(s)dW (s) +
ˆ t

0

θ(s)ds+
1
2

ˆ t

0

Γ2(s)ds
}

= exp
{
Xc(t)− 1

2
[Xc, Xc] (t)

}
From the standard continuous-time Ito-formula we have that dY (t) = Y (t)dXc(t) =
Y (t−)dXc(t).
De�ne K(t) = 1 for 0 < t < τ1, where τ1 is the time of the �rst jump of X, and for
t ≥ τ1 we set K(t) =

∏
0<s≤t(1 +4X(s)). Then K(t) is a pure jump process and

ZX(t) = Y (t) ·K(t).
Also 4K(t) = K(t) − K(t−) = K(t−)4X(t) and [Y,K] (t) ≡ 0 because Y is
continuous and K is a pure jump process.
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ZX(t) = Y (t) ·K(t) = 1 +
ˆ t

0

K(s−)dY (s) +
ˆ t

0

Y (s−)dK(s)

= 1 +
ˆ t

0

K(s−)Y (s−)dXc(s) +
∑

0<s≤t

Y (s−)K(s−)4X(s)

= 1 +
ˆ t

0

Y (s−)K(s−)dX(s) = 1 +
ˆ t

0

ZX(s−)dX(s)

�

We now discuss how to change measure in a jump process framework. We start with

a compound Poisson process. Q(t) =
∑N(t)
i=1 Yi, where N(t) is a Poisson process

with intensity λ and Y1, Y2, . . . are iid random variables (independent of N) with

density f(y). Let λ̃ > 0 and f̃ be another density with f̃(y) = 0 whenever f(y) = 0.

De�ne

Z(t) = e(λ−λ̃)t

N(t)∏
i=1

λ̃f̃(Yi)
λf(Yi)

.

Lemma 3.3.6. The process Z is a martingale. In particular E(Z(t)) = 1 ∀t.

Proof. We de�ne a pure jump process

J(t) =
N(t)∏
i=1

λ̃f̃(Yi)
λf(Yi)

.

At the jump times of the process J we have

J(t) = J(t−)
λ̃f̃(YN(t))
λf(YN(t))

= J(t−)
λ̃f̃(4Q(t))
λf(4Q(t))

4J(t) = J(t)− J(t−) =

[
λ̃f̃(4Q(t))
λf(4Q(t))

− 1

]
J(t−)

De�ne the compound Poisson process H(t) =
∑N(t)
i=1

λ̃f̃(Yi)
λf(Yi)

for which 4H(t) =
λ̃f̃(4Q(t))
λf(4Q(t)) and also

E

(
λ̃f̃(Yi)
λf(Yi)

)
=
λ̃

λ

ˆ ∞
−∞

f̃(y)
f(y)

f(y)dy =
λ̃

λ

so the compensated compound Poisson process H(t)− λ̃t is a martingale.

Furthermore 4J(t) = J(t−)[4H(t) − 4N(t)︸ ︷︷ ︸
=1

]. Because J,H,N are pure jump

processes, this is

dJ(t) = J(t−)(dH(t)− dN(t)).
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Using the product formula we now �nd that

Z(t) = Z(0) +
ˆ t

0

J(s−)(λ− λ̃)e(λ−λ̃)sds+
ˆ t

0

e(λ−λ̃)sdJ(s)

= 1 +
ˆ t

0

J(s−)(λ− λ̃)e(λ−λ̃)sds+
ˆ t

0

e(λ−λ̃)sJ(s−) [dH(s)− dN(s)]

= 1 +
ˆ t

0

J(s−)e(λ−λ̃)sd [H(s)− λ̃s]︸ ︷︷ ︸
a martingale

−
ˆ t

0

J(s−)e(λ−λ̃)sd [N(s)− λs]︸ ︷︷ ︸
a martingale

.

By Theorem 3.2.4 this implies that Z is a martingale since Z(0) = 1 we have
E(Z(t)) ≡ 1. In di�erent notation we have

dZ(t) = Z(t−)d[H(t)− λ̃(t)]− Z(t−)d [N(t)− λt] .

�

Fix a positive T and de�ne P̃(A) =
´
A
Z(T )dP, A ∈ F .

Theorem 3.3.7. (Change of measure for compound Poisson process)

Under the probability measure P̃ the process Q(t), 0 ≤ t ≤ T is a compound Poisson

process with intensity λ̃. Furthermore, the jumps in Q(t) are independent and

identically distributed with density f̃(y).

Proof. We show that Q has under P̃ the moment generating function

Ẽ
(
euQ(t)

)
= exp

{
λ̃t (ϕ̃Y (u)− 1)

}
with ϕ̃Y (u) =

´∞
−∞ euy f̃(y)dy which is the moment generating function of a com-

pound Poisson process with intensity λ̃ and jump size distribution f̃ .

De�ne X(t) = exp
{
uQ(t)− λ̃t(ϕ̃Y (u)− 1)

}
and show that X(t)Z(t) is a

P-martingale. By the product rule

X(t)Z(t) = 1 +
ˆ t

0

X(s−)dZ(s)︸ ︷︷ ︸
a mg bc Z a mg, X left cont.

+
ˆ t

0

Z(s−)dX(s)︸ ︷︷ ︸
=:II

+ [X,Z] (t)

II =
ˆ t

0

Z(s−)dXc(s) +
∑

0<s≤t

Z(s−)X(s−)(eu4Q(s) − 1) +
∑

0<s≤t

4X(s)4Z(s)

Consider∑
0<s≤t

4X(s)4Z(s) =
∑

0<s≤t

X(s−)Z(s−)(eu4Q(s) − 1)4H(s)

−
∑

0<s≤t

X(s−)Z(s−)(eu4Q(s) − 1)4N(s)

=
∑

0<s≤t

X(s−)Z(s−)eu4Q(s)4H(s)−
∑

0<s≤t

X(s−)Z(s−)4H(s)

−
∑

0<s≤t

X(s−)Z(s−)(eu4Q(s) − 1)
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Observe that

V (t) =
N(t)∑
i=1

euYi
λ̃f̃(Yi)
λf(Yi)

is a compound Poisson process with compensator λ̃t(ϕ̃Y (u)− 1).
From Ito's formula we know that

dX(t) = X(t−)d(−λ̃t(ϕ̃Y (u)− 1))︸ ︷︷ ︸
dXc(t)

+X(t−)(eu4Q(t) − 1)︸ ︷︷ ︸
dJ(t)

.

Thus

II =
ˆ t

0

X(s−)Z(s−)d(V (s)− λ̃ϕλ(u)s)−
ˆ t

0

X(s−)Z(s−) [H(s)− λs]

�


