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Abstract

In this paper, we consider the change-point problem over a centered, stationary and
m-dependent multivariate random field. Under the distribution free assumption, a
change-point test using CUSUM statistic is proposed to detect anomalies within
a multidimensional random field, controlling the false positive rate as well as the
Family-wise error in the multiple hypotheses testing context.
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1. Introduction

The change-point problem is a fundamental issue with broad applications in
various fields such as quality control, economics, medicine, and environmental science,
to detect any abrupt variations. The theory about the change-point problem was
studied thoroughly in [9, 10, 5] as well as its application for different types of data such
as time series, images [2, 1, 6], just to name a few. Among the numerous techniques
developed for change-point detection, the Cumulative Sum (CUSUM) method, which
is a sequential analysis technique traditionally used in quality control for monitoring
changes in the mean level of a process, has proven its simplicity, robustness, and
effectiveness. In the book [4, 5], change-point problems were studied within a general
parametric framework utilizing a CUSUM statistic test, which is widely recognized
for anomaly detection, particularly in time series; see, for example, [13, 8].
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In this paper, we develop a CUSUM test to detect anomalies within a centered,
stationary and m-dependent multivariate random field based on the methodology
suggested in [6]. The paper is organized as follows: In Section 2, the model of anomaly
detection over a random field is given, where the existence of anomaly is indicated
through a hypothesis testing procedure. In Section 3, we obtain an upper bound
for the tail probability of the test statistic, allowing one to obtain the global critical
value in which the type-I error is controlled. Section 4 shows the numerical results
based on the realizations of a m-dependent Gaussian random field.

2. Problem Setting

2.1. Random field with change in mean

For n and d positive integers, let
{
ξk ∈ Rn, k ∈ Zd

}
be a centered, stationary,

m-dependent and real-valued random field. For each θ ∈ Θ, define the corresponding
set Iθ ∈ Zd as a set of scanning windows. Our goal is to detect anomalies in the
space Zd depending only on θ ∈ Θ. We only consider anomalies in a window W ⊂ Zd,
henceforth, Iθ ⊂ W and let Icθ = W \ Iθ. Assume that W = [a1, b1] × [a2, b2] ×
· · · × [ad, bd], where ai, bi ∈ Z+ for all i = 1, 2, . . . , d. Nevertheless, it is important
to have some restrictions on Iθ, we need to consider some significant levels of the
set Iθ to assure that whether it is a major part of the window W or there is not an
inconsiderable amount of anomalies. In other words, for γ1 < γ2 and γ1, γ2 ∈ (0, 1),
from a practical point of view, we choose γ0 = 0.05 and γ1 = 0.5. Denote by

Θ0 = {θ ∈ Θ, γ0|W | ≤ |Iθ| ≤ γ1|W |} .

Inversely, the set of parameters Θ1 = Θ \Θ0 represents for huge or extremely small
of anomalies, i.e,

Θ1 = {θ ∈ Θ, |Iθ| < γ0|W |, or |Iθ| > (1− γ1)|W |} .

So far, we have defined the parametrized set of scanning windows imposed by
some conditions. The presence of cracks can be studied by testing a null hypothesis,
i.e., there is no cracks within the window W . Therefore, it is needed to construct a
CUSUM test statistic and propose a rejection rule.

2.2. Hypothesis testing

Assume that there exists at least one anomaly region Iθ0 in the window W and
we observe values

sk = ξk + h1 {k ∈ Iθ0} ,
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where h is a fixed vector in Rn and unknown. The vector h can be considered as the
change in mean of Iθ0 and its complement W \ Iθ0 . Hence, we consider the variation
of the expectations of the random field

{
ξk, k ∈ Zd

}
by testing the two following

hypotheses:
H0 : Eξk = µ for all k ∈ W , i.e., there no change in mean, versus
H1: there exists a vector h ∈ Rn, h ̸= 0⃗ in mean, i.e. Eξk = µ + h, k ∈ Iθ and

Eξk = µ, k ∈ Icθ
For a fixed window W ⊂ Zd, one has a sample S =

{
sk ∈ Rn, k ∈ Zd

}
and

L(θ) =
1

|Iθ|
∑
k∈Iθ

sk −
1

|Icθ |
∑
k∈Icθ

sk

=
1

|Iθ|
∑
k∈Iθ

(ξk + h1 {k ∈ Iθ0})−
1

|Icθ |
∑
k∈Icθ

(ξk + h1 {k ∈ Iθ0})

=
1

|Iθ|
∑
k∈Iθ

ξk −
1

|Icθ |
∑
k∈Icθ

ξk + h

(
|Iθ ∩ Iθ0|

|Iθ|
− |Icθ ∩ Iθ0 |

|Icθ |

)
.

(1)

For testing purposes, employ the following statistic:

TW (S) = max
θ∈Θ0

∥L(θ)∥p = max
θ∈Θ0

∥∥∥∥∥∥ 1

|Iθ|
∑
k∈Iθ

sk −
1

|Icθ |
∑
k∈Icθ

sk

∥∥∥∥∥∥
p

. (2)

A rejection rule requires a threshold yα such that if TW (S) exceeds yα, we reject the
null hypothesis H0. However, we need to compute the probability of type I error
PH0 (maxθ∈Θ0 |L(θ)| ≥ yα). It yields,

PH0

(
max
θ∈Θ0

|L(θ)| ≥ yα

)

= PH0

max
θ∈Θ0

∣∣∣∣∣∣ 1

|Iθ|
∑
k∈Iθ

ξk −
1

|Icθ |
∑
k∈Icθ

ξk + h

(
|Iθ

⋃
Iθ0|

|Iθ|
− |Icθ

⋃
Iθ0|

|Icθ |

)∣∣∣∣∣∣ ≥ yα


= P

max
θ∈Θ0

∣∣∣∣∣∣ 1

|Iθ|
∑
k∈Iθ

ξk −
1

|Icθ |
∑
k∈Icθ

ξk

∣∣∣∣∣∣ ≥ yα

 .

Denote by∑
k∈W

bkξk :=
1

|Iθ|
∑
k∈Iθ

ξk −
1

|Icθ |
∑
k∈Icθ

ξk where bk =
1 {k ∈ Iθ}

|Iθ|
− 1 {k ∈ Icθ}

|Icθ |
.
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Note that if bk =
1 {k ∈ Iθ}

|Iθ|
− 1 {k ∈ Icθ}

|Icθ |
, then

∥b∥1 =
∑
k∈Zd

|bk| =
∑
k∈Zd

∣∣∣∣1 {k ∈ Iθ}
|Iθ|

− 1 {k ∈ Icθ}
|Icθ |

∣∣∣∣
=

∑
k∈Iθ

1 {k ∈ Iθ}
|Iθ|

+
∑
k∈Icθ

1 {k ∈ Icθ}
|Icθ |

= 2

and

∥b∥22 =
∑
k∈Zd

|bk|2 =
∑
k∈Zd

∣∣∣∣1 {k ∈ Iθ}
|Iθ|

− 1 {k ∈ Icθ}
|Icθ |

∣∣∣∣2
=

1

|Iθ|
+

1

|Icθ |
=

|W |
|Iθ||Icθ |

.

The main aim is to find a proper threshold yα such that the probability of type I
error of this statistic is less than α, which can be 5% or even 1%. Therefore, we need
to find an upper bound P for the above probability and then set it smaller than 5%,
which means,

P

max
θ∈Θ0

∣∣∣∣∣∣ 1

|Iθ|
∑
k∈Iθ

ξk −
1

|Icθ |
∑
k∈Icθ

ξk

∣∣∣∣∣∣ ≥ yα

 ≤ P = α.

3. Main result

In this section, we find an upper bound of the above tail probability. Let{
ξk = (ξ

(1)
k , ξ

(2)
k , . . . , ξ

(n)
k ) ∈ Rn, k ∈ Zd

}
be a random field. Then, for any W ∈

Zd, |W | < ∞, one has
For 1 ≤ p < ∞,

P


∥∥∥∥∥∑
k∈W

bkξk

∥∥∥∥∥
p

≥ y

 = P

{
n∑

i=1

∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣
p

≥ yp

}
≤

n∑
i=1

P

{∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣ ≥ y

n1/p

}
.

For p = ∞,

P

{∥∥∥∥∥∑
k∈W

bkξk

∥∥∥∥∥
∞

≥ y

}
= P

{
max

i

∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣ ≥ y

}
≤

n∑
i=1

P

{∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣ ≥ y

}
.
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Therefore, the upper bound for the tail inequality P
{∥∥∑

k∈W bkξk
∥∥
∞ ≥ y

}
can

be found by bounding from above the quantity P
{∣∣∣∑k∈W bkξ

(i)
k

∣∣∣ ≥ y
}
. Nevertheless,

since

P

{∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣ ≥ y

}
≤ P

{∣∣∣∣∣∑
k∈W

bkξ
(i)
k

∣∣∣∣∣ ≥ y

n1/p

}
hence it is reasonable to bound from above the tail inequality for the case p = ∞.
This can be established using ideas from [7] and [6], we obtain a bound of multivariate
m-dependent random field as follows:

Theorem 1. Let
{
ξk = (ξ

(1)
k , ξ

(2)
k , . . . , ξ

(n)
k ) ∈ Rn, k ∈ Zd

}
be a mutivariate random

field where {ξ(i)k ∈ R, k ∈ W ⊂ Nd} is a stationary, m-dependent, real-valued random
field. Assume there exists H, σ > 0 such that

E[ξ(i)k ]ℓ ≤ p!

2
Hp−2σ,∀k ∈ W, i = 1, 2, . . . n.

then

P

{∥∥∥∥∥∑
k∈W

bkξk

∥∥∥∥∥
∞

≥ y

}
≤ 2n exp

{
−y2

4mdσ2

|Iθ||Icθ |
|W |

}
1

{
|Icθ | ≤

σ2|W |
yH

}
+ 2n exp

{
−y|Iθ|
2Hmd

+
σ2|W ||Iθ|
4H2md|Icθ |

}
1

{
|Icθ | >

σ2|W |
yH

}
.

Remark 1. In the case of univariate random field, i.e., n = 1, the upper bound
coincides with the result from [6].

Theorem 2. Let
{
ξk = (ξ

(1)
k , ξ

(2)
k , . . . , ξ

(n)
k ) ∈ Rn, k ∈ Zd

}
be a mutivariate random

field where {ξ(i)k ∈ R, k ∈ W ⊂ Nd} is a stationary, m-dependent, real-valued random
field. Assume there exists H, σ > 0 such that the inequality (6) holds, then

PH0

(
max
θ∈Θ0

|L(θ)| ≥ yα

)
≤ 2n

∑
θ∈Θ0,|Iθ|≤σ2|W |

yH

exp

{
−y2

4mdσ2

|Iθ||Icθ |
|W |

}

+ 2n
∑

θ∈Θ0,|Iθ|>σ2|W |
yH

exp

{
−y|Iθ|
2Hmd

+
σ2|W ||Iθ|
4H2md|Icθ |

}
. (3)

5



From (3), the null hypothesis will be rejected with type-I error controlled at level
α if the critical value y is obtained by solving the following equation:

2n
∑

θ∈Θ0,|Iθ|≤σ2|W |
yH

exp

{
−y2

4mdσ2

|Iθ||Icθ |
|W |

}

+ 2n
∑

θ∈Θ0,|Iθ|>σ2|W |
yH

exp

{
−y|Iθ|
2Hmd

+
σ2|W ||Iθ|
4H2md|Icθ |

}
= α. (4)

Remark 2. If
{
ξk = (ξ

(1)
k , ξ

(2)
k , . . . , ξ

(n)
k ) ∈ Rn, k ∈ Zd

}
is a multivariate Gaussian

random field where E[ξ(i)0 ]p ≤ σ2, i = 1, . . . , n, the choice H = σ is suitable due to the

fact that E|ξ(i)0 |p ≤ σp−2σ2E|Z|p, p ≥ 2 where Z ∼ N (0, 1).

Remark 3. By comparing the maximum of all statistics with a certain threshold, one
can test the global hypothesis H0, i.e., there exist anomalies within the whole random
field. Furthermore, if for any θ ∈ Θ, we want to test the null hypothesis ”H0(θ): Iθ
is homogeneous” versus ”H1(θ) : Iθ contains anomalies”, the upper bound serves as a
useful tool to control the Family-wise error (FWER), where

FWER = P(reject falsely at least one true hypothesis) = PH0

(
max
θ∈Θ0

|L(θ)| ≥ yα

)
.

4. Numerical results

In this section, we study the empirical distribution of the statistic TW (S) given in
(2) and the behavior of the tail probability provided in (3) under different settings of
σ and m.

Let W = [1, P ] × [1, Q] × [1, R]
⋂
N3. The parametrized collection of scanning

windows is defined as follows:

Θ0 :={θ = (a1, a2, a3, s1, s2, s3) ∈ N6;

1 + a1 + s1 ≤ P, 1 + a2 + s2 ≤ Q, 1 + a3 + s3 ≤ R; γ0 ≤
s1s2s3
W

≤ γ1}.

For each θ ∈ Θ, the scanning window Iθ = [1 + a1, 1 + a1 + s1] × [1 + a2, 1 +
a2 + s2] × [1 + a3, 1 + a3 + s3] is set within W . We choose γ0 = 0.05, γ1 = 0.5 to
avoid the case that the scanning windows are either excessively small or excessively
large relative to anomalies, where the scanning windows flatten out the statistical
significance.
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We generate 500 realizations of a centered, m-dependent, multivariate Gaussian
random field {ξk = (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ) ∈ R3, k ∈ W} , where W = [1, 50] × [1, 50] ×

[1, 50], ξ
(i)
k ∼ N (0, 1), k ∈ W, i = 1, 2, 3. Withm = 5, 7, them-dependence assumption

can be achieved by setting Y1+mℓ, ℓ ∈ W are independent and Y1+mℓ = Yr+mℓ, r ∈
{1, . . . ,m}3. The set of scanning windows {Iθ, θ ∈ Θ0} is defined where all Iθ are
equal cubic of the size 30× 30, satisfying the requirements of the parametric setting.
In this case, |Θ0| = 9261.

σ2 = 0.5 σ2 = 0.6 σ2 = 0.7 σ2 = 0.8 σ2 = 0.9 σ2 = 1.0 σ2 = 1.1

m = 3 0.6009 0.6424 0.6814 0.7183 0.7533 0.7868 0.8191
m = 4 0.8398 0.8978 0.9522 1.0038 1.0528 1.1001 1.1459
m = 5 1.1861 1.2675 1.3490 1.4305 1.5120 1.5935 1.6750
m = 6 1.5693 1.6987 1.8281 1.9575 2.0869 2.2163 2.3457
m = 7 2.0794 2.2725 2.4656 2.6588 2.8519 3.0450 3.2381
m = 8 2.7342 3.0092 3.2842 3.5593 3.8343 4.1093 4.3843
m = 9 3.5521 3.9293 4.3066 4.6838 5.0610 5.4382 5.8155
m = 10 4.5230 5.0217 5.5205 6.0193 6.5180 7.0168 7.5156

Table 1: Critical value y from 4 with α = 0.05

Let α = 0.05, we compare the empirical critical value ŷ0.05 with y0.05 computed
from Equation (3). For m = 5 and m = 7, one has ŷ0.05 = 0.5369 and ŷ0.05 = 0.7259,
respectively. The critical values y0.05 with different values of m and σ are shown in
Table 1. For instance, since the exact values of m are known, one has the theoretical
critical values y0.05 = 1.5935 and y0.05 = 2.8519, leading the test to be conservative.
However, from Table 1, the theoretical critical value is quite sensitive to any changes
of m, suggesting to choose a smaller m in the computation of y0.05, such as m = 3,
resulting in y0.05 = 0.7868, therefore controlling the type-I error at the desired level
α = 0.05.

When m is unknown, it can be estimated by determining the covariance function
of the random field. The value of m should be selected such that the empirical
covariance function is sufficiently close to zero.

5. Conclusion

In this paper, we generalized the results given in [6] for the multi-dimensional
case of a random field. The results show that by properly choosing the value of
m, one is able to test the global hypothesis H0, i.e., if the observed random field
contains anomalies, at the pre-determined significant level α. The main challenge
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of this approach is that one has to employ the Bonferroni correction [3] due to the
dependence between observations from different scanning windows, which usually
makes the test extremely conservative, especially when |Θ0| is large.

Nevertheless, in the context of multiple hypotheses testing, the obtained upper
bound for the tail probability provides a global threshold for each statistic, controlling
the Family-Wise error rate at the significance level α, allowing one to localize anomalies
within a random field.
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