Seminar zu Physik für Naturwissenschaftler WS2002/03

Übungsblatt 12

		Punkte
Aufgabe 51	Elastizitätsmodul Ein Metalldraht von $10m$ Länge und $1,1mm$ Durchmesser wird durch anhängen eines Gewichts der Masse $m=20kg$ um $10mm$ elastisch gedehnt. Man bestimme den Elastizitätsmodul des Drahtmaterials!	(3)
Aufgabe 52	Gesetz von Boyle-Mariotte Ein bestimmtes Luftvolumen wird durch Zusammendrücken bei gleichbleibender Temperatur um $3l$ verringert. Als Folge davon steigt der Druck um $50kPa$. Beim Zusammendrücken um $6l$ beträgt die Druckerhöhung $200kPa$. Wie groß sind Anfangsdruck und Anfangsvolumen?	(4)
Aufgabe 53	Atmosphärischer Luftdruck Der Mount Everest hat eine Höhe von $8848m$. Welcher Luftdruck herrscht am Gipfel, wenn am Fuß des Berges der Druck $100kPa$ und die Dichte der Luft $\rho_0=1,293kg/m^3$ beträgt? Es wird konstante Temperatur über die gesamte Höhe vorrausgesetzt.	(3)
Aufgabe 54	Bestimmung von Massenanteilen durch Auftriebsmessung Ein Gegenstand aus Messing (Kupfer-Zink-Legierung) wiegt an der Luft $m=230,0g$ und bei völligem Eintauchen in Benzin (Dichte $\rho_{\rm Fl}=0,75g/cm^3$) $m'=210,0g$. Man bestimme die Anteile von Kupfer ($\rho_1=8,96g/cm^3$) und Zink ($\rho_2=7,13g/cm^3$)!	(5)
Aufgabe 55	Kontinuitätsgleichung Durch ein Rohr von $5cm$ Durchmesser strömen je Minute $162kg$ Öl ($\rho=900kg/m^3$). Das Rohr weist an einer Stelle eine Querschnittsverengung vom Durchmesser $3cm$ auf. Wie groß ist die Strömungsgeschwindigkeit im Rohr und in der Verengung?	(4)