Seminar zu Physik für Naturwissenschaftler WS2002/03

Übungsblatt 6

		Punkt
Aufgabe 25	<i>Gravitationskraft I</i> Bei welcher (kürzeren) Tagesdauer würden lose Gegenstände am Erdäquator beginnen abzuheben? Mittlere Dichte der Erde $\rho=5500\frac{kg}{m^3}$.	(2)
Aufgabe 26	Gravitationskraft II Die mittlere Entfernung Erde-Sonne beträgt $r=149,6\cdot 10^9m$. Man berechne daraus sowie aus der Erdumlaufzeit die Masse der Sonne.	(2)
Aufgabe 27	Gleitreibung und Haftreibung Weshalb ist der Bremsweg eines Fahrzeugs mit blockierten Rädern länger als mit rollenden Rädern?	(1)
Aufgabe 28	Gleitreibungszahl und Haftreibungszahl Ein Körper erhält beim Herabgleiten auf einer schiefen Ebene mit einem Neigungswinkel von 20° eine Beschleunigung von $1.5\frac{m}{s^2}$. Wie groß ist die Gleitreibungszahl μ und für den Grenzfall die Haftreibungszahl μ_0 ?	(3)
Aufgabe 29	Fahrwiderstand Ein Radfahrer läßt sich bei einer Geschwindigkeit von $30\frac{km}{h}$ auf einer horizontalen Straße ausrollen und legt dabei noch einen Weg von $220m$ zurück. Wie groß ist die mittlere Fahrwiderstandszahl μ_F ? Luftwiderstand bleibt unberücksichtigt.	(2)
Aufgabe 30	Harmonische Schwingung I Zu welchen Zeitpunkten t (ausgedrückt in Teilen bzw. Vielfachen der Periodendauer T) sind Geschwindigkeit und Beschleunigung eines har- monischen Oszillators (z.B. eines Masse-Feder-Schwingers) dem Betra- ge nach maximal, wenn zur Zeit $t=0$ die Auslenkung $x=0$ ist?	(3)
Aufgabe 31	Harmonische Schwingung II Zu welchen Zeiten ist die Auslenkung x während der ersten Periode einer ungedämpften harmonischen Schwingung $x=x_m\sin\omega t$ mit der Schwingungsdauer $T=0,12s$ dem Betrag nach gleich der halben Ampli- tude x_m ?	(2)