
Physikalisch Technische Bundesanstalt

Braunschweig und Berlin

Die gesetzlichen Einheiten in Deutschland

Vorwort

Das aus dem metrischen System weiterentwikkelte *Internationale Einheitensystem SI* (Système International d' Unités) hat sieben Basiseinheiten.

Abgeleitete SI-Einheiten werden durch Multiplikation und Division aus den SI-Basiseinheiten, immer mit dem Faktor 1 (kohärent), gebildet.

Für viele abgeleitete SI-Einheiten wurden besondere Namen und Einheitenzeichen festgelegt, z. B. Newton (N) für die Einheit der Kraft und Volt (V) für die der elektrischen Spannung.

Das SI ist weltweit von der internationalen und nationalen Normung übernommen worden (z. B. ISO 1000, DIN 1301). In den EG-Mitgliedstaaten ist es die Grundlage für die Richtlinie über Einheiten im Meßwesen (EWG-Richtlinien 80/181 und 89/617).

In der Bundesrepublik Deutschland ist das *Gesetz über Einheiten im Meßwesen* die Rechtsgrundlage für die Angabe physikalischer Größen in gesetzlichen Einheiten. Es verpflichtet zu ihrer Verwendung im geschäftlichen und amtlichen Verkehr.

Die Ausführungsverordnung zum Gesetz über Einheiten im Meßwesen (Einheitenverordnung) verweist auf die Norm DIN 1301. In der Anlage zur Einheitenverordnung sind die gesetzlichen Einheiten in alphabetischer Reihenfolge aufgeführt.

Aufgaben der PTB

Die Physikalisch-Technische Bundesanstalt hat nach dem Einheitengesetz die

- gesetzlichen Einheiten darzustellen
- Temperaturskala nach der Internationalen Temperaturskala der Internationalen Meterkonvention darzustellen
- Prototype der Bundesrepublik Deutschland sowie die Einheitenverkörperungen und Normale an die internationalen Prototype oder Etalons nach der Internationalen Meterkonvention anzuschließen oder anschließen zu lassen
- Prototype der Bundesrepublik Deutschland sowie die Einheitenverkörperungen und Normale aufzubewahren
- Verfahren bekanntzumachen, nach denen nichtverkörperte Einheiten, einschließlich der Zeiteinheiten und -skalen sowie der Temperatureinheit und -skalen, dargestellt werden.

Das Einheitengesetz enthält eine Aufzählung von Aufgaben der PTB auf dem Gebiet der Einheiten. Die PTB hat ferner nach § 2 des Zeitgesetzes vom 25.7.1978 (BGBl. I S. 1110 und 1262) die gesetzliche Zeit darzustellen und zu verbreiten. Weitere Aufgaben der PTB sind in den §§ 11 und 13 des Eichgesetzes aufgeführt.

SI-Basiseinheiten

Basis-	Basiseinl	neit	Definition				
größe	Name	Zeichen	(siehe auch DIN 1301)				
Länge	Meter	m	Das Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von (1/299 792 458) Sekunden durchläuft.				
Masse	Kilogramm	kg	Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.				
Zeit	Sekunde	S	Die Sekunde ist das 9 192 631 770 fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³ Cs entsprechenden Strahlung.				
elektrische Strom- stärke	Ampere	A	Das Ampere ist die Stärke eines konstanten elektrischen Stromes, der, durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von einem Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern je einem Meter Leiterlänge die Kraft $2 \cdot 10^{-7}$ Newton hervorrufen würde.				
Tempe- ratur	Kelvin	K	Das Kelvin, die Einheit der thermodynamischen Temperatur, ist der 273,16te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers.				
Stoff- menge	Mol	mol	Das Mol ist die Stoffmenge eines Systems, das aus ebensoviel Einzelteilchen besteht, wie Atome in 0,012 Kilogramm des Kohlenstoffnuklids ¹² C enthalten sind. Bei Benutzung des Mol müssen die Einzelteilchen spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.				
Licht- stärke	Candela	cd	Die Candela ist die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz $540 \cdot 10^{12}$ Hertz aussendet und deren Strahlstärke in dieser Richtung (1/683) Watt durch Steradiant beträgt.				

SI-Vorsätze

Potenz	Name	Zeichen	Potenz	Name	Zeichen
10^{24}	Yotta	Y	10-1	Dezi	d
10^{21}	Zetta	Z	10-2	Zenti	c
10^{18}	Exa	E	10^{-3}	Milli	m
10^{15}	Peta	P	10^{-6}	Mikro	μ
10^{12}	Tera	T	10^{-9}	Nano	n
10^9	Giga	G	10 ⁻¹²	Piko	p
10^{6}	Mega	M	10^{-15}	Femto	f
10^{3}	Kilo	k	10-18	Atto	a
10^{2}	Hekto	h	10 ⁻²¹	Zepto	Z
10^{1}	Deka	da	10 ⁻²⁴	Yocto	y 2

Gesetzliche Einheiten

Nichtgesetzliche Einheiten

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen			
Länge	Meter	m	SI-Basiseinheit			
Lange	Astronomische Einheit* Parsec Lichtjahr Ångström typographischer Punkt inch** foot yard mile Internationale	AE pc Lj Å p in ft yd mile	1 AE = $149,597 870 \cdot 10^9 \text{m}$ 1 pc = 206265AE = $30,857 \cdot 10^{15} \text{m}$ 1 Lj = $9,460 530 \cdot 10^{15} \text{m}$ = $63240 \text{AE} = 0,30 659 \text{pc}$ 1 Å = 10^{-10}m 1 p = $0,376 065 \text{mm}$ • im Druckereigewerbe 1 in = $2,54 \cdot 10^{-2} \text{m} = 25,4 \text{mm}^{***}$ 1 ft = $0,3048 \text{m}$ = $30,48 \text{cm}$ 1 yd = $0,9144 \text{m}$ 1 mile = $1609,344 \text{m}$			
	Seemeile	sm	1 sm = 1852 m			
ebener Winkel	Radiant Vollwinkel Grad Minute Sekunde Gon Neugrad	rad o , gon	1 rad = 1 m/m • Zentriwinkel r = 1 m, B = $2\pi \cdot \text{rad}$ = $360^\circ = 400 \text{ gon}$ 1° = $(\pi/180) \text{ rad}$ = 1,1111 gon 1' = $1^\circ/60$ • auch Winkelminute go 1" = $1^\circ/60$ • auch Winkelsekunde go 1 gon = $(\pi/200) \text{ rad}$ = 0,9° • Neugrad go 1g = 1 gon = $0.5\pi \cdot 10^{-2} \text{ rad}$	enannt genannt		
	Neuminute Neusekunde	c cc	$1^{c} = 10^{-2} \text{ gon} = 0.5\pi \cdot 10^{-4} \text{ rad}$ $1^{cc} = 10^{-4} \text{ gon} = 0.5\pi \cdot 10^{-6} \text{ rad}$			
räumlicher Winkel Brechkraft		sr dpt	$1 \text{ sr} = 1 \text{ m}^2/\text{m}^2$ $1 \text{ dpt} = 1/\text{m}$ • r = 1 m, Kalottenfläch • nur bei optischen Syst			
Fläche	Quadratmeter Ar Hektar Barn	m ² a ha b	$\begin{array}{lll} & & \bullet \text{ nicht ,,qm$''$ verwender} \\ 1 \text{ a} & = 100 \text{ m}^2 & \bullet \text{ nur f\"{u}r Grund- und Fl} \\ 1 \text{ ha} & = 100 \text{ a} & = 10^4 \text{ m}^2 & \bullet \text{ nur f\"{u}r Grund- und Fl} \\ 1 \text{ b} & = 10^{-28} \text{ m}^2 & \bullet \text{ in Atom- und Kernph} \end{array}$	urstücke urstücke ysik		
	Morgen square foot acre	sq ft ac	1 Morgen = 0.25 ha = 2500 m ² • regionale Unterschied 1 sq ft = 0.09290306 m ² 1 ac = 4046.856 m ²	e		

^{*} etwa mittlere Entfernung zwischen Erde und Sonne

^{**} kursivgedruckt: gemäß EG-Richtlinie in einigen Ländern zulässig

^{***} fettgedruckte Endziffer: Wert gilt als exakt (siehe auch ISO 31)

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen				
Volumen	Kubikmeter	m ³					• nicht "cbm" verwenden
	Liter	l oder L		$= 10^{-3} \text{m}^3 = 1 \text{dm}^3$	$=10^{3}$ c	cm ³	• nicht "ccm" verwenden
	Festmeter	Fm	1 Fm	$= 1 \text{ m}^3$			• nur in der Holzwirtschaft
	Raummeter	Rm	1 Rm	$= 1 \text{ m}^3$			• nur in der Holzwirtschaft
	barrel	bbl	1 barrel	= 158,988 1			• nur für Rohöl
	fluid ounce	fl oz	1 fl oz	$= 28,4131 \cdot 10^{-6} \mathrm{m}^{2}$			
	pint	pt	1 pt	$= 0.568262 \cdot 10^{-3} \mathrm{r}$			
	quart	qt	1 qt	$= 1,13652 \cdot 10^{-3} \mathrm{m}$			0,9463531*
	gallon	gal	1 gal	$= 4,54609 \cdot 10^{-3} \mathrm{m}$		609 1	3,785 41 1*
Raummaß für	Registertonne	RT	1 RT	$= 100 \text{ ft}^3 = 2,83 168$			* amerikanische Werte
Schiffe	Brutto-RT	BRT	_	umbauter Raum des			
	Netto-RT	NRT	Gesamtra	uminhalt ohne für S	chiffsbetri	eb erfor	derliche Räume in RT
Volumenstrom, Vol	umendurchfluß	m^3/s	$1 \text{ m}^3/\text{s}$	$= 60 \cdot 10^3 \text{ l/min}$	= 3600	m ³ /h	
spezifisches Volume	en	m³/kg	$1 \text{ m}^3/\text{kg}$	= 1 l/g			
Masse	Kilogramm	kg	SI-Basise	inheit			
Gewicht	Gramm	g	1 g	$=10^{-3} \mathrm{kg}$		• nicht	"gr." oder "Gr." verwenden
(Wägewert von	Tonne	t	1 t	$= 10^3 \mathrm{kg}$			
Warenmengen	metrisches Karat			$= 0.2 \text{ g} = 0.2 \cdot 10^{-3}$		• nur fi	ir Edelsteine
im geschäftlichen Verkehr)	atomare Massen- einheit***	u	1 u	$= 1,6605655 \cdot 10^{-3}$	²⁷ kg		
,	Pfund	u	1 <i>U</i>	=0.5 kg		• seit 18	884 keine gesetzliche Einhei
	Zentner	Ztr	1 Ztr	=50 kg			
	Doppelzentner	dz	1 dz	= 100 kg			
	ounce (avoirdupois)	OZ	1 oz	$= 28,3495 \cdot 10^{-3} \text{ kg}$			
	troy ounce	oz tr	1 oz tr	$= 31,10 \cdot 10^{-3} \text{ kg} =$			blo
	pound	lb	1 lb	= 0,45 359 23 7 kg=	= 453,592	3 7 g	
Gewichtstonne	tons/deadweight	ton dw	1 ton dw	$= 1016 \mathrm{kg}$		• Tragf	ähigkeit von Schiffen
		t dw	1 t dw	= 1000 kg			
längenbezogene	Tex	tex	1 tex				ir Textilien
Masse	Denier	den	1 den	= 1/9 tex =	= 1/9 g/km	l	
flächenbezogene M	flächenbezogene Masse		1 kg/m^2	$= 1 \text{ mg/mm}^2$			
Massenstrom		kg/s	1 kg/s	= 60 kg/min	= 3,6 t/h	= 86,4	t/d
Dichte		kg/m³	1 kg/m^3	= 1 g/l	$= 10^{-3} \text{ kg/l}$		
Mostgewicht	Öchslegrad	Oe°					Zahlenwert der Dichte
			(von Traubenmost) in kg/m³ minus 1000.				
** auch Abkürzı	 ungen ,,Kt" und ,,ct" m	nöglich					

auch Abkürzungen "Kt" und "ct" möglich
 1/12 der Masse eines Atoms des Nuklids ¹²C

Größe	Einheitenname	Zeichen	Beziehung	gen und Bemerkungen	
Zeit	Sekunde	s	SI-Basise	inheit	Vorsätze nur bei s verwenden
Zeitspanne, Dauer	Minute Stunde Tag	min h d	1 min 1 h 1 d	= 60 s = 60 min = 3600 s = 24 h = 1440 min = 86	400 s
Frequenz	Hertz	Hz	1 Hz	= 1/s	
Drehzahl, Drehgeschwindigkeit*	reziproke Sekunde reziproke Minute	1/s 1/min	1/min	= 1/(60 s)	• nicht "U/s" od. "U/min" verwenden
Geschwindigkeit	Meter durch Sekunde	e m/s		= 3,6 km/h (pro) Stunde, nicht "Stunder	ıkilometer" verwenden
	Knoten	kn	1 kn	= 1 sm/h = 0.5144 m/s	
Beschleunigung	Gal	m/s ² Gal	Normalfa 1 Gal	Ilbeschleunigung $g_n = 9,8066$ = 10^{-2} m/s ²	55 m/s ² • nur in der Geodäsie
Winkel- geschwindigkeit		rad/s			
Kraft	Newton	N	1 N	$= 1 \text{ kg} \cdot \text{m/s}^2$	 auch Gewichtskraft genannt
	Dyn Pond	dyn p	1 dyn 1 p	$= 10^{-5} \text{ N}$ = 9,80 665 \cdot 10^{-3} \text{ N}	• 1 kp ≈10 N
Impuls		$N \cdot s$	$1 \text{ N} \cdot \text{s}$	$= 1 \text{ kg} \cdot \text{m/s}$	Masse · Geschwindigkeit
Schalldruck**	Pascal	Pa	1 Pa	$= 1 \text{ N/m}^2$	
Schalleistung**		W			• DIN 1332
Schallintensität**, Schallenergieflußdichte		W/m^2			• DIN 1332
Lärmdosis***		$Pa^2 \cdot s$			• DIN 45 644
Druck, mechanische	Pascal	Pa	1 Pa 1 MPa	$= 1 \text{ N/mm}^2$	a) ≈ 0,75 · 10 ⁻² mmHg • für Festigkeitsangaben
Spannung	Bar Millimeter- Quecksilbersäule	bar mmHg	1 bar 1 mmHg	= 10 ⁵ Pa = 10 ³ mbar = 133,32 2 Pa = 1,33 322 ml	= 10 ⁵ kg/(s ² · m) bar • nur in Heilkunde zulässig
* in der Elektro	physik. Atmosphäre techn. Atmosphäre Torr Meter-Wassersäule psi otechnik Kreisfrequenz	atm at Torr mWS lb/in ²	1 atm 1 at 1 Torr 1 mWS 1 lb/in ²	= (101325/760) Pa = 1,333	0 66 5 bar 3 224 mbar 66 5 mbar

^{*} in der Elektrotechnik Kreisfrequen

^{**} In der Akustik werden häufig logarithmierte Verhältnisgrößen nach DIN 5493 Teil 1 verwendet (z. B. Schalldruckpegel).

^{***} auf den Nennwert bezogen Schalldosis genannt

Größe	Einheitenname	Zeichen	Beziehung	gen und Bemer	kungen	
dynamische	Pascalsekunde	Pa · s	1 Pa·s		$= 1 \text{ kg/(s} \cdot \text{m})$	• DIN 1342
Viskosität	Poise	P	1 P	$= 0.1 \text{ Pa} \cdot \text{s}$	$= 0.1 \text{ N} \cdot \text{s/m}^2$	
kinematische		m^2/s				• DIN 1342
Viskosität	Stokes	St	1 St	$= 10^{-4} \text{ m}^2/\text{s}$		
Arbeit, Energie, Wärmemenge	Joule* Kilowattstunde Elektronvolt Erg	J kW·h eV	1 J 1 kW · h 1 eV 1 erg	= $1 \text{ N} \cdot \text{m}$ = 3.6 MJ = 160.21892 = 10^{-7} J	= 860 kcal	$3,6) \cdot 10^{-6} \mathrm{kW} \cdot \mathrm{h} = 1 \mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}^2$
	Kalorie	erg cal	1 cal	= 4,1868 J	$= 1,163 \cdot 10^{-3} \text{V}$	$V \cdot h$
Brennwert**	Tonne Steinkohlen- einheiten***	kcal/l kcal/kg t SKE	1 kcal/l 1 kcal/kg 1 t SKE	$= 4,1868 \text{ kJ/l}$ = 4,1868 kJ/k = 7 \cdot 10^6 \text{ kcal}	-	9 J = 8,141 · 10 3 kW · h
Wärmekapazität		J/K	1 J/K	$= 1 \text{ m}^2 \cdot \text{kg/(s}^2$	· K)	• Entropie
Energiedichte		J/m^3	1 J/m^3	$= 1 \text{ kg/(m} \cdot \text{s}^2)$)	
spezifische Energie		J/kg	1 J/kg	$= 1 \text{ m}^2/\text{s}^2$		
molare Energie molare		J/mol	1 J/mol	$= 1 \text{ W} \cdot \text{s/mol}$	$= 1 \text{ m}^2 \cdot \text{kg/(s}^2$	· mol)
Wärmekapazität		$J/(\text{mol} \cdot K)$	1 J/(mol · K	$S = 1 \text{ m}^2 \cdot \text{kg/(s}^2)$	$\cdot \cdot \text{K} \cdot \text{mol})$	• molare Entropie
Leistung,	Watt	W	1 W	= 1 J/s	$= 1 \text{ N} \cdot \text{m/s} = 1$	$\mathbf{V} \cdot \mathbf{A} = 1 \mathbf{m}^2 \cdot \mathbf{kg/s^3}$
Energiestrom,	Voltampere	VA	1 VA	= 1 W		Scheinleistung
Wärmestrom	Var	var	1 var	= 1 W		Blindleistung
	Pferdestärke	PS	1 PS	•	= 0,73 549 875	kW
Heizleistung		kcal/h	1 kcal/h	= 1,163 W		
Wärmeleitfähigkeit		$W/(m \cdot K)$		$S = 1 \text{ m} \cdot \text{kg/(s}^3$		$60 \frac{\text{kcal}}{\text{(m} \cdot \text{h} \cdot ^{\circ}\text{C)}}$
		$kcal/(m \cdot h \cdot {}^{\circ}C$			$=1,163 \text{ W/(m} \cdot$,
Wärmedurchgangs- koeffizient		$W/(m^2 \cdot K)$ kcal/ $(m^2 \cdot h \cdot {}^{\circ}C)$		$X = 1 \text{ m} \cdot \text{kg/(s}^{3}$ $1 \text{ kcal/(m}^{2} \cdot \text{h})$		$60 \frac{\text{kcal}}{(\text{m}^2 \cdot \text{h} \cdot {}^{\circ}\text{C})}$ $= 1,163 \text{ W/(m}^2 \cdot \text{K})$
Wärmestromdichte, Bestrahlungsstärke Strahlstärke		W/m² W/sr	1 W/m ² 1 W/sr	$= 1 \text{ kg/s}^3$ $= 1 \text{ m}^2 \cdot \text{kg/(s}^3$	· sr)	

Strahldichte

 $W/(m^2 \cdot sr)$ 1 $W/(m^2 \cdot sr)$

 $= 1 \text{ kg/(s}^3 \cdot \text{sr})$

^{**}

Aussprache [d**3**u:l] auch oberer Heizwert genannt Der Einheit "Tonne Steinkohleneinheiten" liegt ein Heizwert von 7000 kcal/kg zugrunde.

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen			
elektr. Stromstärke	Ampere	A	SI-Basise	einheit		
elektr. Spannung, elektr. Potential, elek	Volt ktromotor. Kraft	V	1 V	$= 1 \text{ W/A} = 1 \text{ kg} \cdot \text{m}^2/(\text{A} \cdot \text{s}^3)$		
elektr. Widerstand	Ohm	Ω	1Ω	= 1 V/A = 1/S = 1 W/A ² = 1 kg · m ² /(A ² · s ³)		
elektr. Leitwert	Siemens	S	1 S	$= 1 \text{ A/V}$ $= 1/\Omega$ $= 1 \text{ W/V}^2 = 1 \text{ A}^2 \cdot \text{s}^3/(\text{kg} \cdot \text{m}^2)$		
elektr. Ladung, Elektrizitätsmenge	Coulomb Amperestunde	$\begin{matrix} C \\ A \cdot h \end{matrix}$	1 C 1 A · h	= $1 \text{ A} \cdot \text{s}$ = $3600 \text{ A} \cdot \text{s} = 3600 \text{ C}$		
elektr. Ladungsdicht	te	C/m ³	1 C/m ³	$= 1 \text{ A} \cdot \text{s/m}^3$		
elektr. Flußdichte,Vo	erschiebung	C/m ²	1 C/m ²	$= 1 \text{ A} \cdot \text{s/m}^2$		
elektr. Kapazität	Farad	F	1 F	= 1 C/V = 1 A · s/V = 1 A ² · s ⁴ /(kg · m ²)		
Permittivität		F/m	1 F/m	$= 1 A \cdot s/(V \cdot m) \qquad = 1 A^2 \cdot s^4/(kg \cdot m^3)$		
elektr. Feldstärke		V/m	1 V/m	$= 1 \text{ kg} \cdot \text{m/(A} \cdot \text{s}^3) \qquad \bullet \text{DIN } 1357$		
magn. Fluß	Weber	Wb	1 Wb	= 1 V · s = 1 T · m ² = 1 A · H = 1 kg · m ² /(A · s ²)		
magn. Flußdichte, magn. Induktion	Tesla	T	1 T	= 1 Wb/m ² = 1 V · s/m ² = 1 kg/(s ² · A)		
Induktivität, magn. Leitwert	Henry	Н	1 H	$= 1 \text{ Wb/A} = V \cdot \text{s/A} \qquad = 1 \text{ kg} \cdot \text{m}^2/(\text{A}^2 \cdot \text{s}^2)$		
Permeabilität		H/m	1 H/m	$= 1 \text{ V} \cdot \text{s/(A} \cdot \text{m}) \qquad = 1 \text{ kg} \cdot \text{m/(A}^2 \cdot \text{s}^2)$		
magn. Feldstärke		A/m				
	Oersted	Oe	1 Oe	$= [10^3/(4\pi)] \cdot A/m \qquad \approx 80 A/m$		
Temperatur	Kelvin	K	SI-Basise	einheit		
(thermodyn. <i>T</i>) (Celsius <i>t</i>)	Grad Celsius	°C		= 1 K • als Temperatur differenz • $t = T - 273,15*$		
	Degree Fahrenheit	°F	1°F	$= (5/9) \text{ K}$ • $t = (5/9) \cdot (t_F - 32)^*$		
	Grad Kelvin Grad	°K grd	1 °K 1 grd	= 1 K = 1 K		
Lichtstärke	Candela	cd	SI-Basise	einheit		
Leuchtdichte		cd/m ²		• DIN 5031 Teil 3		
	Stilb	sb	1 sb	$= 10^4 \text{cd/m}^2$		
Lichtstrom	Lumen	lm	1 lm	$= 1 \text{ cd} \cdot \text{sr}$ • DIN 5031 Teil 3		
Beleuchtungsstärke	Lux	lx	1 lx	= $1 \text{ lm/m}^2 = 1 \text{ cd} \cdot \text{sr/m}^2$ • DIN 5031 Teil 3		

Für t, T und $\mathbf{t}_{_{\mathrm{F}}}$ sind die jeweiligen Zahlenwerte einzusetzen.

Größe	röße Einheitenname Zeichen Beziehungen und Bemerkungen					
Aktivität einer radio-	Becquerel	Bq	1 Bq	= 1/s		• DIN 6814 Teil 4
aktiven Substanz	Curie	Ci	1 Ci	$= 37 \mathrm{GBq}$		
Energiedosis,	Gray	Gy	1 Gy	= 1 J/kg	$= 1 \text{ W} \cdot \text{s/kg} = 1$	$1 \text{ m}^2/\text{s}^2$
Kerma	Rad	rd	1 rd	= 1 cGy	= 0.01 Gy	
Äquivalentdosis	Sievert	Sv	1 Sv	= 1 J/kg	$= 1 \mathbf{W} \cdot \mathbf{s/kg} = 1$	1 m ² /s ²
	Rem	rem	1 rem	= 1 cSv	= 0.01 Sv	
Energiedosis-	Gray durch Sekunde	•	1 Gy/s	= 1 W/kg	$= 1 \text{ m}^2/\text{s}^3$	
leistung oder -rate	Rad durch Sekunde	rd/s	1 rd/s	= 0.01 Gy/s		
Äquivalentdosis-	Sievert durch Sekund		Sv/s	1 Sv/s	= 1 W/kg	$= 1 \text{ m}^2/\text{s}^3$
leistung oder -rate	Rem durch Sekunde	rem/s	1 rem/s	= 0.01 Sv/s		
Ionendosis	Coulomb je kg	C/kg	1 C/kg	$= 1 A \cdot s/kg$		Größe nicht mehr verwenden
	Röntgen	R	1 R	$=258 \cdot 10^{-6}$	C/kg	
Stoffmenge	Mol	mol	SI-Basise	inheit		• DIN 32 625
Stoffmengen-						
konzentration		mol/l	1 mol/l	$= 10^3 \text{mol/m}$	1 ³	• DIN 1310
molares Volumen		l/mol	1 l/mol	$= 10^{-3} \mathrm{m}^3/\mathrm{m}^2$	ol	
molare Masse		g/mol	1 g/mol	$= 10^{-3} \text{ kg/m}$	ol	
molare Entropie		$J/(mol\cdot K)$	1 J/(mol·K	()		$= 1 \text{ kg} \cdot \text{m}^2/(\text{s}^2 \cdot \text{mol} \cdot \text{K})$
molare innere Energ	ie	J/mol				• DIN 1345
Volumenkonzentrati	on*	1/1 oder 1/m ³				
Stoffmengenanteil**	, Molenbruch	1				• DIN 1310
Massenanteil**, Mas	1				• DIN 1310	
Volumenanteil**, V	1				• DIN 1310	
Massenkonzentration Partialdichte***	n***,	kg/l oder g/l	1 kg/l	$= 10^3 \text{ kg/m}^3$		• DIN 1310
Teilchenzahlkonzent	$1/m^3$				• z. B. Staubpartikel pro m ³	

Volumenanteil genannt, wenn der Mischvorgang ohne Volumenveränderung erfolgt

Der Anteil kann auch in Prozent (1% = 1/100) oder Promille (1% = 1/1000) angegeben werden. "g/(100 ml)" nicht "%" und "mg/(100 ml)" nicht "mg-Prozent" nennen (DIN 1310) **

Rechtsvorschriften, Richtlinien und Normen

Gesetz über Einheiten im Meßwesen

vom 2. Juli 1969 (BGBl. I S. 709) in der Fassung der Bekanntmachung vom 22. Februar 1985 (BGBl. I S. 408)

Ausführungsverordnung zum Gesetz über Einheiten im Meßwesen vom 13. Dezember 1985 (BGBl. I S. 2272) und Änderungsverordnung vom 22. März 1991

Gesetz über das Meß- und Eichwesen (Eichgesetz) in Neufassung vom 23. März 1992 (BGBl. I S. 711 bis 718)

Richtlinie 80/181/EWG des Rates über Einheiten im Meßwesen vom 20.12.1979 (ABI. Nr. L 39/40 vom 15.12.1980), zuletzt geändert durch Richtlinie 89/617/EWG

DIN 1301 Teil 1, 12.93

Einheiten; Einheitennamen, Einheitenzeichen

DIN 1301 Teil 1 Beiblatt 1, 04.82

Einheiten: Einheitenähnliche Namen und Zeichen

DIN 1301 Teil 2, 02.78

Einheiten; Allgemein angewendete Teile und Vielfache

DIN 1301 Teil 3, 10,79

Einheiten; Umrechnungen für nicht mehr anzuwendende

Einheiten

DIN 1304 Teil 1, 03.94

Formelzeichen; Allgemeine Formelzeichen

DIN 5493 Teil 1, 02.93

Logarithmische Größen und Einheiten

ISO 1000: 11.92

SI units and recommendations for the use of their multiples and of certain other units

ISO 31-0 bis ISO 31-XIII

(enthalten Grundsätze zu Größen und Einheiten sowie Einheiten für spezielle physikalische Größen)

Information

Dr.-Ing. Hans-Günter Gillar Stabsstelle Presse und Öffentlichkeitsarbeit Tel. (05 31) 592-93 11 email: hans-guenter.gillar@ptb.de

Herausgeber:

Physikalisch-Technische Bundesanstalt, Braunschweig

Bundesallee 100 38116 Braunschweig

Tel.: (05 31) 592-30 06 Fax.: (05 31) 592-30 08 email: presse@ptb.de WWW:http://www.ptb.de/