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Abstract

A modified multislice method has been developed for calculations of Convergent Beam Electron Diffraction (CBED)

patterns. The validity of the method for HOLZ- and Kikuchi-line calculations has been proofed by comparison to

Bloch-wave calculations. The application of the method leads to the new understanding of CBED patterns formation.

Dynamical scattering of weak HOLZ reflections plays the key role in the appearance of deficient lines in the central

CBED disk. Different HOLZ lines do have significantly different and extended scattering areas; the central 000 CBED

disk, consequently, contains structural information from an area around the primary beam which is determined by the

Bragg angle of HOLZ reflections and the thickness of the sample. A variation of lattice parameters, if present within

this area, results in artificial symmetry violations of the pattern and in changes of line profiles.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Convergent Beam Electron Diffraction (CBED)
is a TEM technique with a wide range of unique
capabilities. It can be applied for crystal symmetry
determination [1], polarity determination of non-
e front matter r 2005 Elsevier B.V. All rights reserve
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centrosymmetric crystals [2], temperature factors
[3,4] and charge density refinement [5,6], disloca-
tions and interface study [7–9], lattice parameter
determination [10,11] and local strain analysis
[12,13]. A few tasks, such as symmetry group or
polarity determination, can be solved by direct
interpretation of CBED patterns. However, for
most of the tasks, especially if quantitative results
are required, dynamical calculations of CBED
patterns have to be performed, which are mainly
based on the Bloch-wave approach [14,15] so far.
d.

www.elsevier.com/locate/ultramic


ARTICLE IN PRESS

A. Chuvilin, U. Kaiser / Ultramicroscopy 104 (2005) 73–8274
Progress in semiconductor micro- and nano-
technology requires tools for the reliable local
measurement of mechanical strains in semicon-
ductor devices. The increasing popularity of the
CBED method for this purpose is addressed to the
thought that CBED patterns contain structural
information from a column along the beam
direction with a diameter of the area illuminated
by the primary and strong diffracted beams [16].
Advances in field emission electron sources and
electron optics made subnanometer size probes
practically available, and thus strain fields in
semiconductor devices might be measured with
the spatial resolution of 1 nm. However, a number
of phenomena have been observed in CBED
patterns of imperfect crystals, which cannot be
understood in the frame of this idea, as e.g. line
splitting [17,18], unexpected symmetry violations
[12] and HOLZ line blurring near the interfaces
[19]. The Bloch wave theory cannot describe the
scattering by imperfect crystals without further
approximations, because of a huge number of
Bloch states in this case and thus enormous
computational expenses.
The multislice method was suggested as an

alternative for calculating nanodiffraction [20].
Advantage of the multislice method is that it does
not require particular approximations for imper-
fect crystals and thus electron scattering for the
distorted crystals can be calculated to the same
accuracy as for the perfect ones. Muller et al. [21]
applied the multislice method to calculate corre-
lated-phonon background in CBED patterns.
Thus it was shown, that real-space information
(correlation of displacements of atoms from
outlying unit cells) is presented in experimental
CBED patterns and can be reproduced using the
multislice method. Also using the multislice
method, Spence et al. [22,23] simulated success-
fully superstructural Laue rings from dislocation
cores.
Here we demonstrate, that the multislice method

can simulate correctly deficient HOLZ lines in the
central CBED disk as well. Consequences of this
approach seem to be of general value for the
understanding of the process of CBED pattern
formation and in particular to answer the question
of how local a CBED pattern can be.
2. Methods

All simulations were performed with the home-
made program ‘‘Mulsi’’ based on the implementa-
tion of FFT multislice algorithm. The algorithm
was modified in accordance to Refs. [21,24] in
order to optimise the speed of CBED calculations.
‘‘Mulsi’’ runs under Win2Kpro and higher on
common use PCs. Depending on the hardware, the
program allows at reasonable time (from a few
hours to a few days on a P4 2.8 HT/2G RAM PC)
the calculation of HR images and CBED patterns
up to 8K� 8K pixels in size of models consisting
of up to 108 independent atoms.
The idea to calculate the propagation of a sharp

electron probe with the multislice method was first
introduced by Spence [20] and was utilized later
for CBED [25] as well as for ADF STEM image
calculations [26]. A focused probe is represented
by a disk in reciprocal space (corresponding to
electron wave filling the condenser aperture),
rather than a delta function (plane wave) used
for CTEM image simulations. The diameter of the
disk determines the convergence angle of illumi-
nating beam and the disk position determines the
beam tilt. The modulation of the phase of the
complex wave function within the disk allows
accounting for lens aberrations and probe position
in real space. The probe wave function in the real
space is then obtained by a backward Fourier
transformation.
Particular requirements for the calculation

parameters have to be fulfilled in order to calculate
CBED patterns including HOLZ lines. The
sampling frequency in real space is determined
by the scattering angle of the highest order lines
included in the simulation. In order to account for
the reflection with a particular g-vector of Gnm�1,
the sampling interval of the phase grating should
be smaller than 1/(2G) nm. For typical g-vectors
of HOLZ lines of about 50 nm�1, a sampling of at
least 0.01 nm is required (which is similar to the
requirements for HRTEM image calculations).
The sampling interval in reciprocal space is
determined by a desired resolution of HOLZ lines.
In order to image a first-order Laue zone line
(which is typically about 0.05 nm�1 wide) with a
width of at least two pixels, the sampling interval
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should be 0.025 nm�1. The latter determines the
minimum supercell size in real space to be of the
order of 40 nm. Larger supercells are required for
the higher order lines imaging. This requirement
can be reformulated as follows: the supercell
should be large enough in order to include all the
HOLZ lines intensities scattered at a destination
thickness. Thus, the calculation of a HOLZ line
scattering to 50 nm�1 (about 101 at 100 kV) for a
thickness of 150 nm with a probe positioned at the
center of the supercell will require a size of the
supercell of 2*150*tan(101) �53 nm.
Slicing schemes used for HRTEM image simu-

lations were incapable to calculate HOLZ lines
correctly [27,28] so far. This is mainly due to the
fact that equal slice thicknesses used in traditional
multislice algorithm in most cases require a ‘‘shift’’
of atomic potential in Z direction (see Fig. 1).
Thus, the 3D symmetry of the crystal under
investigation appears to be broken. As far as
HOLZ lines reflect not a projection symmetry, but
the full 3D symmetry of the crystal [1], ‘‘equal
thickness’’ scheme cannot simulate HOLZ lines
correctly by definition. We implemented a scheme,
which calculates the projection of the atomic
potential ‘‘in-place’’, i.e. potentials of atoms from
each atomic layer are projected into the separate
Fig. 1. Illustration of slicing scheme used in multislice simulations: (a)

thickness; projected potentials are shifted in Z direction (indicated by

projection is preserved and (c) suggested slicing scheme with varying

3D symmetry of the crystal is preserved.
phase grating, with its z-coordinate equal to the z-
coordinate of the layer. In this case, z-coordinates
of atoms in real space and hence 3D symmetry of a
crystal, positions and intensities of HOLZ lines in
reciprocal space are preserved. The propagation
between phase gratings is then calculated in a
common way.
Test calculations were performed for Si [1 1 1] at

a specimen thickness of 150 nm at 100 kV. The
Doyle–Turner formula [29] was used for the
potential calculation, the Debye–Waller factor
equal to 0.003 nm2 was used to account for
thermovibrations and the absorption was set to
zero. A supercell with a size of 40� 40 nm2 was
calculated on a matrix of 4K� 4K. The probe
diameter at the entrance plane was about 0.3 nm.
Fig. 2 demonstrates the comparison of a multislice
simulation and a Bloch-wave simulation per-
formed with the ‘‘mbfit’’ program [14] for the
same set of parameters. HOLZ lines positions and
intensities calculated by multislice correspond well
to those calculated by the Bloch-waves method.
The thickness fringes differ by a thickness of about
2 nm, which is probably due to a parabolic
propagator approximation used in multislice. Such
a good agreement between two simulations is
remarkable, as each pattern is created in a very
example structure, (b) traditional slicing scheme with equal slice

the arrows) relative to atoms in the model; only 2D symmetry of

slice thickness; Z-positions of atoms are preserved and thus full
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Fig. 2. Comparison of Bloch-wave and multislice simulation methods. [1 1 1] CBED pattern of Si is simulated for 100 kV. Crystal

thickness is 150 nm, Doyle–Turner scattering factors are used, Debye–Waller factor is set to 0.003 nm2, no absorption. For multislice

simulation, the size of the supercell is 40� 40 nm2, the matrix size is 4K� 4K pixels, the convergence semi-angle is 2.5 nm�1, no lens

aberrations are applied.

Fig. 3. Multislice simulation similar to Fig. 2, but instead of the Debye–Waller factor, the frozen phonon (uncorrelated) model is used

to account for thermovibrations. Convergence semi-angle is 3 nm�1 herein. Thirty different phonon configurations are averaged to

obtain the pattern. Image intensity is gamma corrected in order to represent both lights and shadows.
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different way: Bloch-waves method calculates
CBED pattern point by point (using independent
plane wave approximation), stacking results of
independent calculations in a CBED disk, whereas
multislice produces the pattern as a whole by
Fourier transformation of a coherent exit wave.
Diffraction phenomenon, which is closely re-

lated to HOLZ lines, is a Kikuchi pattern. It has
been demonstrated earlier that the multislice
method can correctly calculate Kikuchi bands, if
the frozen phonons model [30] is used, and even
the detailed structure of the bands can be
reproduced by applying a ‘‘true’’ correlated
phonon spectrum [21]. Using the frozen phonon
model and the slicing scheme suggested here, it is
possible to calculate the full picture of elastic
diffuse background including fine Kikuchi lines
(see Fig. 3). However, further on in the paper we
will use only the Debye–Waller-factor approxima-
tion in order to minimize calculation time.
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3. Results and discussion

As the multislice algorithm operates in real and
reciprocal space, it allows establishing a direct
relation between the scattered beams (reciprocal
space) and the region of scattering (real space).
Fig. 4 illustrates the propagation of a 0.3 nm probe
through Si in [1 1 1] direction. While the main
intensity is preserved within 1–2 nm around the
central beam (at 150 nm depth), weak beams
scatter as far as 15 nm away from the center.
Fig. 5a represents the reciprocal space picture, i.e.
the CBED pattern, corresponding to the wave
at Fig. 4c. The excessive /1̄ 1 5 5S FOLZ line
Fig. 4. Propagation of 0.3 nm electron probe along the [1 1 1]-zone axi

3 nm�1 beam convergence semi-angle. Intensity is represented in logari

Fig. 5. (a) [1 1 1] Si CBED pattern corresponding to the exit wave a

rectangular at (a)) demonstrating well-developed dispersion surface

showing the area from which the line is scattered from (compare to F
(marked by rectangular at Fig. 5a) is repre-
sented by a cross-section of the well-developed
dispersion surface (Fig. 5b), which clearly indi-
cates the dynamical nature of the scattering. A
dark field image (Fig. 5c), numerically recon-
structed for this /1̄ 1 5 5S line, shows that the
scattering of this line occurs within a narrow
region stretched 15 nm away from the center to the
direction of the g-vector of the corresponding
reflection. Other lines similarly have their
distinct scattering regions. The size of these
regions is determined by t*tan(2Y), where t is
the sample thickness andY is a Bragg angle for the
particular line.
s of Si. Simulation parameters are identical to Fig. 2, besides the

thmic scale. Values at the top-right indicate the crystal thickness.

t 150 nm at Fig. 4, (b) /1̄ 1 5 5S type excess line (marked with

and (c) dark-field image reconstructed for the /1̄ 1 5 5S line,

ig. 4c).
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So far, however, it is not worked-out whether
back scattering from weak HOLZ beams into the
central beam occurs and to what extent this
backscattering may influence the intensity distri-
bution in the central disk. In other words, whether
the central disk contains structural information
only from the volume, which is illuminated by the
primary beam, or in addition from the neighboring
regions?
To clarify this point, we cut off the part of the

crystal model, where the scattered /1̄ 1 5 5S
reflection was propagating, thus directly prevent-
ing secondary scattering for this reflection (see
Fig. 6). The cut was made 3 nm away from the
illumination cone, so that zero-order reflections
with small scattering angles are not influenced.
The wave obtained at the exit plane of 150 nm
thick crystal (Fig. 7a) looks similar to the case of
the bulk crystal (Fig. 4c), as does the CBED
pattern (Fig. 7b). However, there is a difference
revealed by subtraction of the two waves as seen in
Fig. 7c. There is also a difference in the shape
of the excessive HOLZ lines (see Fig. 7d for
/1̄ 1 5 5S), which diffracted to the direction of
the edge, i.e. went out off the crystal shortly
after primary scattering. This line is no more a
slice of the dispersion surface (compare to Fig. 5b),
but is an arc of a circle, which can be thought
of as an intersection of the Ewald sphere with
the first Laue zone. This indicates clearly the
kinematical behavior of scattering in this case. At
the same time the deficient HOLZ lines in the
central CBED disk, with the g-vectors pointing to
the edge, change dramatically due to the proximity
of the edge, the others stay unaffected (Fig. 8).
These lines marked by the arrows in Fig. 8a, blur
and completely vanish at Fig. 8b. This phenom-
enon was observed experimentally in CBED
patterns taken close to incoherent interface
boundaries [19]. Thus, we may conclude that
deficient HOLZ lines in the central CBED disk
arise only due to the secondary scattering of
HOLZ reflections, a kinematical scattering of the
primary beam itself does not result in sharp
deficient lines as it was thought so far. The
other conclusion is that deficient lines are
formed outside the cone of primary illuminating
beam and therefore should reflect lattice para-
meters not at the beam position, but in adjacent
regions.
As different HOLZ lines originate from differ-

ent azimuth directions, the position of each line
reflects the lattice parameters in its particular
scattering region. Hence, the central CBED disk
combines, but not averages, structural information
from some area around the beam. This means,
that relative line positions reflect not only the
lattice parameters, but also the gradient of
lattice parameters. In addition, the variation of
lattice parameters within the scattering area
should influence the intensity profile of the lines
as well.
To illustrate the practical consequences of such

scattering delocalization for the case of CBED, we
simulated the diffraction pattern of a crystal with
a strain gradient. The atomic model was made for
a Si crystal strained in [1 1 0] direction with the
strain gradient of 4.3� 10�4 nm�1. Thus, for a
supercell of a length of 47 nm in [1 1 0] direction,
the crystal had a tensile strain of 10�2 at the
left side of the supercell, was unstrained in the
middle (at the position of the illuminating beam)
and had a compressive strain of 10�2 at the
right side of the cell. The CBED pattern was
simulated for Si [3 3 1] at 100 kV, a supercell of
47� 47 nm2 was sampled into a 4K� 4K matrix,
the semi-angle of convergence was 15mrad, the
crystal thickness was 237 nm and accelerating
voltage was 100 kV. For comparison, the [3 3 1]
CBED pattern for the perfect unstrained crystal
was calculated using the same simulation
parameters. Fig. 9 compares these two simulated
CBED patterns. The strain gradient leads to
HOLZ lines splitting as well as to symmetry
violation. FOLZ lines, however, are mostly
unaffected at this zone due to their low scattering
angles. Such kind of splitting was often observed
in experimental CBED patterns in combination
with the symmetry violation [12,31]. In most
cases, splitting was ignored until it grew to
extreme values and symmetry violations were
explained in terms of shear strain components.
However, in accordance to the calculation pre-
sented, it is more likely that the observation of
these two effects together indicates the presence of
a strain gradient.
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Fig. 6. Scheme of the models used in simulations: (a) perfect Si crystal in [1 1 1] zone viewed in the direction of a beam; dimensions of

the supercell are indicated; position of the beam is marked by a cross; (b) side view of the model; scattering of a HOLZ reflection with

reciprocal vector g is illustrated; probable backscattering of this reflection in the direction of the central beam is indicated by dashed

lines; (c) model of the crystal with an edge viewed in the direction of the beam; the edge is as far as 3 nm away from the beam position

and (d) side view of the edge model; secondary scattering of HOLZ reflection does not take place because of the lack of scattering

media. According to the modern concept for the locality of CBED pattern formation, CBED patterns from both models should be the

same, besides the shifts of the excessive HOLZ lines due to refraction at the edge.

A. Chuvilin, U. Kaiser / Ultramicroscopy 104 (2005) 73–82 79
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Fig. 7. (a) Exit wave for the case of a probe propagating near the crystal edge, simulation conditions are the same as for Fig. 4, edge of

the crystal is 3 nm to the right of the probe position, compare to Fig. 4c, (b) CBED pattern corresponding to (a), compare to Fig. 5a, (c)

difference between wave function at (a) and Fig. 4c and (d) /1̄ 1 5 5S type excess line, compare to Fig. 5b, the line is no longer a cross-

section of dispersion surface, but rather an intersection of Ewald sphere and the first Laue zone.

A. Chuvilin, U. Kaiser / Ultramicroscopy 104 (2005) 73–8280
4. Summary

It has been demonstrated by comparison to
Bloch-waves simulation that the inclusion of the
new slicing scheme into the multislice algorithm
allows CBED pattern simulation including HOLZ
lines to a good approximation. The full set of
Kikuchi lines can be simulated as well by utilising
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Fig. 8. (a) Central disk of the CBED pattern for the bulk crystal (Fig. 5a), (b) central disk of CBED pattern for the crystal model with

the edge (Fig. 7b), note blurring and vanishing of the lines marked by the white arrows in (a).

Fig. 9. [3 3 1] Si CBED patterns, accelerating voltage 100 kV, thickness 237 nm, supercell: 47 nm� 47 nm2, matrix: 4K� 4K: (a) perfect

unstrained crystal and (b) crystal with a gradient of strain of 4.3� 10�4 nm�1 in [1 1 0] direction (from left to right at the image); note

the symmetry breakage and the line profiles oscillations.

A. Chuvilin, U. Kaiser / Ultramicroscopy 104 (2005) 73–82 81
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the frozen phonon model. As the multislice
approach does not require additional approxima-
tions for imperfect structures, CBED patterns for
crystals with defects, strain fields, interfaces, etc.
can be calculated within the same accuracy as for
the perfect crystals.
It was shown that HOLZ lines in the central

CBED disk are produced by dynamical scattering
of weak HOLZ reflections and thus originate from
the whole scattering volume of the HOLZ lines
rather than from the scattering volume of the
strong beams only. The scattering regions for the
different HOLZ lines are different, and, conse-
quently, the central CBED disk represents a
combination of structural information from the
different azimuths around the illuminating beam.
The direct association of line positions and crystal
structure may therefore lead to an incorrect
interpretation of crystal structure distortions in
the presence of a strong strain gradient.
Besides unexpected line shifts, the variation of

lattice parameters within the scattering area results
also in a deviation of line profiles from the
‘‘normal’’ shape: an additional formfactor (oscilla-
tion or splitting) is observed, which reflects the
character of the strain distribution. The analysis of
the line profiles may provide new possibilities,
which then might become an effective tool for the
determination of the complete three-dimensional
strain field.
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