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Plasmon bands in multilayer graphene
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High-energy collective electronic excitations (plasmons) in freestanding multilayer graphene are studied by
momentum-resolved electron energy-loss spectroscopy (EELS). For normal incidence, only the high-energy
plasmon band is excited and we measure a blueshift of the π -plasmon dispersion with increasing thickness.
The observed transition between two-dimensional and three-dimensional behavior is explained using a layered-
electron-gas (LEG) model. We propose a method to measure all individual plasmon bands by tilting the sample
with respect to the electron beam. As a proof of concept, EELS experiments for three-layer graphene are compared
with predictions from the LEG model.
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I. INTRODUCTION

Collective electronic excitations (plasmons) in single- and
multilayer graphene have attracted a great deal of attention
because of their importance for plasmonic and optoelectronic
devices [1,2]. This interest is largely motivated by the high tun-
ability of charge-carrier plasmons and the optical absorption of
graphene [2], which allow applications in many devices, such
as photodetectors [3] or ultrafast lasers [4]. Graphene can also
be combined with other two-dimensional (2D) crystals, e.g.,
insulating hexagonal boron nitrite (hBN) or semiconducting
molybdenum disulfide (MoS2) to create a multitude of artificial
heterostructures. The electronic properties of such novel
multilayer structures can be tailored for an even larger range of
possible applications as well as for the study of novel physical
phenomena [5,6].

Plasmons in these 2D-based multilayers can be understood
as charge oscillations confined to certain planes and coupled
via interlayer Coulomb interactions. If the coupling is weak,
plasmon excitations on each of the N layers behave like
in an isolated sheet. But a strong interlayer coupling lifts
the degeneracy of these plasmon modes and leads to the
formation of N plasmon bands. In the past, plasmon bands
have been investigated extensively in macroscopic multilayers,
such as metallic superlattices and semiconductor quantum-
well structures, by a variety of theoretical methods [7–12].
While most experimental studies were performed using (angle-
resolved) Raman spectroscopy [13–15], also a few reports
from electron energy-loss spectroscopy (EELS) exist [16,17].
The question arises, whether these results remain valid for
atomically thin layers. So far, plasmon bands in 2D-based
multilayers have only been studied theoretically [18,19], but
a detailed experimental verification is still missing. For this
purpose, multilayer graphene is an ideal test system as the
interlayer distance is well defined and the number of layers
of a sample can be controlled with the highest accuracy. In
contrast to experiments on epitaxial graphene [20–22], where
mainly low-energy charge-carrier plasmons (<3 eV) have
been considered, we will focus on the high-energy plasmon
bands (>5 eV) in freestanding samples. The plasmon-band
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dispersion is therefore not affected by the screening of a sub-
strate or different doping on the individual sheets. High-energy
plasmons in freestanding single- and multilayer graphene were
first investigated in the limit of small momentum transfers
(q → 0): experimentally by scanning transmission electron
microscopy (STEM) EELS [23] and theoretically by ab initio
simulations [24–27]. The full momentum dependence (q > 0)
was studied by a variety of theoretical methods [18,28–32] and
has been measured recently for single-layer graphene using
momentum-resolved EELS [33,34].

In this paper, we present an experimental proof of the
formation of plasmon bands in multilayer graphene. To
this end, we have measured the π -plasmon dispersion in
freestanding multilayer graphene with two to six layers
using momentum-resolved EELS in a transmission electron
microscope. We use a layered-electron-gas model to explain
the observed plasmon dispersion and to discuss the transition
from 2D to 3D behavior. In contrast to previous studies [18,19],
we combine this simple model with ab initio calculations
for single-layer graphene, which provides a quantitative and
parameter-free prediction of plasmon bands in multilayers.
Finally, we propose a method to measure the dispersion of
all individual plasmon bands by choosing particular scattering
geometries, where only a single plasmon mode is excited.
This method is exemplified by momentum-resolved EELS
experiments on three-layer graphene.

II. METHODS

The momentum dependence (dispersion) of the plasmon
energies in freestanding multilayer graphene has been investi-
gated by electron energy-loss spectroscopy in a transmission
electron microscope (TEM). Samples for TEM and EELS
investigations were prepared by transferring mechanically
exfoliated, thin graphite flakes onto holey carbon grids [35].
The thickness of the prepared flakes was determined by
high-resolution TEM imaging performed on a TITAN 80-300
operated at 80 kV. Momentum-resolved energy-loss spectra
were recorded at 40 kV on the SALVE I (Sub-Angstrom
Low-Voltage Electron Microscopy) prototype [36]. A small,
homogeneous part of the sample of about 80 nm diameter has
been selected for each EELS experiment using a selected-
area aperture. In contrast to standard EELS, we recorded
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spectra for a large range of different momentum transfers
q simultaneously in the form of ω-q maps (for details see
Refs. [34,37] and Supplemental Material [38]). As long as
the sample is oriented perpendicular to the electron beam,
the probed momentum transfers q are nearly parallel to the
graphene sheets and thus coincide with the in-plane component
q̄ ≈ q. A momentum resolution of 0.2 Å−1 and an energy
resolution of 0.3 eV was achieved.

III. RESULTS AND DISCUSSION

A. Plasmon dispersion in multilayer graphene

Figure 1(a) shows a set of experimental energy-loss spectra
of multilayer graphene with two to six layers for a fixed

in-plane momentum transfer q̄ ≈ 0.3 Å
−1

along �M . Like in
graphene and graphite, the spectra feature two characteristic
high-energy plasmon peaks, i.e., the π plasmon below 10 eV
and the π + σ plasmon above 15 eV [24,39,40]. We have
carefully assessed experimental errors that can alter the line
shape, width, and energy of the observed plasmon peaks:
(i) Due to the finite momentum resolution, a weighted
superposition of spectra with different momentum transfers
q̄ is measured. As we have shown earlier [34], this leads to a
broadening and blueshift of the observed plasmon peaks for

very small q̄ up to 0.1 Å
−1

, while spectra at higher q̄ remain
unaffected. (ii) Contamination on the graphene samples can
mask the intrinsic dielectric response. However, the π -plasmon
position in single-layer graphene remains rather insensitive to
contamination-related effects which in addition become less
important as the thickness increases [37].

Starting from the experimental energy-loss spectra, the en-
ergy of the π plasmon was determined manually for different q̄ .
The resulting plasmon dispersion curves are shown in Fig. 1(b)
for different multilayer systems, as well as for single-layer
graphene (dashed black lines, from Ref. [34]) and graphite
(solid black lines). The dispersion for graphite was extracted

In
te

ns
ity

 [a
rb

.u
.]

2

3

4

5

6

Graphite
q ~0.3 1/Å

3 m

5

6

2
34 -plasmon dispersion,  M 

0 0.1 0.2
momentum q [1/Å]

4

5

6

7

8

9

e
n
e
rg

y  
 [
e
V

]

0.7
energy [eV]

0 10 20 30 40

(b)(a)

0.3 0.4 0.5 0.6

FIG. 1. (Color online) Momentum-resolved electron energy-loss
experiments for different positions on a freestanding, multilayer
graphene flake (see inset). (a) EEL spectra for a fixed in-plane mo-
mentum transfer q̄ ≈ 0.3 Å−1 along the �M direction. (b) Measured
dispersion of the π plasmon for two to six graphene layers. For
comparison, also the plasmon dispersion for graphite and single-layer
graphene [34] is indicated.

from spectra recorded on a separate sample under comparable
conditions. In all cases, peak positions were determined with
an estimated reading error of about 0.2 eV. In the limit of
q̄ → 0, we observe a gradual blueshift of the π plasmon from
4.9 eV (single layer) to around 5.9 eV (six layers), which is
still about 1 eV below the peak position found in bulk graphite.
This is in good agreement with earlier studies, which where
performed using STEM-EELS and are thus restricted to small
q̄ [24,41]. For very large q̄, the dispersion curves for different

multilayers converge: at 0.7Å
−1

the π plasmon in graphene
is found only about 0.5 eV below its counterpart in bulk
graphite, while for six layers the π -plasmon positions coincide.
This trend can be understood intuitively, considering that
the electrostatic potential of a plane-wave charge oscillation
with wavelength λ = 2π/q̄ in a two-dimensional electron gas
drops exponentially with increasing distance from the sheet.
Consequently, the Coulomb coupling between plasmons on
different layers vanishes, if the interlayer distance d in the
multilayer is much larger than λ. Hence, the dielectric response
of any graphene multilayer resembles that of isolated graphene
for large q̄ � 2π/d. The range of intermediate momentum
transfers q̄ is most interesting, as the Coulomb coupling
becomes crucial. To understand the characteristic changes of
the π -plasmon dispersion with increasing numbers of layers,
we extend our previous discussion using a simple dielectric
model.

B. Layered-electron-gas model

The layered-electron-gas (LEG) model has been used
extensively to study plasmons in layered systems. In the fol-
lowing, we briefly review the theory (see Refs. [7–9,11,18,19])
and adapt the model for momentum-resolved EELS. Within the
LEG model, the graphene multilayer is approximated as a stack
of N equidistant sheets, which consist of a homogeneous, two-
dimensional electron gas and are only coupled via Coulomb
interactions. The dielectric function of this model system can
be expressed as a N × N matrix, relating external and total
potential on the nth and mth layers by φe

n = ∑
m εnmφt

m.
Starting from the polarizability 	(q̄,ω) of a single layer,
which depends on the in-plane momentum q̄ and energy ω,
the elements of the dielectric matrix for a N -layer stack are
given by (see Supplemental Material [38])

εnm(q̄,ω) = δnm − v2D(q̄) Vnm(q̄) 	(q̄,ω), (1)

where v2D = 2πe2/q̄ is the 2D Coulomb potential in a
single layer and Vnm = e−q̄d|n−m| describes the interaction
strength between different sheets. As this coupling matrix
V (q̄) is real and symmetric, there exists an orthonormal
set of eigenvectors u(l)

n (q̄) with real eigenvalues ν(l)(q̄). The
eigenvectors correspond to the normal modes of the multilayer
system and specify the variation of amplitude and phase of
the associated potentials across different layers n. They also
diagonalize the dielectric matrix ε and the corresponding
eigenvalues ε(l) = 1 − v2Dν(l)	 can be interpreted as dielectric
band structure [42]. Plasmons are supported by the multi-
layer system if one of these N eigenvalues vanishes, i. e.,
Re ε(l)(q̄,ω(l)) = 0. For each momentum q̄, we may thus find
N different plasmon energies ω(l)(q̄) related to the N normal
modes u(l)

n (q̄) of the stack—these are the so-called plasmon
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FIG. 2. (Color online) Layered-electron-gas model for the π

plasmon in multilayer graphene. (a) For three layers, the plasmon
dispersion splits into three plasmon bands. (b) The contribution
of a specific band to the energy-loss function in AR-EELS is
determined by the weights |ũ(l)(q̄,qz)|2. The qz dependence is shown
for an in-plane momentum q̄ of 0.1 Å−1 (solid) and 1 Å−1 (dashed
lines). (c) Dispersion of the highest-energy plasmon band (l = 0)
in multilayer graphene with two to six layers calculated using the
RPA polarizability of graphene. Experimental results of Fig. 1(b) are
indicated in gray.

bands. For illustration, we consider the plasmon bands of
three-layer graphene using a simple two-oscillator Lorentz
model [18] for the polarizability 	 of graphene. As shown
in Fig. 2(a), the π -plasmon dispersion of isolated graphene
(dashed line) splits into three plasmon bands in the multilayer
system (solid lines) which are associated with different charge-
oscillation patterns (normal modes) as illustrated by the insets.

Starting from this simple LEG model, we can determine
the response of the multilayer to a probing electron beam.
In momentum-resolved EELS, the scattered external electron
acts as a plane-wave perturbation with momentum transfer q =
q̄ + qzez and energy ω. Introducing the Fourier coefficients of
the eigenvectors ũ(l)(q̄,qz) ≡ ∑

n u(l)
n (q̄) e−iqznd , we obtain for

the energy-loss probability (see Supplemental Material [38])

P (q̄,qz,ω) ∝ − 1

q4

N∑

l=1

|ũ(l)(q̄,qz)|2 Im
	(q̄,ω)

ε(l)(q̄,ω)
. (2)

This quantity can be directly compared to a measured energy-
loss spectrum at momentum transfer q. It is easily understood
as a weighted sum of normal-mode spectra − Im 	/ε(l),
which are associated with the excitation of a plasmon mode
l in the multilayer. The weights |ũ(l)(q̄,qz)|2 are mainly
determined by the out-of-plane momentum transfer qz and
are shown for a three-layer system in Fig. 2(b). For qz = 0,
the symmetric plasmon mode l = 0 is dominant, because a
plane-wave perturbation parallel to the sheets can only excite
charge oscillations with the same phase on different planes.
Consequently, our experimental results shown in Fig. 1(b)
correspond to the plasmon bands with highest energy in each
multilayer. However, we find quite important differences to
our experimental results. For example, the linear dispersion of

the π plasmon in single-layer graphene [29,33] is not correctly
reproduced [dotted line in Fig. 2(a)]. This can be traced back to
the poor approximation of the polarizability 	 using a simple
Lorentz model. To improve our results of the LEG model, we
instead performed density-functional-theory calculations (see
Supplemental Material [38] for details) to obtain quantitative,
parameter-free predictions for the polarizability 	(q̄,ω) of
graphene within the random-phase approximation (RPA). As
we have shown earlier [34], these calculations accurately
reproduce EELS experiments on freestanding single-layer

graphene for finite q̄ > 0.1 Å
−1

. Starting from the RPA
polarizability of graphene, we calculate energy-loss spectra
of multilayer graphene for increasing numbers of layers using
Eqs. (1) and (2).

C. Transition between 2D and 3D behavior

Figure 2(c) shows the resulting π -plasmon dispersion in
multilayer graphene for in-plane momentum transfers q̄ along
the �M direction. We find very good agreement with our
experimental results in Fig. 1(b), which validates the use of
the LEG + RPA model to study the thickness dependence
of the plasmon dispersion. First, we consider large in-plane
momentum transfers q̄ � 1/d. In this case, the coupling
e−q̄d between adjacent sheets vanishes and each of the layers
supports independent plasmon modes of isolated graphene.
One can derive this result from Eq. (1), as V becomes a unit
matrix and all eigenvalues approach the dielectric function
of isolated graphene, ε(l) = 1 − v2D	. Consequently, in all
graphene multilayers, the dispersion curves of all modes
converge towards the graphene dispersion for large q̄ in
accordance with our intuitive picture discussed earlier. This
changes for intermediate momentum transfers q̄ ≈ 1/d, where
the plasmon modes split in energy due to the interlayer
coupling. The splitting increases with the number of layers
N . In particular, the highest eigenvalue ν(0) of the coupling
matrix V can be shown to grow monotonously with N , which
in turn raises the corresponding plasmon energy ω(0) until
a limiting value is reached for N → ∞. This explains the
thickness dependence of the π and π + σ plasmon energy
for the symmetric l = 0 mode, which is probed in our

EELS measurements. Note, that for small q̄ ≈ 0.1 Å
−1

the
π -plasmon energy of six-layer graphene still deviates by
about 1 eV from the value in graphite. Finally, we consider
the optical limit q̄ → 0, which shows a very particular
behavior: As the polarizability 	 ∝ q̄2 vanishes, the dielectric
matrix in Eq. (1) converges towards a unit matrix. Thus,
the system cannot support a plasmon mode as ε(l)(ω) → 1
never vanishes. Instead, the energy-loss probability in Eq. (2)
becomes proportional to the absorption spectrum of graphene
− Im 	(ω). This holds for all finite graphene stacks, including
single-layer graphene. Experimentally, we do not observe this
kind of degeneracy, but find a gradual shift of the π and π + σ

peak to higher energy loss, slowly approaching the position
in graphite. This difference indicates a breakdown of the LEG
model for q̄ → 0, where any multilayer behaves like a 2D
system. Alternatively, it can be explained by experimental
restrictions that prevent a direct measurement of the actual
limit q̄ = 0 [34].
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FIG. 3. (Color online) Momentum-resolved energy-loss spectra
of tilted (60◦) and untilted (0◦) three-layer graphene. (a) Comparison
of experimental energy-loss spectra for the tilted (solid lines) and
untilted (dashed lines) cases with same in-plane momentum q̄. (b)
Corresponding calculations using the LEG + RPA model. For the
tilted case, individual contributions from the three plasmon modes
(l = 0,1,2) are indicated as colored areas. Untilted spectra correspond
to the l = 0 mode.

D. Measuring plasmon bands in three-layer graphene

So far, we have only discussed the high-energy mode
(l = 0) of multilayer graphene. In order to also study the lower-
energy modes (l > 0), finite out-of-plane momentum transfers

|qz| > 0.1 Å
−1

are required [see Fig. 2(b)]. Experimentally,
this can be realized by tilting the sample normal by an angle
γ with respect to the electron beam. In this geometry, the total
momentum transfer q has both a strong out-of-plane compo-
nent qz = q sin γ and in-plane component q̄ = q cos γ . To
predict the effect of a sample tilt on the measured energy-loss
spectra, we have repeated our RPA + LEG calculations for
a three-layer graphene system tilted by an angle γ of 60°.
Figure 3(b) shows resulting energy-loss spectra (solid lines)
for increasing total momentum transfer q, i.e., for increasing q̄

and qz components. We can make three main observations: (i)
the π plasmon has a rather small dispersion and is clearly split

into two peaks around qz ≈ 0.2 Å
−1

, (ii) for qz > 0.3 Å
−1

, the
π + σ plasmon hardly undergoes any further changes in regard
to its line shape and energy position, and (iii) compared to the
pure in-plane response (dashed lines), i.e., spectra with the
same q̄ but vanishing qz, both plasmon peaks are noticeably
redshifted. An explanation for these observations can be found
by analyzing the partial contributions of all three plasmon
modes l = 0,1,2 [colored areas in Fig. 3(b)] to the total loss
probability. For small qz, only the l = 0 mode is excited, hence
the similarity between the tilted and untilted spectra. But with
increasing qz first the l = 1 mode becomes stronger, and even-
tually the l = 2 mode dominates the loss probability at large
qz. The reduced dispersion of the π plasmon and the almost
unchanged π + σ plasmon in the tilted case, can thus be traced

back to two competing effects: All plasmon modes gradually
shift to higher energies with increasing q̄, but with increasing
qz low-energy modes (l > 0) start to dominate the loss proba-
bility, shifting the plasmon peaks back to lower energies com-
pared to the pure in-plane spectrum (l = 0). Most interestingly,
we find certain momentum transfers qz, where only a single
mode dominates the loss probability, i.e., l = 0 at qz → 0,

l = 1 at qz ≈ 0.45 Å
−1

, and l = 2 at qz ≈ 0.9 Å
−1

. This is also
confirmed by the weights |ũ(l)|2 plotted in Fig. 2(b): Depending
on the number of layers N , the weight of a mode l has a
maximum around q(l)

z ≈ π
d

l
N−1 where it dominates the energy-

loss probability. Consequently, the dispersion of all plasmon
bands can, in principle, be measured by choosing different
sample tilt angles in order to vary q̄ while keeping qz constant.

In order to validate our theoretical predictions, we have
performed EELS measurements on tilted three-layer graphene
samples [see Fig. 3(a)]. For a direct comparison between
the tilted (solid lines) and untilted case (dashed lines), all
spectra were normalized to the same electron dose per unit
area. Our measurements show the same principal trends as our
calculations: (i) a significantly smaller π -plasmon dispersion
in the tilted case, (ii) an almost nondispersing and triangular-
shaped π + σ plasmon, and (iii) the same strong redshifts of
both plasmons when compared to the pure in-plane response.
This good agreement between theory and experiment shows
that it is indeed possible to measure individual, lower-energy

eigenmodes at qz ≈ 0.45 Å
−1

(l = 1) and qz ≈ 0.9 Å
−1

(l =
2). Therefore, by repeating this experiment at different tilt
angles γ , the energy of each plasmon mode can be determined
for different in-plane momentum transfers q̄, and as such the
dispersion of all individual plasmon bands can be derived.

Finally, we also point out differences between our experi-
mental and theoretical results in the tilted case: First, we do
not observe any splitting of the π plasmon in our measured
energy-loss spectra. This is most likely related to the finite
energy and momentum resolution. Second, our experiments
show a much lower π -plasmon intensity compared to the
π + σ peak, a notably higher intensity above 30 eV, and an
additional peak at 35 eV. We attribute these differences to the
out-of-plane polarization of graphene, which is not included in
the layered-electron-gas model. A detailed discussion of this
point is beyond the scope of this paper and will be investigated
in due course.

IV. CONCLUSIONS

We presented a joint experimental and theoretical investi-
gation of plasmon bands in multilayer graphene. The behavior
of the highest-energy plasmon mode was studied for graphene
stacks with increasing numbers of layers, ranging from the
ideal 2D system to a layered 3D bulk material. To this
end, the thickness dependence of the π -plasmon dispersion
was measured by momentum-resolved electron energy-loss
spectroscopy. Our experimental results could be explained
quantitatively by means of a simple layered-electron-gas
model, which was combined with ab initio calculations for
graphene. We showed that the observed thickness dependence
is governed by interlayer Coulomb interactions. Further,
we found that momentum-resolved energy-loss spectra for
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N -layer graphene can be understood as the weighted sum of N

eigenspectra, which are directly related to the plasmon bands
in the system. For standard scattering geometries (normal
incidence), only the highest-energy plasmon band is excited.
Plasmon modes with lower energies can only contribute for
finite out-of-plane momentum transfers qz. We identified
conditions where the energy-loss probability is dominated by
a single plasmon mode and proposed a method to measure all
individual plasmon bands by momentum-resolved energy-loss
spectroscopy on tilted samples. As a proof of concept, we per-
formed model calculations and experiments for a tilted three-

layer graphene system. The good agreement between theory
and experiment shows that momentum-resolved EELS is an
ideal tool to map plasmon bands in 2D-based heterostructures.
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