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A B S T R A C T

Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the
development of hardware offers more and more prospect for this technique. For example imaging nanos-
tructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic
resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main
obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons
entangle with objects, and the description of this process involves a multidimensional array. Since the
simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this
work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional
array into twodimensional array, we are able to perform matrix diagonalization and approximate the original
multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multi-
dimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional
problems. This method is very useful for studying multiple inelastic scattering.

1. Introduction

Electron scattering has been applied as a conventional method for
determining and imaging nanostructures since several decades.
Modelling electron scattering is essential for interpreting electron
microscopy images. The main obstacle for a quantitative analysis is
the strong interaction between electron beam and target. Only in case
of high-energy electron wave ≥100 keV propagating through atomically
thin specimens, the scattered electron wave can be described as a
simple product of the incident electron wave and an object transmis-
sion function. This so-called phase-object approximation (POA) com-
pletely neglects dynamical effects, inelastic scattering, and backscatter-
ing [1].

For thick samples, dynamical effects become important, i.e.,
electrons are scattered several times resulting in complicated inter-
ference patterns in the image. Multiple elastic scattering within a thick
sample is usually simulated by employing either the Bloch-wave
formalism [2] or the multislice algorithm [3]. In the latter method,
the sample is sliced into thin layers and the static sample potential in
each slice is projected along the optical axis onto a plane. The
propagation of the incident electron wave through each of these planes
is modelled by the POA, while the propagation between adjacent slices
is described by the Fresnel propagator of vacuum. As the latter is most

conveniently evaluated in reciprocal space, the multislice method
generally requires two two-dimensional Fourier transforms at each
slice.

For slow electrons accelerated by low voltages like 20 kV, the
interaction between beam and target electrons becomes so strong that
inelastic scattering must be taken into account [4]. In this case, energy
is transferred from the scattering electron to the target, which gets
excited from its initial ground state. This entangles the electron with
the target, i.e., in contrast to elastic scattering, one can no longer
describe the outgoing electron by a single wave function. Instead, one
has to consider many partial waves, which are only coherent if they
belong to the same excited object state and are otherwise incoherent.
Equivalently, one can employ the concept of the density matrix, or
mutual coherence function (MCF), to describe the partial coherence of
inelastic scattered electrons [5-8]. For thin samples and a single
inelastic scattering event, the outgoing MCF is the product of the
incident MCF and the mutual dynamic object transparency (MDOT) of
the target. The MDOT can be understood as an extension of the
standard object transmission function used in the POA [5]. It includes
both elastic and inelastic scattering and depends on four spatial
coordinates plus time. For thick samples, multiple scattering has to
be included and the multislice algorithm has been extended to include
also inelastic scattering [9-11]. The MCF is then propagated through
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the sliced object, where the scattering in each layer is represented by
the corresponding MDOT of the slice. Unfortunately, this method is
computationally very expensive: First, the propagation of the MCF
involves four-dimensional Fourier transforms at each slice and for each
excitation energy. And second, the MDOT can be only computed for
simple model systems or using severe approximations for the inelastic
part of the MDOT. The latter is basically given by the (inelastic) mixed
dynamic form factor (MDFF) of the target, which reads in reciprocal
space as [5,6]

∑S q q E n q j j n q δ E E E(→, →′, ) = 0 (→) (−→′) 0 ( − + ).
j

j
=1

∞

0
(1)

Here q→ and q→′ are two-dimensional reciprocal vectors perpendicular to
the beam (each conjugate to two spatial coordinates in the MDOT) and
E is the energy transferred to the target (conjugate to the time variable
in the MDOT). The summation runs over all excited states j| 〉 of the
target with corresponding energy Ej, while |0〉 denotes the initial
ground state with energy E0. Thus, the MDFF contains information
about all possible excitations in the many-electron system. More
precisely, the delta-function enforces conservation of energy and the
matrix elements of the density operator n measure the electron-density
fluctuations due to the excitation. The calculation of the MDFF thus
requires the solution of a complicated quantum-mechanical many-body
problem. As the MDFF is intimately related to the density-density
correlation function [6], (time-dependent) density functional theory
[12] can be used to calculate the MDFF from first-principles. Even for
simple systems like a perfect silicon crystal, this approach requires a
huge computational effort and has been rarely used for simulations
[13].

Several approximations for the MDFF and the propagation of the
beam are employed in literature to reduce the complexity of the
computation (see, e.g., [14,15] and references therein):

(i) First, the MDFF is generally calculated using an effective single-
particle picture, i.e., many-body effects in the excitation of the target
are completely neglected. For large excitation energies, single atoms of
the target are often considered to be independent, such that Eq. (1)
reduces to a simple sum over ‘atomic orbitals’. Also phenomenological
models, combining the measured electron energy-loss spectrum with
the dipole approximation of the MDFF [16] or the Raman-Compton
model [4], have been used successfully when a detailed knowledge of
the distribution of inelastic scattering angles is not necessary.

(ii) Second, only a single inelastic scattering event is included in the
simulation, while multiple elastic scattering is fully taken into account.
The propagation of the external electron can thus be separated into
three parts: an elastic propagation to a certain slice at depth zi, an
inelastic scattering (at an atom) within this slice, and a subsequent
elastic propagation through the rest of the specimen. Assuming that the
inelastic scattering event occurs with the same probability in any
sample slice, the calculation is repeated for all possible positions and
the results are averaged incoherently. Note that the emission volume of
the inelastic scattered electron is implicitly limited along the beam
direction by the thickness of one slice. If one is interested in low-energy
excitations, like plasmons, this restriction can be circumvented using a
backpropagation method [7].

(iii) Third, instead of employing a two-point quantity, like the
density matrix ρ r r(→, →′) or MCF, to describe the partial coherence of
the electron beam, a finite number N of partial waves ϕ r(→)n is
propagated through the system. For each partial wave, a fully coherent
(standard) multislice calculation is performed through the system. In
the case of high-resolution imaging on the transmission electron
microscope, the propagated partial waves are convoluted with the
optic transfer function of the microscope and the resulting N images
are averaged incoherently at the detector. As a result, the 4D Fourier
transforms in the propagation of the MCF are replaced by 2D Fourier
transforms for N partial waves. The efficiency of this approach depends

on the number of required partial waves, i.e., the incoherence of the
beam [14,16-19].

In principle, an infinite number of mutually incoherent partial
waves is needed for the representation of an arbitrary densisty matrix:
ρ r r φ r φ r(→, →′) = ∑ (→) *(→′)n n n . The aim of this article is to assess how
many partial waves are generally needed for modelling inelastic
electron scattering, and try to replace the 4D Fourier transforms
required for computing the scattered waves by a minimum number
of 2D Fourier transforms. We will employ a very simple and phenom-
enological model for the MDFF and consider the EFTEM imaging for a
single atom and a crystal at low and high energy loss.

2. How matrix diagonalization is employed to simplify the
inelastic scattering problem

Simultaneous elastic and inelastic scattering in a thin sample is
modelled by the product of incident wave and the MDOT γ ρ ρ E(→, →′, Δ )
[5]. Our current model assumes multiple elastic scattering and one
inelastic scattering. Under this condition, the MDOT is approximated
by [5]

γ ρ ρ E iΦ ρ iΦ ρ μ ρ μ ρ

μ ρ ρ E

iΦ ρ iΦ ρ μ ρ μ ρ

a b μ ρ ρ E

(→, →′, Δ ) = exp (→) − (→′) − 1
2

(→) − 1
2

(→′)

+ (→, →′, Δ )

≈ exp (→) − (→′) − 1
2

(→) − 1
2

(→′)

× [ + (→, →′, Δ )].

2 2

11

2 2

0 0 11

⎤
⎦⎥

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

(2)

Here iΦ ρexp[ (→)] represents the POA. μ ρ(→)2 and μ ρ(→′)2 correspond to
absorption of elastically scattered electrons, and μ ρ ρ E(→, →′, Δ )11 repre-
sents the transmission of inelastic scattered electrons. a0 and b0 are
two constants determined by fitting of the function

μ a b μexp[ ] ≈ +11 0 0 11 in the vicinity of μ11. In the case that μ ⪡111 , one
obtains a b= = 10 0 .

In the case of normal incidence on the sample surface, the quantity
μ ρ ρ E(→, →′, Δ )11 and μ ρ(→)2 are associated with the MDFF by [5]

∬μ ρ ρ E α
πβ

S q q E
q q q q

e e d q d q(→, →′, Δ ) = (→, →′, Δ )
( + )( + ′ )

→ →′s

E E

iq ρ iq ρ
11

2

2 2 2 2
→→ − →′→′ 2 2

⎛
⎝⎜

⎞
⎠⎟

(3)

∫μ ρ μ ρ ρ E p E d E(→) = (→ = →′, Δ ) (Δ ) Δ2 11 (4)

Here α = 1/137s is the Sommerfeld constant. β v c= / is the ratio
between the velocity of the incident electron v and velocity of light c.
p E(Δ ) is the normalized energy-loss spectra. The characteristic in-
elastic scattering vector q πθ λ= 2 /E E is determined by the incident
wavelength λ and the characteristic inelastic scattering angle θE:

θ E
β E m c

= Δ
( + )

.E
e

2
0

2 (5)

Here EΔ is the energy loss of the incident electron, and me is the non-
relativistic electron mass.

According to the relation in Eq. (3), a 4D Fourier transform is
required for determining μ11. By means of matrix diagonalization
introduced in Appendix A, we can decompose the function

S q q E
q q q q

(→,→′ , Δ )
( + )( + ′ )E E

2 2 2 2 as combination of eigenvectors depending on q→ and q→′,

respectively. We obtain

∑S q q E
q q q q

λ ϕ q E ϕ q E(→, →′, Δ )
( + )( + ′ )

= (→, Δ ) * (→′, Δ ).
E E n

n n n
T

2 2 2 2 (6)

Here ϕ q E(→, Δ )n and ϕ q E(→′, Δ )n are the orthonormal eigenvectors; λn is
a real eigenvalue.

Substituting Eq. (6) into Eq. (3), we obtain the diagonal form of the
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function μ11 denoting inelastic scattering:

∫μ ρ ρ E λ ϕ q E e d q

λ ϕ ρ E

(→ = →′, Δ ) = ∑ (→, Δ ) →

= ∑ (→, Δ ) .

α
πβ n n n

iq ρ
ρ

α
πβ n n n

11

2
→→ 2 2

2
2

s

s

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟ (7)

Eq. (7) indicates, the 4D Fourier transform required to model inelastic
electron scattering reduces to the combination of 2D Fourier trans-
forms. The number of 2D Fourier transforms depends on the number
of necessary eigenvectors required to decompose the original 4D
quantity. We introduce the transmission function tn for each eigen-
vector according to Eqs. (2) and (7):

t ρ E
α b

πβ
iΦ ρ μ ρ λ ϕ ρ E(→, Δ ) = exp[ (→) − (→)] (→, Δ ).n

s
n n

0
2 (8)

Ignoring the optical transfer system, we obtain the image of a thin
sample formed by inelastic scattered electrons with an energy loss of

EΔ simply as

∑I ρ E ψ ρ t ρ E(→, Δ ) = (→) (→, Δ )
n

n0
2

(9)

Here ψ ρ(→)0 denotes the incident wave. Eq. (9) shows that the final
image should be an incoherent summation of the scattered partial
waves calculated by the products of the incident wave ψ0 and the
transmission function tn.

However, not all terms are equally large. The magnitude of the
eigenvalue λn determines the average contribution of each term.
Generally, a large eigenvalue λn indicates an important contribution
of the eigenvector ϕ q E(→, Δ )n . By considering only the dominating
terms, we can approximate the MDFF with a few eigenvectors. As a
result, the 4D Fourier transform in Eq. (3) is replaced by a summed
products of a small number of 2D Fourier transforms. For the
simulation of an EFTEM image using multislice algorithm, one needs
to compute a pair of 4D Fourier transform at each slice and a series of
4D Fourier transforms for each energy loss, which can be very time-
consuming. Converting 4D Fourier transforms to only a few of 2D
Fourier transforms in this case is computationally preferred.

3. Examples

In order to find out the optimum eigenvectors for representing the
MDFF, we use the MDFF derived from the modified Raman-Compton
approximation and the Wentzel model [4] for illustration.

The Raman-Compton model is written as

S K K E p E F K K
Z

F K F K(
⎯→⎯

,
⎯→⎯

′, Δ ) ≈ (Δ )[ (
⎯→⎯

−
⎯→⎯

′) − 1 (
⎯→⎯

) (−
⎯→⎯

′)].
(10)

Here K
⎯→⎯

and K
⎯→⎯

′ are the scattering vectors; Z is the atomic number; EΔ
represents the energy loss results from the inelastic scattering; p E(Δ ) is
the energy-loss spectra of a single atom; F is the atomic form factor.

The Raman-Compton model (Eq. (10)) accounts for the entangle-
ment of the incident electron and the object atom as a result of inelastic
scattering. However, this model neglects the interactions between the
electrons of the single atom. When this model is applied for a crystal,
the interatomic interactions are neglected as well, and the MDFF for a
crystal is simply calculated as a superposition of the MDFFs of single
atoms. Despite all these assumptions, this model offers a surprisingly
good approximation. For small scattering angles, the Raman-Compton
model coincides with the dipole approximation. For high scattering
angles, the Raman-Compton model includes a cutoff so that inelastic
scattering is negligible for scattering angle larger than the characteristic
inelastic scattering angle θE. This behavior is consistent with that
obtained from the homogeneous electron gas model [20].

Another advantage of the Raman-Compton model is that the rather
involved electron-object entanglement can be calculated from the

atomic form factors of single atoms. Here we have applied Wentzel
model [21] for this purpose. The Wentzel potential employs single-
atom approximation and includes a screening factor which shields the
electron from the positive potential of the nucleus if the distance
between them is more than twice the screening radius. The Wentzel
model is a good approximation for describing the potential distribution
in a conductor.

Combining the Raman-Compton model for the MDFF and the
Wentzel model for calculating the atomic form factor, we obtain the
approximated MDFF for a single atom used in our examples:

S q q E Z
q

q q q
q

q q q
q

q q q
p E(→, →′, Δ ) =

+ (→ − →′)
−

+ + + + ′
(Δ )A

A

A

A E

A

A E

2

2 2

2

2 2 2

2

2 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(11)

Here the characteristic elastic scattering vector qA is the reciprocal of
the screening radius, and qE is the characteristic inelastic scattering
vector.

For a crystal, the MDFF is obtained by summing up the MDFFs of
single atoms:

∑S q q E p E e
q

q q q

q
q q q

q
q q q

(→, →′, Δ ) = (Δ )
+ (→ − → )

−
+ + + +

.

ν

i q q ρ Aν

Aν ν ν

Aν

Aν E ν

Aν

Aν E ν

− (→−→′)→
2

2
′

2

2

2 2 2

2

2 2
′

2

ν

⎡

⎣
⎢⎢

⎤
⎦
⎥⎥ (12)

Here ρ→ν is the positional vector of the νth atom.
The numerical diagonalization of a 4D Hermitian matrix or

symmetric matrix follows three steps: i) Flatten the 4D matrix so that
it becomes 2D; ii) Retrieve the eigenvalues and eigenvectors by means
of matrix diagonalization; iii) Restore the eigenvectors from 1D back to
2D. A detailed description is found in Appendix A. In the following the
diagonalization of the MDFF is performed for low and high energy loss,
in the cases of a single atom and a crystal. Carbon materials are used as
typical examples.

3.1. Single atom

The mixed dynamic form factor obtained by the Raman-Compton-
Wentzel model for a single atom (Eq. (11)) can be written in Cartesian
coordinates as

S q q E S q q q q E

Z
q

q q q q q

q
q q q q

q
q q q q

p E

(→, →′, Δ ) = ( , , ′ , ′ , Δ )

=
+ ( − ′ ) + ( − ′ )

−
+ + + + + +

(Δ ).

x y x y

A

A x x y y

A

A E x y

A

A E x y

2

2 2 2

2

2 2 2 2

2

2 2
′

2
′

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(13)

A grid of the size 50 Å×50 Å is chosen to map the potential of a carbon
atom, sampled by 80 × 80 pixels. The origin is set at the center of the
grid. The length 50 Å guarantees that the atomic potential drops close
to zero at the edge of the grid. This behavior avoids alias effect, i.e.
contributions from periodically repeated ‘neighbour’ atoms when one
performs the Fourier transform. Accordingly, the four-dimensional
array is defined by the size 50 Å×50 Å×50 Å×50 Å, mapped by
80×80×80×80 pixels. This arrangement determines a sampling of
0.625 Å/px in real space and 0.02 Å−1/px in reciprocal space. One
should bear in mind that for an N N N N× × × array, the flattened
matrix is of the size N N×2 2 and it can be time-consuming for
retrieving the eigenvalues and eigenvectors if N2 is too large.

3.1.1. Low-loss
We assume that a 20 keV incident electron is scattered by a single

carbon atom and suffers an energy loss of EΔ = 10 eV. The nine largest
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eigenvalues of the term S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E
2 2 2 2 in Eq. (6)

are retrieved based on the Lanczos algorithm [22] and marked in Fig. 1
a) above their corresponding eigenvectors, respectively. Since the
contribution of each eigenvector is closely related with the magnitude
of the corresponding eigenvalue, we can neglect eigenvectors if the
accordant eigenvalues are negligibly small compared with the largest
eigenvalue. According to the values λ λ−1 9 listed above, it is necessary
to keep the first four eigenvectors for approximating the original
function.

In order to verify the dominant terms of Eq. (7), we calculated the
contribution of these eigenvectors to the function μ ρ ρ(→ = →′)11 based on
Eq. (7) (Fig. 1b). We summed up the terms corresponding to the same
eigenvalue and define the individual contributions as T1, T2,3 and T4:

∑T α
πβ

λ ϕ ρ T α
πβ

λ ϕ ρ T α
πβ

λ ϕ ρ= | (→)| , = | (→)| , = | (→)| .s s

n
n n

s
1

2

1 1
2

2,3

2

=2

3
2

4

2

4 4
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(14)

The plot in Fig. 1b) shows the diagonal elements of μ11 for a single
carbon atom imaged at 20 kV with an energy loss of EΔ =10 eV,
calculated with two methods - 1. The 4D Fourier transform (Eq. (3))
denoted by the blue line; 2. The sum of 2D Fourier transforms (Eq. (7))
of the eigenvectors obtained from matrix diagonalization. Fig. 1b)
demonstrates that the sum of the first four terms provide a sufficient

approximation of the exact μ11 calculated by using the 4D Fourier
transform. It is also worth mentioning that the peak value in the partial
image T1 corresponding to the largest eigenvalue λ1 is two orders
smaller than those in T2,3 and T4. Instead, T1 is much more dispersively
distributed than T2 and T3. This demonstrates that a high eigenvalue
solely does not secure high local values in μ11. Especially in the case
when fine resolution needs to be achieved, one should not judge the
necessity of the eigenvectors only by the magnitude of the correspond-
ing eigenvalues.

In addition, the eigenvectors of the term S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E
2 2 2 2

for a single atom resemble a series of spherical harmonics expansion
(Fig. 1), and we will discuss the phenomenon in Section 4.2.

3.1.2. Core-loss
As an example for core-loss excitation, we consider a single carbon

atom scattering a 20 keV electron, which results in an energy loss of
300 eV for the incident electron. The corresponding matrix
S q q E q q q q(→, →′, Δ = 300 eV)/[( + )( + ′ )]E E

2 2 2 2 is diagonalized and the
largest 9 eigenvalues as well as the eigenvectors are shown in Fig. 2
a). The contributions of the first four eigenvectors to the function μ11
are evaluated and compared with the μ11 calculated with 4D Fourier
transform (Eq. (3)), as shown in Fig. 2b). Similar to the case of low
energy loss ( EΔ = 10 eV), the first four eigenvectors approximate

Fig. 1. a)The first nine reshaped eigenvectors ϕ q(→)n of the matrix

S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E
2 2 2 2 accounting for a 20 keV electron wave scattered by a

single carbon atom and resulting in an energy loss of 10 eV. Here the characteristic
elastic scattering vector q = 3.43 ÅA

−1 and the characteristic inelastic scattering vector

q = 0.018 ÅE
−1. The corresponding eigenvalues are listed above the map of each

eigenvector. b)Left: Contributions of the first four eigenvectors to the term μ11 calculated
based on Eq. (14). Right: Diagonal elements μ ρ ρ E E(→ = →′, Δ = 10 eV, = 20 keV)11 0 for a

single carbon atom calculated I) by the 4D Fourier transform following Eq. (3) (blue line)
and II) by the sum of 2D Fourier transforms (Eq. (7)) of the eigenvectors obtained from
matrix diagonalization. The partial sums show that the first four terms provide a good
approximation.

Fig. 2. a)The first nine reshaped eigenvectors ϕ q(→)n of the matrix

S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E
2 2 2 2 accounting for a 20 keV electron scattered by a single

carbon atom and resulting in an energy loss of 300 eV. Here the characteristic elastic
scattering vector is q = 3.43 ÅA

−1 and the characteristic inelastic scattering vector is

q = 0.56 ÅE
−1. The corresponding eigenvalues are listed above the map of each eigen-

vector. b)Left: Contributions of the first four eigenvectors to the term μ11 calculated
based on Eq. (14). Right: Diagonal elements μ ρ ρ E E(→ = →′, Δ = 300 eV, = 20 keV)11 0 for a

single carbon atom calculated I) by the 4D Fourier transform following Eq. (3) (blue line)
and II) by the sum of 2D Fourier transforms of the eigenvectors obtained from matrix
diagonalization (Eq. (7)). The partial sums show that the first four terms provide a good
approximation.
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S q q E q q q q(→, →′, Δ = 300 eV)/[( + )( + ′ )]E E
2 2 2 2 with a sufficient degree of

accuracy. As a short summary, the 4D matrix S q q E q q(→, →′, Δ )/[( + )E
2 2

q q( + ′ )]E
2 2 is employed to calculate the inelastic transmission function

and the calculation involves a 4D Fourier transform. In the case of a
single carbon atom scattering a 20 keV electron, the 4D matrix can be
approximated with four of its 2D eigenvectors, valid for both low and
high energy loss. This indicates, an inelastic scattering by a single
carbon atom can now be modelled with four 2D functions, instead of
one 4D function. Correspondingly, each 4D Fourier transform required
for calculating the propagation of the scattered waves can be approxi-
mated by four 2D Fourier transforms.

3.2. Crystal

As an example for crystals, graphene is chosen to illustrate the
diagonalization of the term S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 . In our
model, the MDFF for a crystal is calculated by summing up the MDFF
of each individual atom based on Eq. (12). Two graphene cells are
sampled with 70x80 pixels. This configuration results in a sampling of
0.12 Å/px in real space and 0.1 Å−1/px in reciprocal space, which
provides sufficient resolvability in both real and reciprocal space. The
diagonalization of the 4D matrix S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2

follows the approach introduced in Appendix A, and the results for
low-loss and core-loss are discussed as follows.

3.2.1. Low-loss
In the low-loss example, we assume that a beam of 20 keV electrons

are scattered by a thin layer of graphene, and suffer an energy loss of
10 eV. In this case, the first three eigenvectors resulting from the
matrix diagonalization of S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 are shown
in Fig. 3a). Unlike the example of a single atom, the eigenvectors in this
case consist of reflections showing certain symmetries. The first
eigenvalue λ = 3 × 101

6 is almost 105 times larger than the second

largest eigenvalue λ = 31.92 , and its corresponding eigenvector resem-
bles a delta function (Fig. 3 1st image in the 1st row). An optimistic
conjecture would be that one single eigenvector is sufficient for
approximating the 4D matrix. In order to verify our surmise, we have
calculated the contributions of the first three eigenvectors to the
quantity μ ρ ρ(→ = →′)11 based on Eq. (7), as shown in the second row of
Fig. 3a). Judging from the scale bars of the three plots, we come to the
conclusion that the first eigenvector is dominantly strong. Especially,
since the first eigenvector ϕ q E(→, Δ )1 resembles a delta peak, its
contribution to the term μ11 calculated from the Fourier transform
(Eq. (7)) is close to a constant. Fig. 3b) shows the diagonal elements of
μ11 for graphene calculated with 4D Fourier transform in blue (Eq. (3))
and the approximation using the first eigenvector obtained by matrix
diagonalization (red curve). Both curves are close to a constant value.
This indicates, low-loss scattering in a crystal is highly delocalized and
one eigenvector suffices for reconstructing the original 4D function
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 .
As a result, low-loss scattering within a thin sample can be

modelled by the product of incoming wave and a 2D function. The
multislice method incorporating elastic and inelastic scattering in a
thick object is recapitulated in Fig. 4.

Electron wave propagating through the slices is formulated by Eq.
(15):

ψ ρ ψ ρ t ρ P ρ(→) = [ (→)· (→)] ⊗ (→)n n n−1 (15)

Here t ρ(→)n is the transmission function of the nth slice of the object and
P ρ(→) is the Fresnel propagator. Inelastic scattering takes place at the
mth slice. Above and below this slice, the transmission function t ρ(→)n
employs the POA:

t ρ iΦ ρ(→) = exp[ (→)].n n (16)

Within the mth layer, the wave splits into two parts - one part is
elastically scattered, and the other part is inelastic scattered. According
to Eqs. (2)–(3), the transmission functions t ρ(→)el( ) for elastic scattering
and t ρ E(→, Δ )in( ) for inelastic scattering are written separately as

t ρ αa
πβ

iΦ ρ μ ρ(→) = exp[ (→) − (→)],m
el

m
( ) 0

2 (17)

Fig. 3. a)1st row: Real parts of the first three eigenvectors of the 4D matrix
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 assuming a beam of 20 keV electrons scattered by

graphene and resulting in an energy loss of 10 eV. The corresponding eigenvalues are
listed above each eigenvector. 2nd row: the contributions of the first three eigenvectors to
the quantity μ11 calculated based on Eq. (7). b)The diagonal elements
μ ρ ρ E E(→ = →′, Δ = 10 eV, = 20 keV)11 0 for graphene calculated with two methods - 4D

Fourier transform following Eq. (3) (blue curve) and 2D Fourier transform (Eq. (7)) of
one eigenvector corresponding to the largest eigenvalue obtained from matrix diagona-
lization (red curve). The μ ρ ρ E(→ = →′, Δ = 10 eV)11 is close to a constant for graphene.

Scale bar: 0.5 nm.

Fig. 4. A sketched procedure for multislice calculation involving inelastic scattering at
the mth layer. The scattered wave splits into two parts - elastically scattered wave ψ ρ(→)m

el( )

and inelastic scattered wave ψ ρ E(→, Δ )m
in( ) .
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t ρ E
α b

πβ
iΦ ρ μ ρ λ ϕ ρ E(→, Δ ) = exp[ (→) − (→)] (→, Δ ).m

in
m

( ) 0
2 1 1 (18)

As a short summary, low-loss scattering is incorporated in the
conventional multislice algorithm by assuming that the low-loss
scattering takes place at a certain layer of the sample. The transmission
function t ρ E(→, Δ )m

in( ) for inelastic scattering is introduced, which is a
product of the transmission function t ρ ϕ ρ E(→) (→, Δ )m

el( )
1 for elastic

scattering and a 2D function λ ϕ ρ E(→, Δ )1 1 . The 2D function
λ ϕ ρ E(→, Δ )1 1 is close to a constant, since it is calculated from the

Fourier transform of the corresponding eigenvector ϕ q E(→, Δ )1 (Eq.
(7)), which resembles a delta function as shown in the upper left image
in Fig. 3 a).

3.2.2. Core-loss
In the case when the scattering of 20 keV electrons by a thin

graphene layer results in an energy loss of 300 eV, the largest
eigenvalue obtained from the diagonalization of the corresponding
4D matrix S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 is 100 times larger than
the second largest eigenvalue (Fig. 5a) 1st row). The contribution of the
first eigenvector to the quantity μ11 is also dominantly stronger than
that from other eigenvectors (Fig. 5a) 2nd row). However, by compar-
ing the diagonal elements of μ11 calculated with 4D Fourier transform
and the approximations calculated with 2D Fourier transforms
(Fig. 5b)), we can come to the conclusion that two eigenvectors offer
a more accurate approximation. On the other hand, one should bear in
mind that due to multiple scattering in the sample, the contrast
contributed by pure core-loss scattering can barely be visualized since
it is mixed with the contrast contributed by pure elastic scattering. As
long as elastic scattering dominates, the 4D matrix for high-loss
scattering can still be approximated by one single eigenvector.

As a summary, we have shown that in the example of diagonalizing
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 for a crystal, only one eigenvector is
sufficient for approximating the original function in the low-loss case.
In the core-loss case, if the contrast introduced by inelastic scattered

electrons matters, for example in core-loss EFTEM imaging, then more
than one eigenvector is preferred. Otherwise, a single eigenvector
suffices in this case as well. As a result, 4D Fourier transforms can be
replaced by the same number of 2D Fourier transforms. In the
multislice calculation involving inelastic scattering, the computational
efficiency can be improved dramatically.

4. Discussions

4.1. The number of necessary eigenvectors required to reconstruct the
matrix

The entanglement of two states ϕ1 and ϕ2 can be written in the form
of correlation - ϕ ϕ*1 2. If the entangled state can still be factorized into
the original two pure states, then we obtain

ϕ ϕ ϕ ϕ* = .1 2 1 2 (19)

Eq. (19) holds true only if ϕ1 and ϕ2 are simultaneously delta functions
or constants. They can differ from each other by a scaling factor. As a
result, the entangled state ϕ ϕ*1 2 is either a delta function or a constant,
simply the overlap of pure states. The eigenvectors of the matrix
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 can be interpreted as a group of
orthogonal states. The matrix itself is hence an incoherent summation
of overlapping pure states ϕ ϕ*n n . A bold surmise would be that the
number of eigenvectors required to represent the matrix depends on
the extent of coherence of the matrix. If the matrix resembles a delta
function or is close to a constant, then it is highly coherent and only a
few or even one eigenvector is required to decompose the matrix.

One can justify this surmise by comparing the profiles
of the diagonal elements of the matrix
S q q E q q q q(→ = →′, Δ = 10 eV)/[( + )( + ′ )]E E

2 2 2 2 for a single carbon atom
(Fig. 1b) blue curve) and for graphene (Fig. 3b) blue curve). Since μ11 is
proportional to the Fourier transform of the 4D matrix
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 , a flat profile of μ11 implies that
the 4D matrix is characterized by a sharp peak. Therefore, we can
deduce that S q q E q q q q(→ = →′, Δ = 10 eV)/[( + )( + ′ )]E E

2 2 2 2 is much more
convergent for graphene than for a single carbon atom. It has been
shown in Section 3 that only one eigenvector is required to approx-
imate the 4D matrix in the case of graphene, while four are necessary in
the case of a single carbon atom. Our conjecture is therefore confirmed.

4.2. Eigenvectors of a single atom

Schattschneider et al. have shown that the first-order Born approx-
imation of the MDFF for a single atom can be expanded in the form of
spherical harmonics [23]. Löffler has decomposed the MDFF of a single
atom with the basis of spherical harmonics under the Kohn-Sham
approximation [18]. Based on the calculations following the Raman-
Compton model (Figs. 1a), 2a)), we have shown that the eigenvectors of
the matrix S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 resemble spherical har-
monics in the case of a single atom. In this discussion we want to
demonstrate that the patterns in Figs. 1a), 2a) are indeed related to
spherical harmonics.

The first term of the MDFF of a single atom based on the Raman-
Compton model (Eq. (10)) is the Fourier transform of the electron
density ne(r):

∫F K K n r e d r(
⎯→⎯

−
⎯→⎯

′) = ( ) →.e
i K K r− (

⎯→⎯
−

⎯→⎯
′)→ 3

(20)

According to Rayleigh equation and spherical harmonic addition

theorem, the terms e i K r−
⎯→⎯ →

can be expanded in the form of spherical
harmonics as follows:

∑ ∑e π i j Kr Y θ ϕ Y θ ϕ= 4 (− ) ( ) ( , ) ( , ).i K r

l m l

m l
l

l l
m

K K l
m

r r
−

⎯→⎯ →

=−

=
⎯→⎯ ⎯→⎯ → →

(21)

Here θ K
⎯→⎯ and ϕ K

⎯→⎯ are the altitude angle and azimuthal angle of the

Fig. 5. a)1st row: Real parts of the first three reshaped eigenvectors of the matrix
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 assuming a beam of 20 keV electrons scattered by

graphene and resulting in an energy loss of 300 eV. The corresponding eigenvalues are
listed above each eigenvector. 2nd row: the contributions of the first three eigenvectors to
the quantity μ11 calculated based on Eq. (7). b)The diagonal elements
μ ρ ρ E E(→ = →′, Δ = 300 eV, = 20 keV)11 0 for graphene calculated with two methods - 4D

Fourier transform following Eq. (3) (blue curve) and 2D Fourier transform (Eq. (7)) of
one eigenvector (red curve), or of two eigenvectors (green curve). Scale bar: 0.5 nm.
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vector K
⎯→⎯

; θ r→ and ϕ r→ are the altitude angle and azimuthal angle of the
vector r→. jl is the lth-order spherical Bessel function.

By inserting the relation Eq. (21) into Eq. (20), we obtain

∫ ∫ ∫ ∫

∫∑ ∑

F K K n r e e d r n r

e e r θ dθ dϕ dr

π n r j Kr j K r Y θ ϕ

Y θ ϕ r dr

(
⎯→⎯

−
⎯→⎯

′) = ( ) → = ( )

sin

= 16 ( ) ( ) ( ′ )· ( , )

( , ) .

e
i K r i K r

π π
e

i K r i K r
r r r

l m l

m l

e l l l
m

K K

l
m

K K

−
⎯→⎯ → ⎯→⎯

′→ 3
0

∞

0

2

0

−
⎯→⎯ → ⎯→⎯

′→ 2 → → →

2

=−

=

0

∞
⎯→⎯ ⎯→⎯

⎯→⎯
′

⎯→⎯
′

2 (22)

Here the orthogonality of the spherical harmonics with respect to r→

has been used:

∫ ∫ Y θ ϕ Y θ ϕ θ dθ dϕ δ δ( , ) ( , )sin = .
π π

l
m

r r l
m

r r r r r mm ll
0

2

0
→ → ′

′ → → → → → ′ ′ (23)

By setting K
⎯→⎯

′ = 0 in Eq. (22), we obtain the decomposition of

F K(
⎯→⎯

) in the form of spherical harmonics. Since the spherical Bessel
function j (0) = 0l holds true for any order l ≠ 0, only the term l=0
contributes to the sum in Eq. (22). For l m= = 0, we have j (0) = 1l and

Y θ ϕ Y θ ϕ π( , ) = ( , ) = 1/2l
m

K K l
m

K K
⎯→⎯ ⎯→⎯ ⎯→⎯

′
⎯→⎯

′ . Therefore F K(
⎯→⎯

) reduces to

∫F K π n r j Kr r dr cR K(
⎯→⎯

) = 4 ( ) ( ) = ( ).e
0

∞

0
2

0 (24)

Eq. (24) is simplified as the product of a constant c and a radial

function of K
⎯→⎯

defined by R(K). Similarly, by setting K
⎯→⎯

= 0 in Eq. (22),
we obtain

∫F K π n r j Kr r dr cR K(−
⎯→⎯

′) = 4 ( ) ( ) = ( ′).e
0

∞

0
2

0 (25)

Defining c Z λ− / =2
0, we get

Z
F K F K λ R K R K− 1 (

⎯→⎯
) (−

⎯→⎯
′) = ( ) ( ′).0 0 0 (26)

The integral of Eq. (22) with respect to the radial coordinate r results in
a summed products of the radial functions R K( )l

n and R K( ′)l
n :

∫ ∑π n r j Kr j K r r dr λ R K R K16 ( ) ( ) ( ′ ) = ( ) ( ′).e l l
n

n l
n

l
n2

0

∞
2

(27)

By inserting Eq. (27) into Eq. (22), we obtain

∑ ∑ ∑F K K λ R K R K Y θ ϕ Y θ ϕ(
⎯→⎯

−
⎯→⎯

′) = ( ) ( ′) ( , ) ( , ).
n l m l

m l

n l
n

l
n

l
m

K K l
m

K K
=−

=
⎯→⎯ ⎯→⎯ ⎯→⎯

′
⎯→⎯

′

(28)

One can define each eigenfunction of the MDFF (Eq. (10)) as a
product of a radial function and an angular function:

ϕ K R K Y θ ϕ(
⎯→⎯

) = ( ) ( , ),N l
n

l
m

K K
⎯→⎯ ⎯→⎯ (29)

ϕ K R K Y θ ϕ*(
⎯→⎯

′) = ( ′) ( , ).N n l
m

K K
⎯→⎯

′
⎯→⎯

′ (30)

Here N N n l m= ( , , ). Using the relation Eqs. (29)–(30), one can write
Eq. (10) as

∑S K K E p E λ ϕ K ϕ K(
⎯→⎯

,
⎯→⎯

′, Δ ) = (Δ ) (
⎯→⎯

) *(
⎯→⎯

′).
N

N N N
(31)

Considering that the scattering vector K
⎯→⎯

depends on the in-plane
reciprocal vector q→ and the energy loss EΔ , we rewrite Eq. (31) as

∑S q q E p E λ ϕ q E ϕ q E(→, →′, Δ ) = (Δ ) (→, Δ ) *(→′, Δ ).
N

N N N
(32)

As a summary, the 4D functions S q q E(→, →′, Δ ) for a single atom can be
decomposed into products of spherical harmonic functions. The
eigenvectors of S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 is equivalent to

multiplying the eigenvectors of S q q E(→, →′, Δ ) with a factor q q1/( + )E
2 2 .

The magnitude of energy loss determines the width of the Lorentzian

function q q1/( + )E
2 2 and hence how convergent the eigenvectors are. As

a result, the eigenvectors of S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E
2 2 2 2 for an

energy loss of 300 eV are more broadly distributed compared with the
ones for an energy loss of 10 eV (Figs. 1 and 2).

Since in the Raman-Compton-Wentzel model, the materials only
defines the atomic number Z and the characteristic elastic scattering
vector qA in Eq. (13), our conclusions for carbon-based materials can
also be extended to other elements.

4.3. The influence of inelastic scattering at different sample depths on
the image contrast

The general multislice algorithm accounting for multiple scattering
in the sample is summarized in Eq. (15). When inelastic scattering
takes place within a certain slice m, the transmission function for low-
loss scattering employs the form of Eq. (18). In the case of core-loss
scattering, Eq. (18) can be employed as well, as long as the contrast
contributed by core-loss scattering is trivial compared with elastic or
low-loss scattering. In contrast to the transmission function for pure
elastic scattering (Eq. (16)), the transmission function for inelastic

scattering has an extra factor μ ρ λ ϕ ρ Eexp[− (→)] (→, Δ )α b
πβ 2 1 1

s 0 . Based

on the calculation in Section 3.2, ϕ ρ E(→, Δ )1 is close to a constant for
low-loss scattering, and so is μ ρ ρ E(→ = →′, Δ )11 . Since the absorption
factor μ ρ(→)2 is an integral of the quantity μ ρ ρ E(→ = →′, Δ )11 (Eq. (4)), we
come to the conclusion that μ ρ(→)2 for low-loss scattering is also close to
a constant. Therefore in this case, the transmission function
t ρ E(→, Δ )m

in( ) for low-loss scattering with a certain energy loss EΔ can
be approximated by the product of the transmission function t ρ(→)m for
pure elastic scattering and a constant c E(Δ ). We write it as

t ρ E c E t ρ(→, Δ ) = (Δ ) (→).m
in

m
( ) (33)

As a result, low-loss scattering is incorporated in a multislice algorithm
and the scattered wave is calculated as

ψ ρ ψ ρ t ρ E P ρ ψ ρ c E t ρ

P ρ c E ψ ρ t ρ P ρ

(→) = [ (→)· (→, Δ )] ⊗ (→) ≈ [ (→)· (Δ ) (→)]

⊗ (→) = (Δ )[ (→)· (→)] ⊗ (→).
m m m

in
m m

m m

−1
( )

−1

−1 (34)

Eq. (34) indicates that for a monoatomic crystal, it does not matter on
which slice low-loss scattering takes place. The final image is equivalent
to the image calculated with conventional multislice algorithm con-
sidering pure elastic scattering, scaled by a constant c E(Δ ) depending
on the energy loss EΔ . For complex crystal however, this constant
c E(Δ ) might vary for different sample depths, and all possibilities need
to be taken into account.

In order to illustrate our conclusions for monoatomic crystals, we
have performed simulations by using one single eigenvector obtained
from matrix diagonalization to model inelastic scattering. In one
simulation, the electrons are assumed to have propagated through a
20-layered AB-stacking graphite and experienced an energy loss of
10 eV, and in the other simulation electrons are assumed to have
propagated through the same sample and suffered an energy loss of
300 eV. The sample thickness is about 6.3 nm since the interlayer
distance is 3.35 Å. Two extreme cases are considered - inelastic
scattering taking place at the top and bottom layer. In order to
optimize the image contrast, a slight underfocus with respect to the
bottom layer is taken into account and therefore an extra defocus of
7 nm is employed in the simulations.

Based on our simulations in the middle plots of Fig. 6, it makes no
difference whether the inelastic scattering takes place at the top layer or
at the bottom layer for an energy loss of 10 eV. In order to test the
accuracy of our approximation using one eigenvector to model the
inelastic scattering, we have performed an extra simulation using the
4D matrix involving MDFF for modelling the inelastic scattering (Fig. 6
middle, green dash curve). The number of 4D Fourier transforms is
minimized by assuming that the inelastic scattering takes place at the
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bottom layer. The perfect match between the curves calculated with 4D
matrix and one of its 2D eigenvector shows that one eigenvector offers
a rather accurate approximation for describing low-loss scattering.
After all, since there is only one inelastic scattering event but multiple
elastic scattering, elastic contrast dominates in the final image.

According to the image simulation using one single eigenvector for an
energy loss of 300 eV, the atom contrast is slightly higher when inelastic
scattering takes place at the bottom layer (Fig. 6, right), in contrast to
inelastic scattering at the top layer. An explanation is that the contrast
resulting from the inelastic scattering at the top surface of the sample is
suppressed by the contrast contributed by multiple elastic scattering
throughout the sample thickness. An extra calculation using the complex
4D matrix has been employed to test the accuracy of the approximation by
one eigenvector in image simulation for the core-loss case. The number of
4D Fourier transforms is minimized by presuming that the core-loss
scattering takes place at the bottom layer. From the comparison between
the green dashed curve and the red solid curve in the right image in Fig. 6,
we come to the conclusion that one eigenvector can approximate the 4D
matrix with sufficient degree of accuracy. Especially when all electrons are
collected for imaging, elastic contrast dominates and the contrast con-
tributed by core-loss scattering is negligible.

5. Summary and outlook

We have illustrated that by utilizing the method of matrix diagonaliza-
tion, one can find proper basis to accurately reconstruct the function
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 , a four-dimensional quantity used for

modelling inelastic scattering. With this method, not only can a four-
dimensional problem be reduced to a two-dimensional problem, but the
number of two-dimensional problems is also minimized. In our examples
for a single carbon atom scattering a 20 keV electron, one needs four
eigenvectors to accurately approximate the function
S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2 , while only one eigenvector provides
sufficient accuracy for the approximation in the case of scattering in a
crystal. This can be a great advantage when one encounters the problem of
multiple inelastic scattering in a thick object. A single inelastic scattering
event results in a number of 4D mutual coherence functions, and instead of
performing many 4D Fourier transforms, one only needs to perform the
same number of 2D Fourier transforms. In the case of multiple inelastic
scattering, the number of generated mutual coherence functions increases
exponentially, which indicates that the number of 4D Fourier transforms
can be overloaded for the computer. In this case, the efficiency improve-
ment through the 2D Fourier transforms helps us to study more
complicated scattering problems.
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Appendix A. Diagonalization of a four-dimensional Hermitian matrix

A two-dimensional symmetric or Hermitian matrix M can be diagonalized as

∑M λ x x x x x

λ
λ

λ

x
x

x

= * = ( ⋯ )

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯

*
*
⋮
*

.
n

n n n
T n

n

T

T

n
T

1 2

1

2

1

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
(A.1)

Here the eigenvector xn is a column vector and therefore x*n T is a row vector. For a symmetric matrix, x x= *n n and the eigenvalue λn is real. All
eigenvectors are orthonormal to each other and therefore satisfy

x x* = 0 if m ≠ n
1 if m = nm

T
n

⎧⎨⎩ (A.2)

Fig. 6. The influence of inelastic scattering on the image contrast simulated for TEM operated at 20 kV. Inelastic scattering is assumed to take place at top or bottom layer of a 20-
layered graphite (6.3 nm thick). The bar in the left image marks the the position where line profiles are measured. The middle and right plots show calculations for 10 eV-loss scattering
and for 300 eV-loss scattering, respectively. There are three line profiles shown in each plot - 1. green dash: calculated directly with the 4D matrix S q q E q q q q(→, →′, Δ )/[( + )( + ′ )]E E

2 2 2 2

assuming an inelastic scattering taking place at the bottom layer; 2. blue dots: calculated with only one 2D eigenvector and assuming an inelastic scattering taking place at the top layer;
3. red solid: calculated with only one 2D eigenvector and assuming an inelastic scattering taking place at the bottom layer. Aberration parameters: fΔ = 7 nm , and this corresponds to a

slight underfocus with respect to the bottom layer.
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In order to decompose a 4D Hermitian array M q q(→, →′), where q→ and q→′ are both 2D vectors and which satisfies M q q M q q(→, →′) = *(→′, →), we flatten
the 4D array into a 2D matrix by adapting the following method: (i) Firstly, the 4D array is written in the Cartesian coordinates q→x, q→y, q→′x and q→′y:

M q q M q q q q(→, →′) = ( , , ′ , ′ ).x y x y (A.3)

(ii) Secondly, the 2D representation of M q q q q( , , ′ , ′ )x y x y is denoted by

S S q q q q j k m n N= ( , , ′ , ′ ) , , , = 1, 2, 3… .N j k N m n xj yk xm yn( −1)+ , ( −1)+ (A.4)

Here N j k( − 1) + and N m n( − 1) + are the row number and column number of an element in the flattened matrix, respectively. The 4D array
M q q q q( , , ′ , ′ )x y x y is of the size N N N N× × × , and the flattened matrix M is therefore of the size N N×2 2, shown in Fig. A.1.a). The diagonalization
of the 2D matrix M can therefore be written as:

∑M q q λ ϕ q ϕ q ϕ q ϕ q ϕ q

λ
λ

λ

ϕ q

ϕ q

ϕ q

(→, →′) = (→) * (→′) = ( (→) (→) ⋯ (→))

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯

* (→′)
* (→′)

⋮
* (→′)

.
n

n n n
T

n

n

T

T

n
T

1 2

1

2

1

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(A.5)

Here the eigenvectors satisfy ϕ q ϕ q(→) = (→′)n n and orthonormal to each other:

ϕ q ϕ q δ* (→′) (→) = .m
T

n mn (A.6)

(iii) As the last step, we reshape the eigenvectors from 1D back to 2D, as shown in Fig. A.1b).
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