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A B S T R A C T

Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In
many cases, the quantitative interpretation of images requires simulations based on atomistic structure models.
These typically use the independent atom approximation that neglects bonding effects, which may, however, be
measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering po-
tential, simulations that go beyond this approximation have relied on computationally highly demanding all-
electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when de-
scribing the core electrons by projector functions. Combined with an interface to quantitative image simulations,
this implementation enables an easy and fast means to model electron scattering. We compare simulated
transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy
equivalent to earlier all-electron calculations at a much lower computational cost.

1. Introduction

Recent decades have seen enormous advances in electron micro-
scopy instrumentation, steadily increasing its power as a central tool for
materials science [1–8]. Accurate modelling of electron scattering from
solids can be crucial for the interpretation of images and electron dif-
fraction data, and hence, key to obtaining insights to the studied ma-
terials. In electron diffraction and phase contrast imaging modes such
as electron ptychography and high resolution transmission electron
microscopy (HRTEM) the observed contrast is dominated by the phase
shifts accumulated by the fast electrons that traverse the sample. These
shifts can be derived from the electrostatic potential within the sample
[9,10].

Different approximations for the sample potential exist. In the
simplest approximation, a screened Coulomb (SC) potential can be
used [11–13], which has the advantage that the electron scattering
factor can be expressed in a simple analytic form. However it neglects
any details of the atomic electrons’ arrangement into specific orbitals.
The independent atom model (IAM) approximates the sample as a

superposition of electrostatic potentials previously calculated by first
principles for an isolated atom of every element, with several different
numerical parameterizations available in the literature [14–18]. Natu-
rally, this approximation neglects any changes in the electronic charge
density that results from interatomic interactions.

For periodic structures, electron and x-ray diffraction patterns are
sensitive to the charge transfer in chemical bonds [19–22]. The analysis
of such measurements requires a description beyond the IAM, and can
provide insights not only into the atomic configuration but also into the
electronic structure of a material. The difference between the IAM and a
first principles simulation is in many cases large enough to be directly
detectable in HRTEM images [23,24], and can be crucial for the in-
terpretation of small differences in the atomic contrast [25]. The need
for a first-principles based simulation for interpreting the small contrast
differences between boron, carbon and nitrogen in experimental
HRTEM data was demonstrated earlier by some of the authors of the
current work [26].

Nearly all previous works have utilized computationally expensive
all-electron density functional theory (DFT) [23,27,28], apart from a
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recent effort to extract the electrostatic potential from a pseudopoten-
tial calculation1 [29]. However, since that method does not explicitly
give the core electron charge needed for TEM simulations, the authors
had to resort to a correction scheme [30]. By contrast, the projector-
augmented waves we use here allow the exact (frozen) core electron
density to be recovered. Our approach is thus a simple and accurate
way to calculate the electrostatic potential in the sample and the sub-
sequent electron scattering factors.

For TEM image simulation, we compare the results of our method to
previous experiments and to all-electron DFT based simulations. In
addition, by comparing multiple IAM parameterizations, we show that
experimental electron diffraction patterns of graphene and hexagonal
boron nitride (hBN) can be simulated with a near-perfect match only
when bonding effects are taken into account.

2. Methods

2.1. Theory

In the projector-augmented wave (PAW) formalism [31], the total
charge density ρ(r) is a sum of the squared all-electron valence wave
functions, the frozen core electron density, and the nuclear charges. For
practical calculations, the charge density is divided into a smooth part

r˜ ( ) plus corrections for each atom a: r r( ) ˜ ( ),a a where the smooth
part is given in terms of pseudo wave functions and pseudo core
charges. By construction, the multipole moments of r r( ) ˜ ( )a a are
zero and therefore the electrostatic potential from these correction
charges will be non-zero only inside the atomic augmentation spheres.

This allows us to solve the Poisson equation in two separated steps
to obtain the electrostatic potential v(r). First for the “pseudo” part,

v r r˜ ( ) 4 ˜ ( ),2 = (1)

solved for in all of space on a uniform 3D grid. As second step, the
corrections to v r˜ ( ) are added, via

v r r r( ) 4 [ ( ) ˜ ( )],a a a2 = (2)

which is solved for on a fine radial grid inside the atomic spheres, here
only taking the spherical part of the density into account.

As a final approximation, we broaden the nuclear charges by
Gaussian functions (width 0.005 Å) in the total charge density to avoid
the corrections diverging as Z r/a near the nuclei. A detailed de-
scription is given in Appendix A.

2.2. Simulation

To simulate electron microscopy images and diffraction patterns, we
use the recently implemented PyQSTEM interface to the Quantitative
TEM/STEM Simulations (QSTEM) code [32]. Electron scattering is
modelled by dividing the simulation cell into slices in the direction
perpendicular to the direction of the electron beam, and calculating the
propagation of the electron waves from the projected electrostatic po-
tential in each slice to the next. A description of the multislice propa-
gation method can be found in Ref. [32]. In the case of the IAM model,
a potential is numerically generated based on the positions and atomic
species of the modelled material, with parameterizations of Weick-
enmeier and Kohl [15], Peng et al. [16], Kirkland [17] and Lobato and
Dyck [18] available in PyQSTEM in addition to the default QSTEM
choice of Rez et al. [33]. In the ab initio approach, the potential is in-
stead derived from the ground state electron and nuclear charge density

obtained from DFT (or another first principles simulation method). In
the present work, we use the PAW-based code GPAW [34,35], which we
compare to earlier Wien2k calculations [25]. Finally, to most directly
assess the role of chemical bonding, we parameterized an additional
IAM potential based on isolated-atom GPAW calculations.

2.2.1. PyQSTEM
PyQSTEM is a Python based interface and extension to the multi-

slice simulation program QSTEM. It was created with the goal of pro-
viding a single scripting environment for doing everything related to
image simulation, from model building to analysis. This allows simu-
lating large numbers of automatically generated models required for
purposes such as statistical analysis, optimization and machine
learning. PyQSTEM provides a large degree of flexibility by letting the
user supply any custom wave function or potential, and is especially
convenient with GPAW.

Python is a well suited interface language due to its prevalence in
data science. The numerous extension packages such as numpy [36]
and scipy [37] provide direct access to tools for image analysis. The
Atomic Simulation Environment (ASE) [38] is used for building atomic
models. This is a popular tool in the computational materials commu-
nity, with modules for defining a wide range of different structures. By
using ASE it is easy to integrate results from atomistic simulations into
microscopy simulations. The PyQSTEM program and all its de-
pendencies are open source under the GNU general public license [39],
and available on all platforms [40].

2.2.2. TEM simulation with DFT potential
To simulate TEM images and electron diffraction patterns, we start

by building orthorhombic unit cells on the xy-plane using ASE, as
PyQSTEM assumes propagation along the z-direction. We assign a
GPAW calculator created in the finite difference (FD) mode where the
wave functions are represented on a real space grid.

We then run a DFT calculation with the PBE functional. When this is
finished, we can extract the all-electron potential, using the method
described in Section 2.1 dubbed PS2AE (PSeudo wave to All-Electron
wave). The resulting numpy array, v, describes the all-electron poten-
tial on a 3D grid in ASE units (eV). The multislice algorithm requires
slices of this potential projected along the beam direction

v x y v x y z dz( , ) ( , , ) ,proj
i

z

z z( )
i

i=
+

(3)

where vproj
i( ) is the ith slice and Δz is the slice thickness. By also supplying

the unit cell, we fix the lateral sampling of the TEM simulation.
We then use PyQSTEM in TEM mode; other modes currently sup-

ported are STEM and convergent-beam electron diffraction. We set the
potential and build a plane wave function at an acceleration voltage of
80 kV. Finally, we run a multislice simulation, propagating the wave
function through the potential once.

We can also directly obtain the electron diffraction pattern, which is
very useful for quantitative comparison to experiment, as the absolute
square of the Fourier transform of the exit wave (a logarithm is easier to
visualize, but less useful for the quantification of diffraction intensities).
The code that we use is provided in the Supplemental Materials.

2.3. Experiment

To compare the simulations with HRTEM images, we refer to pub-
lished work on hexagonal boron nitride (hBN) [26]. To further quantify
the accuracy, we compare our simulations to electron diffraction
measurements of mechanically exfoliated single-layer graphene and
single-layer hBN synthesized by chemical vapor deposition [41,42].
The diffraction patterns were recorded on an aberration-corrected FEI
Titan 80–300 and on a Philips CM200 microscope (both operated at
80 kV).

1 After the acceptance of our article, another similar work came to our at-
tention: Michael L. Odlyzko, Atomic bonding effects in annular dark field
scanning transmission electron microscopy. I. Computational predictions,
Journal of Vacuum Science & Technology A 34, 2016, 041602, https://doi.org/
10.1116/1.4954871.
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3. Results and discussion

3.1. Benchmarking

In Fig. 1 we show the potential of graphene calculated using the
Kirkland IAM, our GPAW-based IAM, and via first principles using
GPAW as specified above. Since the latter two are based on the same
method for calculating the electrostatic potential but one includes
chemical bonding, this serves as a direct comparison of its influence. It
may seem counter-intuitive that the IAM potential is greater along the
C-C bonds (Fig. 1). However, this is because the main effect of the
electron density is to screen the 1/r Coulomb potential of the
cores [43]. Consequently, bonding concentrates the electron density
into the near core regions and between the atoms, reducing the total
potential in these regions.

We further studied how the DFT parameters affect the integrated
electrostatic potential of the four-atom orthogonal unit cell of gra-
phene, calculated using the PBE functional [44] (Fig. 2; LDA yields
∼ 0.5% higher values). For this measure, we find full convergence with
an electrostatic grid spacing2 of 0.02 Å and a nuclear charge broadening
of 0.005 Å, a computational grid spacing3 of 0.16 Å (the default 0.2 Å is
practically converged), a k-point mesh finer than 7 × 13×1, and a
Poisson solver convergence criterion4 of 10 ,12 slightly tighter than the
default. For graphene, at least 10 Å of vacuum is required. In the fol-
lowing, we use fully converged parameters.

3.1.1. Comparison to Wien2k
It is of interest to compare our results to an established all-electron

method, such as the Wien2k code (as described in Ref. [25]). For the
potential near a C nucleus, apart from the slightly different low-distance
cutoff (determined by the electrostatic grid spacing, here 0.01 Å) and

minor numerical variation at the periodic cell boundary, the results are
identical (Fig. 3). In Fig. 4 we further compare HRTEM simulations of
hBN as reported experimentally and using Wien2k in Ref. [26]. Due to a
neglect of bonding effects, the IAM predicts a significant asymmetry in
the image contrast over the B and N sites. However, an image simulated
using the full electrostatic potential derived here correctly predicts a
much lesser asymmetry, in a excellent agreement with previous results
from Wien2k and with the experiment shown in Ref. [26].

Despite this identical accuracy, our method is significantly faster.
Using our converged parameters, a full calculation from a relaxed hBN
structure to its electrostatic potential takes only 6 min, compared to
142 min for Wien2k running on similar hardware. An image simulation
depends on the number of slices, and here only takes some minutes.
Furthermore, GPAW scales efficiently to far more cores and larger
systems.

3.1.2. Electron diffraction
The graphene diffraction pattern (Fig. 5a) exhibits the six-fold

symmetry of the lattice. We compare the relative intensities of the first
three sets of diffraction peaks, averaging over equivalent peaks and
using the innermost ring as reference (intensity = 1). It is important to
emphasize that we measure the integrated intensity of each diffraction
peak (minus surrounding background) rather than the peak intensity of
a line profile, which would be affected by peak broadening.

In high-quality graphene, the ratio of the second- to first-order
peaks is very close to 1.0, sometimes even slightly higher (in the pattern
in Fig. 5a, the ratio is 1.04). Highly defective graphene (e.g. graphene
oxide), by contrast, shows a much lower ratio [45,46], which can be
attributed to a static Debye–Waller factor (DWF) resulting from a
structure with imperfect periodicity. The IAM predicts a ratio of 0.89,
while the first-principles calculation predicts a ratio of 1.10. Con-
sidering that any DWF (static from disorder, or dynamic from atomic
motion) can only reduce the ratio, the IAM is in clear conflict with our
experimental values. However, for the first principles calculation, in-
cluding the DWF as measured in Ref. [13] results in an excellent
agreement with experiment.

The single-layer hBN diffraction pattern (Fig. 5b) exhibits the ex-
pected three-fold symmetry in the innermost ring, a six-fold symmetry
in the second ring, and again three-fold symmetry in the third ring
(hexagonal symmetry with two inequivalent atoms). We use the weaker
inner spot as reference (intensity = 1) and measure the intensities of
the other peaks. Our first principles calculation is in near-perfect
agreement for the experimental first, third and fourth intensity ratios,
but diverges slightly for the second one (1.16 vs. 1.07). However, in-
cluding the DWFs again brings the simulated intensity into excellent
agreement with experiment.

Tables 1 and 2 lists the experimental and simulated diffraction peak
intensities. We use DWFs for graphene and for hBN from Ref. [13],
given as ratios of the DWF with respect to the reference peak. The lower
parts of the tables show the simulated diffraction intensities multiplied
with this DWF ratio, which is the set of values that should be compared
to the experiment. Multiplying the simulated ratios with the DWFs
brings the sum of errors in the first four ratios to within 1% of the
experiment for graphene and 2% for hBN. This remarkably good
agreement can only be achieved with a DFT electrostatic potential.

4. Conclusions

Efficient simulation of the full electrostatic potential of materials is
becoming ever more important with the development of better in-
strumentation. Approximate models, though feasible for large systems
and sufficient for routine simulations, do not capture bonding effects
that can in some cases be directly measured, nor are they sufficient for
electron holography. We have shown how the electrostatic potential
derived from frozen core projector-augmented wave density functional
theory gives a description of electron scattering equal to previously

Fig. 1. The electrostatic potential of a four-atom unit cell of graphene. (a) The
DFT-based independent atom model (IAM). (b) DFT electrostatic potential
calculated with GPAW. (c) The relative difference (IAM (GPAW) - DFT (GPAW))
/ IAM (GPAW). (d) Line profiles plotted along the solid line indicated in panel a.
(e) Line profiles plotted along the dashed line in panel a. (The Kirkland IAM is
nearly identical to the GPAW IAM and is thus not shown above).

2 The electrostatic grid spacing sets the real-space density of the arrays used
to describe the electrostatic potential and is important for solving the Poisson
equation accurately.

3 The computational grid spacing defines the real-space density of the arrays
to describe the electron density numerically, fulfilling a similar convergence
role as a plane wave cutoff energy, but is not strictly variational.

4 The Poisson convergence criterion is similar to convergence criteria for
wave functions and electron density, but instead for solving the Poisson equa-
tion within each step of the self-consistency cycle.
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available significantly more demanding methods such as Wien2k, and
in excellent agreement with experiment on graphene and hexagonal
boron nitride.

Due to its computational efficiency, our approach opens the way for
the treatment of large systems with defects, such as impurities or grain
boundaries, and is not limited to two-dimensional specimens. Although
we have chosen to concentrate on high-resolution transmission electron
microscopy due to its greater sensitivity to bonding effects, scanning
TEM images can equally well be simulated. The current implementation

Fig. 2. Computational convergence of the integrated electrostatic potential of graphene. The dashed vertical lines indicate GPAW default settings.

Fig. 3. Comparison of GPAW electrostatic potential to Wien2k (Ref. [25]) and
to the pure Coulomb potential of a C nucleus in the center of a 10 Å box.

Fig. 4. Comparison of different simulations for the 80 kV HRTEM image of hBN
for a defocus value of − 9 nm. (a) Cropped view of the hBN structure model
(boron is pink, nitrogen blue). (b) Kirkland IAM. (c) Wien2k, as reported in
Ref. [26]. (d) GPAW, this work. (e) Profiles over the colored lines in b–d (and
the GPAW IAM, which is indistinguishable from the Kirkland one), showing
that the GPAW potential results in an even smaller asymmetry over the B and N
atoms than previously obtained with Wien2k. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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provides a convenient computational workflow starting from a struc-
ture model all the way to high-quality images or diffraction patterns in
one simple script.
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Appendix A. Electrostatic potential

In the projector-augmented wave (PAW) formalism [31], the total charge density (for convenience, we count electrons as positive and protons as
negative charge) can be written as

f n Zr r r R r R( ) 2 | ( )| (| |) ( ),
n

n n
a

c
a a

a

a a

k
k k

2= +
(A.1)

where ψnk(r) are the valence wave functions explicitly included in the calculation (n is the band index and k is the crystal momentum) and fnk are
occupation numbers. For atom number a, n r( )c

a is the frozen core electron density, Ra is the position and Za is the atomic number. For practical

Fig. 5. (a) Experimental electron diffraction pattern from single-layer gra-
phene. Symmetry-equivalent diffraction peaks are labeled in the same color.
Ratios of peak integrated intensities with respect to the red labeled spots are
given in the table. (b) Experimental electron diffraction pattern from single-
layer hBN. The structure has a lower symmetry than graphene, and hence, in-
equivalent spots appear in the same diffraction order. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Analysis of electron diffraction patterns of graphene from experiment (Fig. 5a)
and different simulation methods (including IAM parameterizations by Kirk-
land [17], Lobato [18], Weickenmeier [15], Peng [16], Rez [33], and directly
from GPAW) = 1.

Graphene

Experiment 1.03 0.16 0.05 0.12
Wien2k 1.10 0.18 0.06 0.15
GPAW 1.11 0.18 0.06 0.15
IAM (GPAW) 0.99 0.16 0.07 0.18
IAM (Kirkland) 0.98 0.16 0.06 0.17
IAM (Lobato) 0.98 0.16 0.06 0.17
IAM (Weickenmeier) 0.93 0.15 0.07 0.18
IAM (Peng) 0.92 0.14 0.06 0.14
IAM (Rez) 0.89 0.14 0.05 0.12
DWF ratio 0.93 0.89 0.79 0.74
Wien2k × DWF 1.02 0.14 0.05 0.11
GPAW × DWF 1.03 0.14 0.05 0.11
IAM (Kirkland) × DWF 0.91 0.14 0.05 0.13

Table 2
Analysis of electron diffraction patterns of hBN from experiment (Fig. 5b) and
different simulation methods. = 1.

hBN
Experiment 1.05 1.07 0.19 0.19

Wien2k 1.05 1.17 0.16 0.17
GPAW 1.06 1.16 0.16 0.17
IAM (GPAW) 1.07 0.95 0.17 0.16
IAM (Kirkland) 1.07 0.96 0.17 0.16
IAM (Lobato) 1.07 0.96 0.17 0.16
IAM (Peng) 1.06 0.94 0.16 0.16
IAM (Weickenmeier) 1.07 0.94 0.17 0.16
IAM (Rez) 1.07 0.95 0.13 0.13
DWF ratio 1 0.93 0.89 0.89
Wien2k × DWF 1.05 1.09 0.15 0.16
GPAW × DWF 1.06 1.08 0.15 0.16
IAM (Kirkland) × DWF 1.07 0.89 0.15 0.14
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calculations, the charge density is divided into a smooth part plus corrections for each atom:

r r r R r R( ) ˜ ( ) [ ( ) ˜ ( )],
a

a a a a= +
(A.2)

where the smooth part is given in terms of pseudo wave functions r˜ ( ),nk pseudo core charges n r˜ ( ),c
a expansion coefficientsQ m

a (to be defined below)
and localized shape functions that in the GPAW code [34,35] have been chosen to be Gaussian functions g r r Yr r˜ ( ) exp( ) (^)m

a a
m

2 :

f n Q gr r r R r R˜ ( ) 2 | ˜ ( )| ˜ (| |) ˜ ( ).
n

n n
a

c
a a

a m
m

a
m

a a

k
k k

2= + +
(A.3)

where ℓ and m are the azimuthal and magnetic quantum numbers, Y r(^)m are the spherical harmonics, and the atom-dependent decay factor α is
chosen such that the charges are localized within the augmentation sphere.

The corrections look similar to the definitions of ρ(r) and r˜ ( ) except that we now expand the wave functions in all-electron and pseudo partial
waves i

a and ĩ
a:

D n r Zr r r r( ) ( ) ( ) ( ) ( ),a

ij
ij
a

i
a

j
a

c
a a= +

(A.4)

D n r Q gr r r r˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ).a

ij
ij
a

i
a

j
a

c
a

m
m

a
m

a= + +
(A.5)

The atomic density matrix Dij
a is evaluated from projections of the pseudo wave functions onto smooth PAW projector functions p r˜ ( )i

a localized inside
the each atomic augmentation sphere:

D p f p2 ˜ | ˜ ˜ | ˜ .ij
a

n
n i

a
n j

a
n

k
k k k=

(A.6)

The coefficientsQ m
a are chosen so that all multipole moments of r r( ) ˜ ( )a a are zero and therefore the electrostatic potential from these correction

charges will be non-zero only inside the atomic augmentation spheres.
This allows us to solve the Poisson equation in two separated steps, first for the pseudo part:

v r r˜ ( ) 4 ˜ ( ),2 = (A.7)

solved for in all of space on a uniform 3D grid.
In the second step, corrections are added to v r˜ ( ):

v r r r( ) 4 [ ( ) ˜ ( )],a a a2 = (A.8)

solved for on a fine radial grid inside the atomic spheres only taking the spherical part of the density into account. As a final approximation, we
replace δ(r) in Eq. (A.4) by r e( )c

r r2 3/2 ( / )c 2
(with r 0.005c = Å) to avoid the corrections diverging as Z r/a near the nuclei.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ultramic.2018.11.002
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