
Neural ODE based Control of Multi-Functional Heatpump Systems

S. Buck†, B. Alt†, F. Heber†, L. Mikelsons‡

†Robert Bosch GmbH, 71272 Renningen, E-Mail: simon.buck3@de.bosch.com
‡Lehrtstuhl für Mechatronik, Universität Augsburg, E-Mail: lars.mikelsons@uni-a.de

Battery electric vehicles (BEVs) are one of the most promising candidates for green indi-
vidual mobility. On the one hand, lithium-ion-based batteries provide an efficient storage
capability for energy from renewable resources, on the other hand, electric drives are
known for their remarkable overall energy efficiency, especially when compared to inter-
nal combustion engines.

However, thermal management of BEVs is a hard challenge since the electric drive should
not exceed a peak temperature limit at any time. At the same time, battery lifetime and
passenger comfort require the temperatures of the high-voltage battery and the cabin to
respect corresponding lower and upper limits. Since all actions for heating or cooling come
with a cost in terms of electric energy consumption and therefore an unwanted impact on
the remaining driving range, we are seeking intelligent solutions to fulfill the requirements
above while minimizing the overall electric energy consumption. On the system design
level, the introduction of fully integrated multi-functional heat pumps has been a key
enabler to bring battery electric vehicles to the next level. Recent advances on predictive
algorithms help on the software side to fully exploit the potential of these new complex
system designs (see [1]).
In addition to the challenge of minimal electric energy consumption, we are looking for
further improvements in terms of performance (e.g., reduced time for cabin heating or coo-
ling) or system cost efficiency (e.g,. use of waste heat recovery), enabling unique selling
points for Bosch as a system provider. However, to solve these challenges with optimal
control methods, a mathematical description of the system dynamics is required. Due
to complex nonlinearities in the system, i.e., the refrigerant circuit and heat exchangers,
a description with classical differential equations is difficult, especially since the model
has to allow for low computational efforts in online optimization. Therefore, a data-based
approach using Neural ODEs (see [2]) is used in our work to model the temperature dyna-
mics of the various components. This technique uses a neural network NN to approximate
the right-handed side of the differential equation, i.e.

ẋ = NN(x,u).

This allows for the approximation of complex dynamics that are difficult to capture in
equations, while still allowing the use of classical methods from control engineering and
optimization, such as numerical integration with well-known numerical algorithms, e.g.,
Euler-forward:

xk+1 = xk +∆t ·N(xk,uk) ∀k = 0, ..., N − 1.

Our goal is to obtain an accurate prediction

X =
[
x0 x1 x2 · · · xN

]
of the component temperatures over a time horizon

t =
[
t0 t1 t2 · · · tN

]



for a specific control input

U =
[
u0 u1 u2 · · · uN−1

]
.

For this prediction to be accurate enough, the training data must contain the input space
of the later evaluation. The DOE must therefore be carefully planned to cover this input
space sufficiently. In the next step, the trajectories are used for training the neural net-
work. For this purpose, a feedforward neural network (FNN) is used, although there are
also more advanced architectures in the literature [3]. Since there is a large number of
parameters for the training process, a hyperparameter analysis must be performed. This
allows, for example, a suitable number of layers or neurons per layer to be determined.
In addition, various methods such as batch learning, learning rate adaptation, or early
stopping are used to improve the training process and must be calibrated for an accurate
model.
In our work, we exemplarily investigate the optimal control of the cabin temperature.
In a simple model with only one thermal mass TCab, three input variables significantly
influence the temperature of the cabin. These are the ambient temperature TAmb, as well
as the inlet temperature TIn and blower speed uBlwr of the air into the cabin at the outlet
of the HVAC system.

ṪCab = NN(TCab, TIn, ṁair, TAmb).

After a successful training, the model is used in an optimizer to compute the control input
signals UOpt. The most important goal of the control strategy is to keep the cabin tempe-
rature within a temperature window. This is achieved by switching between two different
system modes. In Mode 1, the cabin can be heated with a constant inlet temperature
T̄In. In Mode 2, the blower is switched off, i.e., uBlwr = 0, so no energy is transferred.
The goal of the optimization is to find the switching times to switch between modes 1
and 2, whereby the temperature window must not be violated and energy consumption
shall be minimized. In order to compensate for prediction errors of the learned model, the
optimizer is used in an MPC scheme with a shorter horizon and fewer mode switches.
In our talk, we will discuss the possibilities and challenges of the entire pipeline. This in-
cludes a suitable data collection, the training process, and the application of a NeuralODE
in an optimizer/MPC scheme.
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