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Preliminaries of the sum-rank metric UGRCHTENTEGII

Codes in Sum-Rank-Metric

@ [F,m Extension Field of I,
@ Codelength n =7 - £ splitted into £ blocks, each of size n

@ Linear Code C C Fy.. subspace of dimension k&

c=[ca | e | ... | e |e€F.

n
€F,

C = C, | C, | | C, }EIFann

eFg "
£-sum-rank weight/distance:
wtsr.e(c) = Zle tky, (C;) < £- i
~—

:=min{m,n}

dsrele, ) =wtsr(c— )
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Preliminaries of the sum-rank metric

Spheres and Balls in Sum-Rank-Metric

Let 7€ Z>owith0<7</{-pand x € Fgm. The sum-rank-metric
sphere with radius 7 and center x is defined as

Sz(m,T) = {y € Fgm | dSR,g(a:,y) = 7’}.

Analogously, we define the ball of sum-rank-radius 7 with center x
by
Be(x, 1) = U_ySe(, 1).
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Preliminaries of the sum-rank metric

Spheres and Balls in Sum-Rank-Metric

Let 7€ Z>owith0<7</{-pand x € Fgm. The sum-rank-metric
sphere with radius 7 and center x is defined as

Sz(m,T) = {y € Fgm | dSR,g(a:,y) = 7’}.

Analogously, we define the ball of sum-rank-radius 7 with center x
by
Be(x, 1) = U_ySe(, 1).

We also define the following cardinalities:

Vols, (1) = [{y € Fym | Wtsre(y) =7},
Volg, (1) == >_1_, Vols, (4).
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Preliminaries of the sum-rank metric

Intersection of Balls in Sum-Rank-Metric

We can define the volume of the intersection of two equal sized
balls |By(x1,7) N By(x2,7)| independently of their centers but only
dependent on their radii 7 and the distance § = dgr ¢(x1, T2)
between their respective centers as follows:

Volz, (7,9) = {y € Fym|wtsre(y) < 7 Adsre(y,d) < 7},

where d € Fy arbitrary but fix with wtsg(d) = 6. Obviously if
d > 27, then Volz,(7,6) = 0.
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Preliminaries of the sum-rank metric

Relation between the different metrics

For x € Fym it holds that wtgr ¢(z) < wtsp ().

Proof: & = [z1]...|x¢] € Fym with

wtspn(x) =n—t=n—1t1 +...+n—t; where Zleti =t and
each x; has t; zero entries. For the sum-rank weight one gets
wispe(x) = > tky(a;) < Yop_; min{m,n —t;} <

i (n—ti) =n—t=wtspn(x).

For z € Fym it holds that wtgr 1(z) < wtgre(x).

Proof: Assume w.l.o.g. n < m and let

wtspe(x) =t =1t1+ ...+t (i.e., each x; has t; Fy-linearly
independent columns for i € {1,... ¢}) = x has at most ¢
Fy-linearly independent columns in the union of all blocks, which
corresponds to the rank weight of .
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Covering Properties

Covering radius

Definition

Let C be a linear [n, k, d] sum-rank metric code over Fym. The
covering radius of C is the smallest integer psgr ¢ such that every
vector € Fim has at most sum-rank distance psr ¢ to some
codewor i€ = Fm 7z C)}.

F
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Covering Problem for the sum-rank metric

For a given vectorspace Fy» and a given integer p we denote the
minimum cardinality of a code C C Fii» with sum-rank covering
radius p by Ksg ¢(Fym, p). We now formulate the sphere covering
problem for the sum-rank metric.

Problem

Find the minimum number of sum-rank balls B;(x, p) of radius p
(with x € Fym ) that cover the space Fy entirely. This problem is
equivalent to determining the minimum cardinality Ksg ¢(Fym, p)
of a code C C Fym with sum-rank covering radius p.
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Covering Properties

Covering Problem: Extreme Cases

There are two extreme cases for the covering radius:

(i) Ksre(Fym,0) = ¢™", since from
PSR = MaXyeFn,, {dspr(x,C)} = 0 it follows that
dsre(x,C) =0,V € Fym and therefore x € C, ie., C = Fym.

(i) Kspre(Fym, pul) = 1. Consider
PSR = MaXgycFn,, {dsr(x,C)} = p - £ which means that
there exists an © € i such that dsg(x,C) = - £. This'is
already fulfilled by choosing C = {(0,...,0)}.
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Covering Properties

Covering radii in different metrics

Let C C Fym then it holds for its corresponding covering radii
PSR,1, PSR, and psgr.y In the rank, the sum-rank and the
Hamming metric that

PSR1 < PSR < PSR-

.

Since wtgp,1(x) < wtgre(x) < wtspn(x) for a fix & € Fgm it
follows that dggr1(z,C) < dsre(x,C) < dsgrn(x,C) and hence
maxgern, {dsr1(@,C)} < maxgern, {dsre(z,C)} <
maxgepn,, {dsrn(z,C)}-

]

.
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Covering Properties

Comparison of the different metrics

For0 < p < -4, it holds
ICSRI( map)<ICSRZ( mvp)<ICSRn( m,p)-

.

Let Asgre = {C C Fym|U.ce Be(e,p) D Fym} be the set of codes
with sum-rank covering radius p. Since

wtsr1(x) < wtsp(x) < wtgrn(x) for a fix € Fgm, one gets
Ueee Bi(e, p) D Ueee Bele, p) D Ueee Bn(e, p) and hence it
follows that Asg1 O Asr¢ O Asrn. With

Ksr,e(Fym, p) = minceagp ,1|C|} the statement follows. O
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Lower Bounds for the Sphere Covering Problem

Sphere Covering Bound

Theorem (Sphere Covering Bound)

For the minimum cardinality of a code C C Fym with sum-rank
covering radius 0 < p < p - £ the following inequality holds:

mn

q

— <K >
Volg, () = Csm e(Fgm, p)-

.

If it is possible to cover the whole space [y with balls of radius p
without overlapping any two balls, then Vol n(p) Ksre(Fgm, p).

This is only possible for perfect sum-rank metric codes. If there are
o qmn J—
overlapping balls then Vols, (7) < Ksre(Fgm, p). O
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Lower Bounds for the Sphere Covering Problem

Simplified Sphere Covering Bound

Theorem (Simplified Sphere Covering Bound)

For 0 < p < - £ the following inequality holds:

AT e

—— 0 < Ksre(Fgm, p
Tp—1 LI gm,

P ( W01 )75

l+p—1
1 <

)’qup("H”Z [PRR22, Theorem 5].

Since Volg, (p) = 30—, Vols, (') < pVols, (p) for p > 1, this
gives an upper bound on Volg,(p). Plugging in this upper bound in

the sphere covering Bound leads to the claim. D)
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Lower Bounds for the Sphere Covering Problem

For the covering radius p fulfilling 0 < p < p - £ the minimum

cardinality Ksp¢(Fym) of a code is greater than 3.
o

Let 0 <p<p-Land0 <k < [logm(Ksre(Fym,p))] then

1
>
~ Volg,(p) — Volz, (p, ul — Lk)

. <qm” — ¢*™Volz, (p, ut — %k) + Volz, (p, ul — %k +1)

k K K'—1
’ Zk’:max{l,n72ﬁp+l}(q = q( )m)) :

Ksr,e(Fgm, p)

\,
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Upper Bounds for the Sphere Covering Problem

For the minimum cardinality of a code C C Fim with sum-rank
covering radius 0 < p < p - £ the following inequality holds:
Ksre(Fn, p) < gm0,

.

Consider a systematic generator matrix G = (I|A) of a code C.

For each vector x = (1,...,x,) € [Fym there exists a codeword
c= (1, .., Tk, Chs1,s---,Cpn) € C with

dSRyg(ZB, c) = WtSRjg(O, ey 0,811, -5 Cn) <
wtsrn(0,...,0,Ckt1,...,Cn) < n— k. Therefore

mincec{dsre(x,c)} <n —k for each & € Fim and hence
p = MaxXgcpr,, {dsr(x,C)} <n — k. This leads to the upper

bound ICSRJ(Fvap) < ‘C’ = qu < qm(n—p). 0

Cornelia Ott, Hedongliang Liu, Antonia Wachter-Zeh Allerton 2022, lllinois



Ulm University, Institute of Communications Engineering TUM, Institute of Communications Engineering

Upper Bounds for the Sphere Covering Problem

Let 0 < p < -/ then

Ksre(Fgm,p) < gL D-(n=p),

.

Let m, n, p be fixed positive integers, then for any |l with0 <[ <n
and for every pair (n;, p;) fulfilling the following three conditions

(i) 0<n; <mn
(i) 0 < pi <my
(i) ni +p; <m
for all 0 < i <1 —1 with Y'"t n; =n and S'2 pi = p it holds

ICSRZ(F ".,p) < min qm(n*p)*ZZé(L%J)-(nrm)
le {01 5T }
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Numerical Comparison of the different Covering Bkttt
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Comparison of bounds on Ksg ¢(Fym, p) for parameters ¢ = 4,m = 4,1 =
3 =3,n=nl=9.
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Numerical Comparison of the different Covering Bkttt
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Comparison of bounds on ICSRyg(IFZm,p) for parameters ¢ = 16,m =
16,7 = 16,¢ = 14,n = nl = 224.
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Conclusion

@ Relation between the different metrics
o wtsr1 < wtgr¢ < Wtgr,, (already known)
° psr,1 < PSR,1 < PSR
o Ksr1 < Ksre < Ksrpn
@ Upper and lower bounds on Kgsg ¢
@ Open Problem: Calculate Volz, exactly and efficiently and find
an upper and a lower bound
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