## Covering Properties of Sum-Rank-Metric Codes

Cornelia Ott<sup>1</sup>, Hedongliang Liu<sup>2</sup>, Antonia Wachter-Zeh<sup>2</sup>



# Annual Allerton Conference on Communication, Control, and Computing 2022

September 30, 2022

# Preliminaries of the sum-rank metric

Codes in Sum-Rank-Metric

- $\mathbb{F}_{q^m}$  Extension Field of  $\mathbb{F}_q$
- Codelength  $n = \eta \cdot \ell$  splitted into  $\ell$  blocks, each of size  $\eta$
- Linear Code  $\mathcal{C} \subset \mathbb{F}^n_{a^m}$  subspace of dimension k

$$oldsymbol{c} = [ oldsymbol{c}_1 \ \in \mathbb{F}_{q^m}^\eta \ | \ oldsymbol{c}_2 \ | \ \dots \ | \ oldsymbol{c}_\ell \ ] \in \mathbb{F}_{q^m}^\eta$$

$$C = [\underbrace{C_1}_{\in \mathbb{F}_q^{m \times \eta}} | C_2 | \dots | C_\ell] \in \mathbb{F}_q^{m \times n}$$

-sum-rank weight/uistance.

$$\operatorname{wt}_{SR,\ell}(\boldsymbol{c}) \coloneqq \sum_{i=1}^{\ell} \operatorname{rk}_{\mathbb{F}_q}(\boldsymbol{C}_i) \leq \ell \cdot \underbrace{\mu}_{:=\min\{m,\eta\}}$$

$$d_{SR,\ell}(\boldsymbol{c},\boldsymbol{c}')\coloneqq \operatorname{wt}_{SR,\ell}(\boldsymbol{c}-\boldsymbol{c}')$$

## Preliminaries of the sum-rank metric Spheres and Balls in Sum-Rank-Metric



Let  $\tau \in \mathbb{Z}_{\geq 0}$  with  $0 \leq \tau \leq \ell \cdot \mu$  and  $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$ . The sum-rank-metric sphere with radius  $\tau$  and center  $\boldsymbol{x}$  is defined as

$$\mathcal{S}_{\ell}(\boldsymbol{x}, \tau) \coloneqq \{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \mathrm{d}_{SR,\ell}(\boldsymbol{x}, \boldsymbol{y}) = \tau \}.$$

Analogously, we define the ball of sum-rank-radius  $\tau$  with center  ${\pmb x}$  by

$$\mathcal{B}_{\ell}(\boldsymbol{x},\tau) \coloneqq \bigcup_{i=0}^{\tau} \mathcal{S}_{\ell}(\boldsymbol{x},i).$$

We also define the following cardinalities:

$$\operatorname{Vol}_{\mathcal{S}_{\ell}}(\tau) \coloneqq |\{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \operatorname{wt}_{SR,\ell}(\boldsymbol{y}) = \tau \}|,$$
  
$$\operatorname{Vol}_{\mathcal{B}_{\ell}}(\tau) \coloneqq \sum_{i=0}^{\tau} \operatorname{Vol}_{\mathcal{S}_{\ell}}(i).$$





Let  $\tau \in \mathbb{Z}_{\geq 0}$  with  $0 \leq \tau \leq \ell \cdot \mu$  and  $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$ . The sum-rank-metric sphere with radius  $\tau$  and center  $\boldsymbol{x}$  is defined as

$$\mathcal{S}_{\ell}(\boldsymbol{x}, \tau) \coloneqq \{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \mathrm{d}_{SR,\ell}(\boldsymbol{x}, \boldsymbol{y}) = \tau \}.$$

Analogously, we define the ball of sum-rank-radius  $\tau$  with center  ${\pmb x}$  by

$$\mathcal{B}_{\ell}(\boldsymbol{x},\tau) \coloneqq \bigcup_{i=0}^{\tau} \mathcal{S}_{\ell}(\boldsymbol{x},i).$$

We also define the following cardinalities:

$$\begin{aligned} \operatorname{Vol}_{\mathcal{S}_{\ell}}(\tau) &\coloneqq |\{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \operatorname{wt}_{SR,\ell}(\boldsymbol{y}) = \tau \}|, \\ \operatorname{Vol}_{\mathcal{B}_{\ell}}(\tau) &\coloneqq \sum_{i=0}^{\tau} \operatorname{Vol}_{\mathcal{S}_{\ell}}(i). \end{aligned}$$

## Preliminaries of the sum-rank metric Intersection of Balls in Sum-Rank-Metric



We can define the volume of the intersection of two equal sized balls  $|\mathcal{B}_{\ell}(\boldsymbol{x}_1, \tau) \cap \mathcal{B}_{\ell}(\boldsymbol{x}_2, \tau)|$  independently of their centers but only dependent on their radii  $\tau$  and the distance  $\delta := d_{SR,\ell}(\boldsymbol{x}_1, \boldsymbol{x}_2)$  between their respective centers as follows:

$$\operatorname{Vol}_{\mathcal{I}_{\ell}}(\tau, \delta) \coloneqq |\{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n | \operatorname{wt}_{SR, \ell}(\boldsymbol{y}) \leq \tau \wedge \operatorname{d}_{SR, \ell}(\boldsymbol{y}, \boldsymbol{d}) \leq \tau \}|,$$

where  $d \in \mathbb{F}_{q^m}^n$  arbitrary but fix with  $\operatorname{wt}_{SR,\ell}(d) = \delta$ . Obviously if  $\delta > 2\tau$ , then  $\operatorname{Vol}_{\mathcal{I}_\ell}(\tau, \delta) = 0$ .

# Preliminaries of the sum-rank metric

Relation between the different metrics

For 
$$x \in \mathbb{F}_{q^m}$$
 it holds that  $\operatorname{wt}_{SR,\ell}(x) \leq \operatorname{wt}_{SR,n}(x)$ .  
Proof:  $\boldsymbol{x} = [\boldsymbol{x}_1 | \dots | \boldsymbol{x}_\ell] \in \mathbb{F}_{q^m}^n$  with  
 $\operatorname{wt}_{SR,n}(\boldsymbol{x}) = n - t = \eta - t_1 + \dots + \eta - t_\ell$  where  $\sum_{i=1}^{\ell} t_i = t$  and  
each  $\boldsymbol{x}_i$  has  $t_i$  zero entries. For the sum-rank weight one gets  
 $\operatorname{wt}_{SR,\ell}(\boldsymbol{x}) = \sum_{i=1}^{\ell} \operatorname{rk}_q(\boldsymbol{x}_i) \leq \sum_{i=1}^{\ell} \min\{m, \eta - t_i\} \leq \sum_{i=1}^{\ell} (\eta - t_i) = n - t = \operatorname{wt}_{SR,n}(\boldsymbol{x})$ .  
For  $x \in \mathbb{F}_{q^m}$  it holds that  $\operatorname{wt}_{SR,1}(x) \leq \operatorname{wt}_{SR,\ell}(x)$ .  
Proof: Assume w.l.o.g.  $n \leq m$  and let  
 $\operatorname{wt}_{SR,\ell}(\boldsymbol{x}) = t = t_1 + \dots + t_\ell$  (i.e., each  $\boldsymbol{x}_i$  has  $t_i \mathbb{F}_q$ -linearly  
independent columns for  $i \in \{1, \dots, \ell\}$ )  $\Rightarrow \boldsymbol{x}$  has at most  $t$   
 $\mathbb{F}_q$ -linearly independent columns in the union of all blocks, which  
corresponds to the rank weight of  $\boldsymbol{x}$ .

Covering radius



#### Definition

Let  $\mathcal{C}$  be a linear [n, k, d] sum-rank metric code over  $\mathbb{F}_{q^m}$ . The covering radius of  $\mathcal{C}$  is the smallest integer  $\rho_{SR,\ell}$  such that every vector  $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$  has at most sum-rank distance  $\rho_{SR,\ell}$  to some codeword  $\boldsymbol{c} \in \mathcal{C}$  i.e.,  $\rho_{SR,\ell} = \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{ \mathrm{d}_{SR,\ell}(\boldsymbol{x}, \mathcal{C}) \}.$ 



Covering Problem for the sum-rank metric



For a given vectorspace  $\mathbb{F}_{q^m}^n$  and a given integer  $\rho$  we denote the minimum cardinality of a code  $\mathcal{C} \subset \mathbb{F}_{q^m}^n$  with sum-rank covering radius  $\rho$  by  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho)$ . We now formulate the sphere covering problem for the sum-rank metric.

#### Problem

Find the minimum number of sum-rank balls  $\mathcal{B}_{\ell}(x,\rho)$  of radius  $\rho$ (with  $x \in \mathbb{F}_{q^m}^n$ ) that cover the space  $\mathbb{F}_{q^m}^n$  entirely. This problem is equivalent to determining the minimum cardinality  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$ of a code  $\mathcal{C} \subset \mathbb{F}_{q^m}^n$  with sum-rank covering radius  $\rho$ .

Covering Problem: Extreme Cases



There are two extreme cases for the covering radius:

Covering radii in different metrics

#### Lemma

Let  $C \subset \mathbb{F}_{q^m}^n$  then it holds for its corresponding covering radii  $\rho_{SR,1}$ ,  $\rho_{SR,\ell}$  and  $\rho_{SR,n}$  in the rank, the sum-rank and the Hamming metric that

 $\rho_{SR,1} \le \rho_{SR,\ell} \le \rho_{SR,n}.$ 

#### Proof.

Since  $\operatorname{wt}_{SR,1}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,\ell}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,n}(\boldsymbol{x})$  for a fix  $\boldsymbol{x} \in \mathbb{F}_{q^m}$  it follows that  $\operatorname{d}_{SR,1}(\boldsymbol{x},\mathcal{C}) \leq \operatorname{d}_{SR,\ell}(\boldsymbol{x},\mathcal{C}) \leq \operatorname{d}_{SR,n}(\boldsymbol{x},\mathcal{C})$  and hence  $\max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,1}(\boldsymbol{x},\mathcal{C})\} \leq \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,\ell}(\boldsymbol{x},\mathcal{C})\} \leq \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,n}(\boldsymbol{x},\mathcal{C})\}.$ 



Comparison of the different metrics

#### Theorem

For  $0 < \rho < \mu \cdot \ell$ , it holds  $\mathcal{K}_{SR,1}(\mathbb{F}_{q^m}^n, \rho) \leq \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho) \leq \mathcal{K}_{SR,n}(\mathbb{F}_{q^m}^n, \rho).$ 

#### Proof.

Let  $\mathcal{A}_{SR,\ell} \coloneqq \{\mathcal{C} \subset \mathbb{F}_{q^m}^n | \bigcup_{c \in \mathcal{C}} \mathcal{B}_{\ell}(c, \rho) \supset \mathbb{F}_{q^m}^n\}$  be the set of codes with sum-rank covering radius  $\rho$ . Since  $\operatorname{wt}_{SR,1}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,\ell}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,n}(\boldsymbol{x})$  for a fix  $\boldsymbol{x} \in \mathbb{F}_{q^m}$ , one gets  $\bigcup_{c \in \mathcal{C}} \mathcal{B}_1(c, \rho) \supset \bigcup_{c \in \mathcal{C}} \mathcal{B}_{\ell}(c, \rho) \supset \bigcup_{c \in \mathcal{C}} \mathcal{B}_n(c, \rho)$  and hence it follows that  $\mathcal{A}_{SR,1} \supset \mathcal{A}_{SR,\ell} \supset \mathcal{A}_{SR,n}$ . With  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho) = \min_{\mathcal{C} \in \mathcal{A}_{SR,\ell}} \{|\mathcal{C}|\}$  the statement follows.



# Lower Bounds for the Sphere Covering Problem

#### Theorem (Sphere Covering Bound)

For the minimum cardinality of a code  $\mathcal{C} \subset \mathbb{F}_{q^m}^n$  with sum-rank covering radius  $0 < \rho < \mu \cdot \ell$  the following inequality holds:

$$\frac{q^{mn}}{\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho)} \leq \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho).$$

#### Proof.

If it is possible to cover the whole space  $\mathbb{F}_{q^m}^n$  with balls of radius  $\rho$  without overlapping any two balls, then  $\frac{q^{mn}}{\operatorname{Vol}_{\mathcal{B}_\ell}(\rho)} = \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$ . This is only possible for perfect sum-rank metric codes. If there are overlapping balls then  $\frac{q^{mn}}{\operatorname{Vol}_{\mathcal{B}_\ell}(\rho)} < \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$ . Ulm University, Institute of Communications Engineering

TUM, Institute of Communications Engineering

# Lower Bounds for the Sphere Covering Problem

#### Theorem (Simplified Sphere Covering Bound)

For  $0 < \rho < \mu \cdot \ell$  the following inequality holds:

$$\frac{q^{mn-\rho(m+\eta-\frac{\rho}{\ell})}}{\rho \cdot \binom{\ell+\rho-1}{\ell-1}\gamma_q^{\ell}} \le \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$$

#### Proof.

$$\operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho) \leq \binom{\ell+\rho-1}{\ell-1} \gamma_q^{\ell} q^{\rho(m+\eta-\frac{\rho}{\ell})} \quad [\mathsf{PRR22, Theorem 5}].$$

Since  $\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho) = \sum_{\rho'=0}^{\rho} \operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho') \leq \rho \operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho)$  for  $\rho > 1$ , this gives an upper bound on  $\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho)$ . Plugging in this upper bound in the sphere covering Bound leads to the claim.

## Lower Bounds for the Sphere Covering Problem



#### Theorem

For the covering radius  $\rho$  fulfilling  $0 < \rho < \mu \cdot \ell$  the minimum cardinality  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n)$  of a code is greater than 3.

#### Theorem

Let 
$$0 < \rho < \mu \cdot \ell$$
 and  $0 < k \le \lfloor \log_{q^m}(\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho)) \rfloor$  then

$$\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho) \geq \frac{1}{\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho) - \operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\mu\ell - \frac{\mu}{\eta}k)} \\ \cdot \left(q^{mn} - q^{km}\operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\mu\ell - \frac{\mu}{\eta}k) + \operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\mu\ell - \frac{\mu}{\eta}k + 1) \right) \\ \cdot \sum_{k'=\max\{1,n-2\frac{\eta}{\mu}\rho+1\}}^k (q^{k'm} - q^{(k'-1)m}) \right).$$

## Upper Bounds for the Sphere Covering Problem



#### Theorem

For the minimum cardinality of a code  $C \subset \mathbb{F}_{a^m}^n$  with sum-rank covering radius  $0 < \rho < \mu \cdot \ell$  the following inequality holds:  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho) \le q^{m(n-\rho)}.$ 

#### Proof.

Consider a systematic generator matrix G = (I|A) of a code C. For each vector  $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$  there exists a codeword  $\boldsymbol{c} = (x_1, \ldots, x_k, c_{k+1}, \ldots, c_n) \in \mathcal{C}$  with  $d_{SR,\ell}(\boldsymbol{x},\boldsymbol{c}) = \operatorname{wt}_{SR,\ell}(0,\ldots,0,\tilde{c}_{k+1},\ldots,\tilde{c}_n) \leq$  $\operatorname{wt}_{SR,n}(0,\ldots,0,\tilde{c}_{k+1},\ldots,\tilde{c}_n) \leq n-k$ . Therefore  $\min_{c \in \mathcal{C}} \{ d_{SR,\ell}(\boldsymbol{x}, \boldsymbol{c}) \} \leq n - k$  for each  $\boldsymbol{x} \in \mathbb{F}_{a^m}^n$  and hence  $ho = \max_{m{x} \in \mathbb{F}_{a^m}^n} \{ \mathrm{d}_{SR,\ell}(m{x},\mathcal{C}) \} \le n-k.$  This leads to the upper bound  $\mathcal{K}_{SR,\ell}(\mathbb{F}^n_{q^m},\rho) \leq |\mathcal{C}| = q^{mk} \leq q^{m(n-\rho)}$ .

## Upper Bounds for the Sphere Covering Problem

#### Theorem

Let 
$$0 \leq \rho \leq \mu \cdot \ell$$
 then

$$\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho) \le q^{(m-\lfloor \frac{\rho}{\ell} \rfloor) \cdot (n-\rho)}.$$

#### Theore<u>m</u>

Let  $m, n, \rho$  be fixed positive integers, then for any l with  $0 \le l \le n$ and for every pair  $(n_i, \rho_i)$  fulfilling the following three conditions (i)  $0 < n_i \le n$ (ii)  $0 \le \rho_i \le n_i$ (iii)  $n_i + \rho_i \le m$ for all  $0 \le i \le l - 1$  with  $\sum_{i=0}^{l-1} n_i = n$  and  $\sum_{i=0}^{l-1} \rho_i = \rho$  it holds  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho) \le \min_{l \in \{0,...,n\}} q^{m(n-\rho) - \sum_{i=0}^{l-1} (\lfloor \frac{\rho_i}{\ell} \rfloor) \cdot (n_i - \rho_i)}$ 

TUM, Institute of Communications Engineering

## Numerical Comparison of the different Covering Boundary



Comparison of bounds on  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$  for parameters  $q=4,m=4,\eta=3,\ell=3,n=\eta\ell=9.$ 

TUM, Institute of Communications Engineering

### Numerical Comparison of the different Covering Boundary



Comparison of bounds on  $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$  for parameters  $q=16,m=16,\eta=16,\ell=14,n=\eta\ell=224.$ 

Cornelia Ott, Hedongliang Liu, Antonia Wachter-Zeh Allerton 2022, Illinois

## Conclusion



- Relation between the different metrics
  - $\operatorname{wt}_{SR,1} \leq \operatorname{wt}_{SR,\ell} \leq \operatorname{wt}_{SR,n}$  (already known)
  - $\rho_{SR,1} \le \rho_{SR,1} \le \rho_{SR,n}$
  - $\mathcal{K}_{SR,1} \leq \mathcal{K}_{SR,\ell} \leq \mathcal{K}_{SR,n}$
- Upper and lower bounds on  $\mathcal{K}_{SR,\ell}$
- $\bullet$  Open Problem: Calculate  $\mathrm{Vol}_{\mathcal{I}_\ell}$  exactly and efficiently and find an upper and a lower bound

### References



- [GY08] Maximilien Gadouleau and Zhiyuan Yan. Packing and covering properties of rank metric codes. IEEE Transactions on Information Theory, 54(9):3873–3883, 2008.
- [GY09] Maximilien Gadouleau and Zhiyuan Yan. Bounds on covering codes with the rank metric. *IEEE Communications Letters*, 13(9):691–693, 2009.
- [PRR22] Sven Puchinger, Julian Renner, and Johan Rosenkilde. Generic decoding in the sum-rank metric. IEEE Transactions on Information Theory, pages 1–1, 2022.