

A Gröbner approach to dual containing cyclic left module (θ, δ) -codes $Rg/Rf \subset R/Rf$ over finite commutative frobenius rings

Hedongliang Liu¹, Cornelia Ott² and Felix Ulmer³

Technical University of Munich¹, Ulm University², Université de Rennes 1³

August 28, 2023

Ulm Univeristy, Institute of Communications Engineering

Our setting:

- A is a finite commutative frobenius ring
- θ is a unitary endomorphism of A
- δ is a θ -derivation $\delta: A \to A$ such that, for all $a, b \in A$

$$\delta(a+b) = \delta(a) + \delta(b),$$

•
$$\delta(a \cdot b) = \delta(a) \cdot b + \theta(a) \cdot \delta(b).$$

- Exponential notation: $\theta(a) = a^{\theta}$ and $\delta(a) = a^{\delta}$
- $R = A[X; \theta, \delta] := \left\{ \sum_{i=0}^{n} a_i X^i | a_i \in A, n \in \mathbb{N} \right\}$ is a skew polynomial ring (multiplication is defined using the rule $Xa = a^{\theta}X + a^{\delta}$ which is extended using associativity and distributivity)
- $C = Rg/Rf \subset R/Rf$ is a cyclic left module (θ, δ) -code with $f, g \in R$, f monic, f = hg with $\deg(f) = n$ and $\deg(g) = n k$
- $\mathcal{C}^{\perp} = \{ m{v} \mid \langle m{v}, m{c} \rangle = 0, \ \forall m{c} \in \mathcal{C} \}$, dual containing means $\mathcal{C}^{\perp} \subset \mathcal{C}$

Consider a monic polynomial f = hg in $R = A[X; \theta, \delta]$ of degree 4 with $g = g_1 X + g_0$, $h = \sum_{i=0}^{3} h_i X^i$. The code $C = Rg/Rf \subset R/Rf$ is a $[4,3]_A$ code whose generating matrix is

$$G = \begin{pmatrix} g_0 & g_1 & 0 & 0\\ g_0^{\delta} & g_1^{\delta} + g_0^{\theta} & g_1^{\theta} & 0\\ g_0^{\delta^2} & g_0^{\delta\theta} + g_0^{\theta\delta} + g_1^{\delta^2} & g_0^{\theta^2} + g_1^{\delta\theta} + g_1^{\theta\delta} & g_1^{\theta^2} \end{pmatrix}$$

The existence of the parity check matrix as a generator matrix of C^{\perp} for our setting was already shown in

- Mhammed Boulagouaz and Abdulaziz Deajim. Characterizations and Properties of Principal (f, σ, δ) -Codes over Rings. arXiv preprint arXiv:1809.10409 (2018).
- Mhammed Boulagouaz and Abdulaziz Deajim. "Matrix-Product Codes over Commutative Rings and Constructions Arising from (σ, δ)-Codes." Journal of Mathematics 2021 (2021): 1-10.

Additional assumption we need: $\exists \hbar \in R$: $f = hg = g\hbar$. We give a proof within the setting of skew polynomial rings

Parity Check Matrix Construction

- A word $w \in R$ of degree < n is a code word of C if and only if $w \cdot \hbar = 0$ in R/Rf.
- Let M be an $n \times n$ matrix defined as

$$\boldsymbol{M} = \left(\begin{array}{ccc} \operatorname{coeffs}(\hbar) & \mod f \\ \operatorname{coeffs}(X\hbar) & \mod f \\ \vdots \\ \operatorname{coeffs}(X^{n-1}\hbar) & \mod f \end{array} \right)$$

then $C = \{ \vec{w} \in A^n \, | \, \vec{w}M = \vec{0} \}$, i.e. C = lker(M) is a left kernel of M.

Parity Check Matrix Example

$$n = 3, k = 1, f = X^3 + \sum_{i=0}^2 f_i X^i \in R, g = X^2 + g_1 X + g_0$$
 and $\hbar = \hbar_1 X + \hbar_0. w = c_0 + c_1 X + c_2 X^2 \in C.$

$$w\hbar \mod f = \left(c_2(\hbar_1^{\theta\delta} + \hbar_1^{\delta\theta} + \hbar_0^{\theta^2} - \hbar_1^{\theta^2}f_2) + c_1\hbar_1^{\theta}\right)X^2 + \left(c_2(\hbar_1^{\delta^2} + \hbar_0^{\theta\delta} + \hbar_0^{\delta\theta} - \hbar_1^{\theta^2}f_1) + c_1(\hbar_1^{\delta} + \hbar_0^{\theta}) + c_0\hbar_1\right)X + c_2(\hbar_0^{\delta^2} - \hbar_1^{\theta^2}f_0) + c_1\hbar_0^{\delta} + c_0\hbar_0$$

We obtain the condition $m{w}\in \mathcal{C} \, \Leftrightarrow \, m{w}\cdot m{M} = m{0}$ where $m{w} = (c_0,c_1,c_2)$ and

$$m{M} \;=\; \left(egin{array}{cccc} \hbar_{0} & \hbar_{1} & 0 \ \hbar_{0}^{\delta} & \hbar_{1}^{\delta} + \hbar_{0}^{ heta} & \hbar_{1}^{ heta} \ \hbar_{0}^{\delta^{2}} - \hbar_{1}^{ heta^{2}} f_{0} & \hbar_{1}^{\delta^{2}} + \hbar_{0}^{ heta\delta} + \hbar_{0}^{\delta heta} - \hbar_{1}^{ heta^{2}} f_{1} & \hbar_{1}^{ heta\delta} + \hbar_{1}^{\delta heta} + \hbar_{0}^{ heta^{2}} - \hbar_{1}^{ heta^{2}} f_{2} \end{array}
ight)$$

٠

Parity Check Matrix Example

$$n = 3, k = 1, f = X^3 + \sum_{i=0}^2 f_i X^i \in R, g = X^2 + g_1 X + g_0$$
 and $\hbar = \hbar_1 X + \hbar_0. w = c_0 + c_1 X + c_2 X^2 \in C.$

$$w\hbar \mod f = \left(c_2(\hbar_1^{\theta\delta} + \hbar_1^{\delta\theta} + \hbar_0^{\theta^2} - \hbar_1^{\theta^2}f_2) + c_1\hbar_1^{\theta}\right)X^2 + \left(c_2(\hbar_1^{\delta^2} + \hbar_0^{\theta\delta} + \hbar_0^{\delta\theta} - \hbar_1^{\theta^2}f_1) + c_1(\hbar_1^{\delta} + \hbar_0^{\theta}) + c_0\hbar_1\right)X + c_2(\hbar_0^{\delta^2} - \hbar_1^{\theta^2}f_0) + c_1\hbar_0^{\delta} + c_0\hbar_0$$

We obtain the condition $m{w}\in \mathcal{C} \, \Leftrightarrow \, m{w}\cdot m{M} = m{0}$ where $m{w} = (c_0,c_1,c_2)$ and

$$\boldsymbol{M} = \begin{pmatrix} \hbar_{0} & \hbar_{1} & 0 \\ \hbar_{0}^{\delta} & \hbar_{1}^{\delta} + \hbar_{0}^{\theta} & \hbar_{1}^{\theta} \\ \hbar_{0}^{\delta^{2}} - \hbar_{1}^{\theta^{2}} f_{0} & \hbar_{1}^{\delta^{2}} + \hbar_{0}^{\theta\delta} + \hbar_{0}^{\delta\theta} - \hbar_{1}^{\theta^{2}} f_{1} & \hbar_{1}^{\theta\delta} + \hbar_{0}^{\theta\theta} - \hbar_{1}^{\theta^{2}} f_{2} \end{pmatrix}$$

In order to find dual containing codes we have to impose that $M^{ op} \cdot M$ to be zero.

.

θ and δ as polynomial maps

- If A is a finite field 𝔽_q then θ is of the form a → a^{p^m} and δ is of the form a → βa − θ(a)β. ⇒ All entries of M become polynomials in the coefficients of ħ and q and allow sophisticated computations.
- In general θ and δ are not polynomial maps

Example

For $A = \mathbb{F}_2[v]/(v^2 + v) = \mathbb{F}_2[1, v]$ there is an automorphisms $\theta : v \mapsto v + 1$ which is not a polynomial map over A. Suppose that the automorphism θ is a polynomial map on A of the form

$$f: x \mapsto \sum_{i \in \mathbb{N}_0} (\alpha_{i,1}v + \alpha_{i,0}) x^i = \sum_{i \in \mathbb{N}_0} \alpha_{i,1}v x^i + \sum_{i \in \mathbb{N}_0} \alpha_{i,0} x^i \qquad (\alpha_{i,j} \in \mathbb{F}_2).$$

Then $\theta(0) = 0 \Rightarrow \alpha_{0,0} = 0$. Since $\alpha_{i,j} \in \{0,1\}$, f(v) is a sum of positive powers of v. Since $v^2 = v$ we get that f(v) is a sum of v, which is either v or 0 in this ring. Since $\theta(v) = v + 1$, we obtain that θ is not a polynomial map on A.

Idea

We choose the smallest unitary subring B of A such that $A = B[a_1, \ldots, a_s]$ ($s \in \mathbb{N}$) is a free algebra then

- θ and δ are polynomial maps over B
- all solutions of an equation system *E* in *A^m* correspond to the solutions of the corresponding equation system *E'* in *B^{ms}*

If a Gröbner basis algorithm exists for B, then we can compute all dual-containing cyclic left module (θ, δ) -codes $\mathcal{C} = Rg/Rf \subset R/Rf$ for the fixed parameters [n, k] by solving the system \mathcal{E}' .

Computing all Dual-Containing (θ, δ) -Codes

- Express the unknown coefficients $g_0, \ldots, g_{n-k-1}, \hbar_0, \ldots, \hbar_{k-1} \in A$ as linear combinations in a given *B*-basis $B[g_{0,1}, \ldots, g_{0,s}, \ldots, g_{n-k-1,1}, \ldots, g_{n-k-1,s}, \hbar_{0,1}, \ldots, \hbar_{0,s}, \ldots, \hbar_{k-1,1}, \ldots, \hbar_{k-1,s}]$
- Expressions in images under compositions of θ and δ of g and \hbar become polynomials
- We impose that *g* divides *g*ħ on the right by imposing that all the coefficients of the remainder to be zero.
- We also impose $C^{\perp} \subset C$ by imposing all the entries $M^{\top} \cdot M$ to be zero.
- Multivariate polynomial system with coefficients in *B* ⇒ Solve using Gröbner basis

Frobenius ring $A = \mathbb{F}_2[v]/(v^2 + v)$ of order 4. There are two automorphisms $\theta_1 = \text{Id}$ and θ_2 of order two, and two non-trivial endomorphisms θ_3 and θ_4 . Any θ -derivations δ is determined by $\delta(u)$ (note that $\delta(1) = \delta(0) = 0$)

	Auto	pm or phism	Endomorphism		
	$\theta_1 = \mathrm{Id}$	$\theta_2(v) = v + 1$	$\theta_3(v) = 0$	$\theta_4(v) = 1$	
$\delta_1 = 0$	$v \mapsto 0$	$v \mapsto 0$	$v \mapsto 0$	$v \mapsto 0$	
δ_2		$v \mapsto 1$			
δ_3		$v \mapsto v$	$v \mapsto v$		
δ_4		$v \mapsto v + 1$		$v \mapsto v + 1$	

Computational Results for $A = \mathbb{F}_2[v]/(v^2 + v)$

Table: Best Hamming, Lee and Bahoc d_H, d_L, d_B distance of dual-containing (θ, δ) -codes over $\mathbb{F}_2[v]/[v^2 + v]$.

$n \setminus k$	2	3	4	5	6	7	8	9	10	11	12
3	1, 1, 2										
4	2, 2, 4	2, 2, 2									
5		Ø	Ø								
6		2, 2, 2	2, 2, 2	2, 2, 2							
7			3, 3, 5	Ø	Ø						
8			4, 4, 7	2, 2, 4	2, 2, 2	2, 2, 2					
9				Ø	Ø	Ø	1, 1, 2				
10				2, 2, 2	2, 2, 2	Ø	Ø	2, 2, 2			
11					Ø	Ø	Ø	Ø	Ø		

We follow define the Lee weight of 0, 1, v, v + 1 respectively as 0, 2, 1, 1 and the Bachoc weight respectively as 0, 1, 2, 2.

Computational Results for $A = \mathbb{F}_2[v]/(v^2 + v)$

Table: Hamming weight enumerator of dual-containing (θ, δ) -codes over $\mathbb{F}_2[v]/[v^2+v]$.

[n,k]	Hamming Weight	Constructed with (θ, δ)
[1 2]	$1+6w^2+9w^4$	all combinations $(heta,\delta)$ provide such an example
[4,2]	$1 + 4w^2 + 4w^3 + 7w^4$	$(heta_2,\delta_2),(heta_3,\delta_3),(heta_4,\delta_4)$
[6,3]	$1+9w^2+27w^4+\dots$	all combinations (θ, δ) provide such an example
	$1+9w^2+24w^3+\ldots$	all combinations $(heta,\delta)$ provide such an example
16 /1	$1 + 17w^2 + 24w^3 + \dots$	$(heta_2,\delta_3),(heta_2,\delta_3)$
[0,4]	$1 + 2w + 11w^2 + \dots$	$(heta_3,\delta_3),(heta_4,\delta_4)$
	$1 + 13w^2 + 24w^3 + \dots$	$(heta_3,\delta_3),(heta_4,\delta_4)$
	$1 + 12w^2 + 54w^4 + \dots$	all combinations $(heta,\delta)$ provide such an example
۲0 <i>I</i> I	$1 + 28w^4 + 56w^5 + \dots$	$(heta_2,0)$
[0,4]	$1 + 4w^2 + 38w^4 + \dots$	$(\theta_2, \delta_2), (\theta_3, \delta_3), (\theta_4, \delta_4)$

Table: For the dual-containing codes C, is C^{\perp} a cyclic module code?

$n \setminus k$	2	3	4	5	6	7	8	9
3	None							
4	All	Some						
5		/	/					
6		All	Some	Some				
7			All	/	/			
8			All	Some	Some	Some		
9				/	/	/	None	
10				All	Some	/	/	All

The frobenius chain ring $A = \mathbb{F}_2[u]/(u^2)$ is a free \mathbb{F}_2 -algebra $\mathbb{F}_2[u]$ with \mathbb{F}_2 basis [1, u]. The only automorphism of A is the identity $\theta_1 : x \mapsto x$. There is a unique endomorphism defined by $\theta_2(u) = 0$ (note that $\theta_2(1) = 1$) which is a polynomial map on \mathbb{F}_2 and on A itself $\theta_2 : x \mapsto x^2$.

	Automorphism	Endomorphism
	$\theta_1 = \mathrm{Id}$	$\theta_2: u \mapsto 0$
$\delta_1 = 0$	$u \mapsto 0$	$u \mapsto 0$
δ_2	$u \mapsto 1$	
δ_3	$u \mapsto u$	$u \mapsto u$
δ_4	$u \mapsto u+1$	

Computational Results for $A = \mathbb{F}_2[u]/(u^2)$

Table: Best Hamming, Lee, and Euclidean distances of dual-containing cyclic module (θ, δ) -codes over $\mathbb{F}_2[u]/(u^2)$.

$n \setminus k$	2	3	4	5	6	7	8	9
4	2, 4, 4	2, 2, 2						
5		Ø	1, 2, 2					
6		2, 4, 4	2, 2, 2	2, 2, 2				
7			3,3,3	Ø	1, 2, 2			
8			4, 4, 4	2, 4, 4	2, 2, 2	2, 2, 2		
9				Ø	Ø	Ø	1, 2, 2	
10				2, 4, 6	2, 4, 5	Ø	Ø	2, 2, 2

We define the Lee weight of 0, 1, u, u + 1 respectively as 0, 1, 2, 1 and the Euclidean weight respectively as 0, 1, 4, 1.

Computational Results for $A = \mathbb{F}_2[u]/(u^2)$

Table: Hamming weight enumerator of dual-containing (θ, δ) -codes over $\mathbb{F}_2[u]/[u^2]$.

[n,k]	Hamming Weight	Constructed with (θ, δ)
[1 2]	$1 + 2w^2 + 8w^3 + 5w^4$	$(\mathrm{Id},0),(\mathrm{Id},\delta_2),(\mathrm{Id},\delta_3),(\theta_2,\delta_2)$
[4,2]	$1 + 6w^2 + 9w^4$	all maps
	$1+4w^2+30w^4+\dots$	$(\mathrm{Id},0),(\theta_2,\delta_2)$
	$1 + 4w^2 + 46w^4 + \dots$	$(\mathrm{Id},0)$
[8,4]	$1 + 4w^2 + 16w^3 + \dots$	$(\mathrm{Id},0)$
	$1 + 12w^2 + 54w^4 + \dots$	all maps
	$1 + 26w^4 + 64w^5 + \dots$	(Id, δ_2)
	$1 + 4w^2 + 16w^3 + 94w^4 + \dots$	$(\mathrm{Id},0),(\mathrm{Id},\delta_2)$
[8,5]	$1 + 4w^2 + 16w^3 + 110w^4 + \dots$	$(\mathrm{Id},0)$
	$1 + 12w^2 + 102w^4 + \dots$	all maps
	$1 + 16w^2 + 8w^3 + 114w^4 + \dots$	(Id, δ_2)

Consider $\mathbb{F}_4 = \mathbb{F}_2(\alpha)$ where $\alpha^2 = \alpha + 1$. The automorphism group is of order 2, generated by the frobenius automorphism $x \mapsto x^2$ which is a polynomial map on \mathbb{F}_4 and \mathbb{F}_2 .

	Automorphism			
	$\theta_1 = \mathrm{Id}$	$\theta_2(\alpha) = \alpha + 1$		
$\delta_1 = 0$	$\alpha \mapsto 0$	$\alpha \mapsto 0$		
δ_2		$\alpha \mapsto 1$		
δ_3		$\alpha \mapsto \alpha$		
δ_4		$\alpha \mapsto \alpha + 1$		

Table: The best Hamming, Lee and Euclidean d_H, d_L, d_E distance of θ_2 -Hermitian dual-containing codes $Rg/Rf \subset R/Rf$ over \mathbb{F}_4 .

$n \setminus k$	2	3	4	5	6	7	8	9
4	2, 2, 2	2, 2, 2						
5		3, 3, 3	1, 1, 1					
6		4, 4, 4	2, 2, 2	2, 2, 2				
7			3, 3, 3	Ø	1, 1, 1			
8			2, 2, 2	2, 2, 2	2, 2, 2	2, 2, 2		
9				Ø	Ø	Ø	1, 1, 1	
10				(4, 4, 4)	(3, 3, 3)	(2, 2, 2)	(2, 2, 2)	(2, 2, 2)

We define the Lee weight of $0, 1, \alpha, \alpha + 1$ respectively as 0, 2, 1, 1 and we define the Euclidean weight respectively as 0, 1, 2, 1.

Table: Weight enumerator of θ_2 -Hermitian dual-containing cyclic module (θ, δ) codes over \mathbb{F}_4 .

[n,k]	Hamming Weight Enumerator	Constructed with (θ, δ)
[/ 3]	$1 + 18w^2 + 24w^3 + 211w^4$	all maps
[4,5]	$1 + 6w + 12w^2 + 18w^3 + 27w^4$	$(heta_2,\delta_2)$
[5,4]	$1 + 9w + 30w^2 + 54w^3 + 81w^4 + 81w^5$	$(heta_2,\delta_2)$
[6 5]	$1 + 45w^2 + 120w^3 + 315w^4 + 360w^5 + 183w^6$	all maps
[0,5]	$1 + 12w + 57w^2 + 144w^3 + 243w^4 + 324w^5 + 243w^6$	$(heta_2,\delta_2)$
[7,6]	$1 + 15w + 93w^2 + 315w^3 + 675w^4 + 1053w^5 + \dots$	$(heta_2,\delta_2)$
[8 7]	$1 + 84w^2 + 336w^3 + 1470w^4 + \dots$	all maps
[0,7]	$1 + 18w + 138w^2 + 594w^3 + 1620w^4 + \dots$	$(heta_2,\delta_2)$
[9,8]	$1 + 21w + 192^2 + 1008w^3 + 3402w^4 + \dots$	$(heta_2,\delta_2)$
[10 Q]	$1 + 135w^2 + 720w^3 + 4410w^4 + 15120w^5 + \dots$	all maps
[10,9]	$1 + 24w + 255w^2 + 1584w^3 + 6426w^4 + \dots$	$(heta_2,\delta_2)$

 $A = GR(4,2) = \mathbb{Z}_4[u] = (\mathbb{Z}/4\mathbb{Z})[u]/(u^2 + u + 1)$ is a frobenius ring of order 16 and has two automorphisms:

- $\theta_1 = \mathrm{Id}$
 - The zero derivation is the only id-derivation

$$\bullet \ \theta_2(u) = 3u + 3$$

- θ_2 is isomorphic to the cyclic group C_2 of order 2
- The θ₂-derivations are all inner and all 16 possibilities exist (i.e. δ : a → βa − θ₂(a)β, ∀β ∈ A)

Table: The best Hamming distance d_H of dual-containing codes $Rg/Rf \subset R/Rf$ over GR(4, 2).

[n,k]	existing code for map $(heta_i,\delta_j)$	best d_H	Weight Distribution
[3,2]	$\begin{array}{c}(1,1),(2,2),(2,4),(2,6),(2,8),\\(2,10),(2,12),(2,14),(2,16)\end{array}$	2	$1 + 45w^2 + 210w^3$
[4, 2]	(2,1), (2,3), (2,9), (2,11)	3	$1 + 60w^3 + 195w^4$
[4, 3]	All maps	2	$1 + 90w^2 + 840w^3 + 3165w^4$
[5, 3]	Ø	/	/