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Preliminaries Notations
Our setting:

� A is a finite commutative frobenius ring
� θ is a unitary endomorphism of A
� δ is a θ-derivation δ : A→ A such that, for all a, b ∈ A

� δ(a+ b) = δ(a) + δ(b),
� δ(a · b) = δ(a) · b+ θ(a) · δ(b).

� Exponential notation: θ(a) = aθ and δ(a) = aδ

� R = A[X; θ, δ] :=
{∑n

i=0 aiX
i|ai ∈ A,n ∈ N

} is a skew polynomial ring(multiplication is defined using the ruleXa = aθX + aδ which isextended using associativity and distributivity)
� C = Rg/Rf ⊂ R/Rf is a cyclic left module (θ, δ)-code with f, g ∈ R,
f monic, f = hg with deg(f) = n and deg(g) = n− k

� C⊥ = {v | 〈v, c〉 = 0, ∀c ∈ C} , dual containing means C⊥ ⊂ C
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Preliminaries Generatormatrix Example

Consider a monic polynomial f = hg in R = A[X; θ, δ] of degree 4 with
g = g1X + g0, h =

∑3
i=0 hiX

i. The code C = Rg/Rf ⊂ R/Rf is a [4, 3]Acode whose generating matrix is

G =

 g0 g1 0 0
gδ0 gδ1 + gθ0 gθ1 0

gδ
2

0 gδθ0 + gθδ0 + gδ
2

1 gθ
2

0 + gδθ1 + gθδ1 gθ
2

1

 .
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Parity Check Matrix

The existence of the parity check matrix as a generator matrix of C⊥ for oursetting was already shown in
� Mhammed Boulagouaz and Abdulaziz Deajim. Characterizations andProperties of Principal (f, σ, δ) -Codes over Rings. arXiv preprintarXiv:1809.10409 (2018).
� Mhammed Boulagouaz and Abdulaziz Deajim. ”Matrix-Product Codesover Commutative Rings and Constructions Arising from (σ, δ)-Codes.”Journal of Mathematics 2021 (2021): 1-10.

Additional assumption we need: ∃~ ∈ R: f = hg = g~.We give a proof within the setting of skew polynomial rings
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Parity Check Matrix Construction

� A word w ∈ R of degree< n is a code word of C if and only if w · ~ = 0 in
R/Rf .

� LetM be an n× nmatrix defined as

M =


coeffs(~) mod f

coeffs(X~) mod f...
coeffs(Xn−1~) mod f


then C = {~w ∈ An | ~wM = ~0}, i.e. C = lker(M) is a left kernel ofM .
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Parity Check Matrix Example
n = 3, k = 1, f = X3 +

∑2
i=0 fiX

i ∈ R, g = X2 + g1X + g0 and
~ = ~1X + ~0. w = c0 + c1X + c2X

2 ∈ C.

w~ mod f =
(
c2(~θδ1 + ~δθ1 + ~θ

2

0 −~θ
2

1 f2) + c1~θ1
)
X2

+
(
c2(~δ

2

1 + ~θδ0 + ~δθ0 −~θ
2

1 f1) + c1(~δ1 + ~θ0) + c0~1
)
X

+ c2(~δ
2

0 −~θ
2

1 f0) + c1~δ0 + c0~0

We obtain the conditionw ∈ C ⇔ w ·M = 0 wherew = (c0, c1, c2) and

M =

 ~0 ~1 0
~δ0 ~δ1 + ~θ0 ~θ1

~δ20 −~θ
2

1 f0 ~δ21 + ~θδ0 + ~δθ0 −~θ
2

1 f1 ~θδ1 + ~δθ1 + ~θ20 −~θ
2

1 f2

 .

In order to find dual containing codes we have to impose thatM> ·M to bezero.
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θ and δ as polynomial maps
� If A is a finite field Fq then θ is of the form a 7→ ap

m and δ is of the form
a 7→ βa− θ(a)β.⇒ All entries ofM become polynomials in thecoefficients of ~ and g and allow sophisticated computations.

� In general θ and δ are not polynomial maps
Example
For A = F2[v]/(v2 + v) = F2[1, v] there is an automorphisms θ : v 7→ v + 1which is not a polynomial map over A.Suppose that the automorphism θ is a polynomial map on A of the form
f : x 7→

∑
i∈N0

(αi,1v + αi,0)x
i =

∑
i∈N0

αi,1vx
i +

∑
i∈N0

αi,0x
i (αi,j ∈ F2).

Then θ(0) = 0⇒ α0,0 = 0. Since αi,j ∈ {0, 1}, f(v) is a sum of positivepowers of v. Since v2 = v we get that f(v) is a sum of v, which is either v or 0in this ring. Since θ(v) = v + 1, we obtain that θ is not a polynomial map on
A.
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Computing all Dual-Containing (θ, δ)-Codes

Idea
We choose the smallest unitary subring B of A such that A = B[a1, . . . , as](s ∈ N) is a free algebra then

� θ and δ are polynomial maps over B
� all solutions of an equation system E in Am correspond to the solutionsof the corresponding equation system E ′ in Bms

If a Gröbner basis algorithm exists for B, then we can compute alldual-containing cyclic left module (θ, δ)-codes C = Rg/Rf ⊂ R/Rf for thefixed parameters [n, k] by solving the system E ′.
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Computing all Dual-Containing (θ, δ)-Codes

� Express the unknown coefficients g0, . . . , gn−k−1, ~0, . . . , ~k−1 ∈ A aslinear combinations in a given B-basis
B[g0,1, . . . , g0,s, . . . , gn−k−1,1, . . . , gn−k−1,s, ~0,1, . . . , ~0,s, . . . , ~k−1,1, . . . , ~k−1,s]

� Expressions in images under compositions of θ and δ of g and ~ becomepolynomials
� We impose that g divides g~ on the right by imposing that all thecoefficients of the remainder to be zero.
� We also impose C⊥ ⊂ C by imposing all the entriesM> ·M to be zero.
� Multivariate polynomial system with coefficients in B⇒ Solve usingGröbner basis

Ulm Univeristy, Institute of Communications Engineering 9



Computational Results for A = F2[v]/(v
2 + v)

Frobenius ring A = F2[v]/(v2 + v) of order 4. There are two automorphisms
θ1 = Id and θ2 of order two, and two non-trivial endomorphisms θ3 and θ4.Any θ-derivations δ is determined by δ(u) (note that δ(1) = δ(0) = 0)

Automorphism Endomorphism

θ1 = Id θ2(v) = v + 1 θ3(v) = 0 θ4(v) = 1

δ1 = 0 v 7→ 0 v 7→ 0 v 7→ 0 v 7→ 0

δ2 v 7→ 1

δ3 v 7→ v v 7→ v

δ4 v 7→ v + 1 v 7→ v + 1
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Computational Results for A = F2[v]/(v
2 + v)

Table: Best Hamming, Lee and Bahoc dH , dL, dB distance of dual-containing
(θ, δ)-codes over F2[v]/[v2 + v].

n \ k 2 3 4 5 6 7 8 9 10 11 12

3 1, 1, 2

4 2, 2, 4 2, 2, 2

5 ∅ ∅
6 2, 2, 2 2, 2, 2 2, 2, 2

7 3, 3, 5 ∅ ∅
8 4, 4, 7 2, 2, 4 2, 2, 2 2, 2, 2

9 ∅ ∅ ∅ 1, 1, 2

10 2, 2, 2 2, 2, 2 ∅ ∅ 2, 2, 2

11 ∅ ∅ ∅ ∅ ∅

We follow define the Lee weight of 0, 1, v, v + 1 respectively as 0, 2, 1, 1 andthe Bachoc weight respectively as 0, 1, 2, 2.
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Computational Results for A = F2[v]/(v
2 + v)

Table: Hamming weight enumerator of dual-containing (θ, δ)-codes over
F2[v]/[v2 + v].

[n, k] Hamming Weight Constructed with (θ, δ)

[4,2] 1 + 6w2 + 9w4 all combinations (θ, δ) provide such an example
1 + 4w2 + 4w3 + 7w4 (θ2, δ2), (θ3, δ3), (θ4, δ4)

[6,3] 1 + 9w2 + 27w4 + . . . all combinations (θ, δ) provide such an example

[6,4]
1 + 9w2 + 24w3 + . . . all combinations (θ, δ) provide such an example
1 + 17w2 + 24w3 + . . . (θ2, δ3), (θ2, δ3)
1 + 2w + 11w2 + . . . (θ3, δ3), (θ4, δ4)
1 + 13w2 + 24w3 + . . . (θ3, δ3), (θ4, δ4)

[8,4]
1 + 12w2 + 54w4 + . . . all combinations (θ, δ) provide such an example
1 + 28w4 + 56w5 + . . . (θ2, 0)
1 + 4w2 + 38w4 + . . . (θ2, δ2), (θ3, δ3), (θ4, δ4)
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Computational Results for A = F2[v]/(v
2 + v)

Table: For the dual-containing codes C , is C⊥ a cyclic module code?
n \ k 2 3 4 5 6 7 8 9
3 None
4 All Some
5 / /
6 All Some Some
7 All / /
8 All Some Some Some
9 / / / None
10 All Some / / All
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Computational Results for A = F2[u]/(u
2)

The frobenius chain ring A = F2[u]/(u2) is a free F2-algebra F2[u] with F2basis [1, u]. The only automorphism of A is the identity θ1 : x 7→ x. There is aunique endomorphism defined by θ2(u) = 0 (note that θ2(1) = 1) which is apolynomial map on F2 and on A itself θ2 : x 7→ x2. .
Automorphism Endomorphism

θ1 = Id θ2 : u 7→ 0

δ1 = 0 u 7→ 0 u 7→ 0

δ2 u 7→ 1

δ3 u 7→ u u 7→ u

δ4 u 7→ u+ 1
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Computational Results for A = F2[u]/(u
2)

Table: Best Hamming, Lee, and Euclidean distances of dual-containing cyclic module
(θ, δ)-codes over F2[u]/(u2).

n \ k 2 3 4 5 6 7 8 9

4 2, 4, 4 2, 2, 2

5 ∅ 1, 2, 2

6 2, 4, 4 2, 2, 2 2, 2, 2

7 3, 3, 3 ∅ 1, 2, 2

8 4, 4, 4 2, 4, 4 2, 2, 2 2, 2, 2

9 ∅ ∅ ∅ 1, 2, 2

10 2, 4, 6 2, 4, 5 ∅ ∅ 2, 2, 2

We define the Lee weight of 0, 1, u, u+ 1 respectively as 0, 1, 2, 1 and theEuclidean weight respectively as 0, 1, 4, 1.
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Computational Results for A = F2[u]/(u
2)

Table: Hamming weight enumerator of dual-containing (θ, δ)-codes over F2[u]/[u2].

[n, k] Hamming Weight Constructed with (θ, δ)

[4,2] 1 + 2w2 + 8w3 + 5w4 (Id, 0), (Id, δ2), (Id, δ3), (θ2, δ2)
1 + 6w2 + 9w4 all maps

[8,4]
1 + 4w2 + 30w4 + . . . (Id, 0), (θ2, δ2)
1 + 4w2 + 46w4 + . . . (Id, 0)
1 + 4w2 + 16w3 + . . . (Id, 0)
1 + 12w2 + 54w4 + . . . all maps
1 + 26w4 + 64w5 + . . . (Id, δ2)

[8,5]
1 + 4w2 + 16w3 + 94w4 + . . . (Id, 0), (Id, δ2)
1 + 4w2 + 16w3 + 110w4 + . . . (Id, 0)
1 + 12w2 + 102w4 + . . . all maps
1 + 16w2 + 8w3 + 114w4 + . . . (Id, δ2)
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Computational Results for A = F4

Consider F4 = F2(α) where α2 = α+ 1. The automorphism group is of order
2, generated by the frobenius automorphism x 7→ x2 which is a polynomialmap on F4 and F2.

Automorphism

θ1 = Id θ2(α) = α+ 1

δ1 = 0 α 7→ 0 α 7→ 0

δ2 α 7→ 1

δ3 α 7→ α

δ4 α 7→ α+ 1
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Computational Results for A = F4

Table: The best Hamming, Lee and Euclidean dH , dL, dE distance of θ2-Hermitiandual-containing codes Rg/Rf ⊂ R/Rf over F4.

n \ k 2 3 4 5 6 7 8 9

4 2, 2, 2 2, 2, 2

5 3, 3, 3 1, 1, 1

6 4, 4, 4 2, 2, 2 2, 2, 2

7 3, 3, 3 ∅ 1, 1, 1

8 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

9 ∅ ∅ ∅ 1, 1, 1

10 (4, 4, 4) (3, 3, 3) (2, 2, 2) (2, 2, 2) (2, 2, 2)

We define the Lee weight of 0, 1, α, α+ 1 respectively as 0, 2, 1, 1 and wedefine the Euclidean weight respectively as 0, 1, 2, 1.
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Table: Weight enumerator of θ2-Hermitian dual-containing cyclic module (θ, δ) codesover F4.

[n, k] Hamming Weight Enumerator Constructed with (θ, δ)

[4,3] 1 + 18w2 + 24w3 + 211w4 all maps
1 + 6w + 12w2 + 18w3 + 27w4 (θ2, δ2)

[5,4] 1 + 9w + 30w2 + 54w3 + 81w4 + 81w5 (θ2, δ2)

[6,5] 1 + 45w2 + 120w3 + 315w4 + 360w5 + 183w6 all maps
1 + 12w + 57w2 + 144w3 + 243w4 + 324w5 + 243w6 (θ2, δ2)

[7,6] 1 + 15w + 93w2 + 315w3 + 675w4 + 1053w5 + . . . (θ2, δ2)

[8,7] 1 + 84w2 + 336w3 + 1470w4 + . . . all maps
1 + 18w + 138w2 + 594w3 + 1620w4 + . . . (θ2, δ2)

[9,8] 1 + 21w + 1922 + 1008w3 + 3402w4 + . . . (θ2, δ2)

[10,9] 1 + 135w2 + 720w3 + 4410w4 + 15120w5 + . . . all maps
1 + 24w + 255w2 + 1584w3 + 6426w4 + . . . (θ2, δ2)
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Computation Results for the Galois Ring A = GR(4, 2)

A = GR(4, 2) = Z4[u] = (Z/4Z)[u]/(u2 + u+ 1) is a frobenius ring of order
16 and has two automorphisms:

� θ1 = Id
� The zero derivation is the only id-derivation

� θ2(u) = 3u+ 3
� θ2 is isomorphic to the cyclic group C2 of order 2
� The θ2-derivations are all inner and all 16 possibilities exist(i.e. δ : a 7→ βa− θ2(a)β,∀β ∈ A)
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Computation Results for the Galois Ring A = GR(4, 2)

Table: The best Hamming distance dH of dual-containing codes Rg/Rf ⊂ R/Rfover GR(4, 2).

[n, k] existing code for map (θi, δj) best dH Weight Distribution
[3,2] (1, 1), (2, 2), (2, 4), (2, 6), (2, 8), 2 1 + 45w2 + 210w3

(2, 10), (2, 12), (2, 14), (2, 16)

[4, 2] (2, 1), (2, 3), (2, 9), (2, 11) 3 1 + 60w3 + 195w4

[4, 3] All maps 2 1 + 90w2 + 840w3 + 3165w4

[5, 3] ∅ / /
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