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Preliminaries Notations

Our setting:

m Ais a finite commutative frobenius ring
® ¢ is a unitary endomorphism of A
m §isaf-derivation § : A — A suchthat, foralla,bec A
® J(a+0b)=0d(a)+d(b),
® §(a-b)=0d(a) b+ 6(a)-0(b).
= Exponential notation: #(a) = a? and §(a) = a
s R=A[X;0,6] = {3 ja;X"a; € A,n € N} is a skew polynomial ring
(multiplication is defined using the rule Xa = a? X + a°® which is
extended using associativity and distributivity)

m C=Rg/Rf C R/Rf is a cyclic left module (6, §)-code with f,g € R,
f monic, f = hg with deg(f) =n and deg(g) =n —k

m Ct ={v|(v,c) =0, Yc € C}, dual containing means C*+ c C

)
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Preliminaries Generatormatrix Example

Consider a monic polynomial f = hgin R = A[X; 6, 4] of degree 4 with
g=qX +go,h=>7° ,hi X" ThecodeC = Rg/Rf C R/Rfisa[4,3]4
code whose generating matrix is

g0 a1 0 0
G = 932 93 + 98 o ! 0
0 R+l +a o5+ +gP o
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Parity Check Matrix

The existence of the parity check matrix as a generator matrix of C* for our
setting was already shown in

® Mhammed Boulagouaz and Abdulaziz Deajim. Characterizations and
Properties of Principal (f, o, ) -Codes over Rings. arXiv preprint
arXiv:1809.10409 (2018).

® Mhammed Boulagouaz and Abdulaziz Deajim. "Matrix-Product Codes
over Commutative Rings and Constructions Arising from (o, §)-Codes.”
Journal of Mathematics 2021 (2021): 1-10.

Additional assumption we need: 3k € R: f = hg = gh.
We give a proof within the setting of skew polynomial rings
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Pa rity Check Matrix construction

m Awordw € R of degree < nis a code word of Cifand onlyifw-h=10in
R/Rf.
m | et M be ann x n matrix defined as

coeffs(h) mod f
coeffs(Xh) mod f

coeffs( X" 1h) mod f

then C = {w € A" | WM = 0}, i.e. C = lker(M) is a left kernel of M.
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Parity Check Matrix example

n=3k=1,f=X*+32 fiX'€R g=X%+g X+ goand
h=mX+hy.w=co+c1 X +cX?€C.

wh mod f = (02(71?5 0 4+ 11 ) + clhﬁ) X2
+ (02(71(182 + 1+ 1Y —h f1) + e (S + 1) + Coﬁ1) X
+ (Y 1Y fo) + e1hl + coho
We obtain the conditionw € C < w - M = 0 where w = (¢, ¢1, ¢2) and
ho Iy 0

mo- o A+ 1 A
S 4 R R 0
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Parity Check Matrix example

n=3k=1,f=X*+32 fiX'€R g=X%+g X+ goand
h=mX+hy.w=co+c1 X +cX?€C.

wh mod f = (02(71?5 0 4+ 11 ) + clhﬁ) X2
+ (cg(h‘f + 08+ B —hS 1) + e (RS + hG) + cohl) X
+ oo (RS =Y fo) + 1B + coho
We obtain the conditionw € C < w - M = 0 where w = (¢, ¢1, ¢2) and
ho hy 0
M = ) S + R hY
hy = fo RS+ R+ RP—hE B+ RSO+ B kG £

In order to find dual containing codes we have to impose that M | - M to be
zero.
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6 and ¢ as polynomial maps

= If Ais afinite field F, then @ is of the form a — @™ and 4 is of the form
a — fBa — 0(a)B. = All entries of M become polynomials in the
coefficients of & and g and allow sophisticated computations.

m |n general @ and § are not polynomial maps

Example

For A = Fa[v]/(v? + v) = Fa[1, v] there is an automorphisms 0 : v+ v + 1
which is not a polynomial map over A.
Suppose that the automorphism 6 is a polynomial map on A of the form

fixz— Z (010 + o)z Za,lvx -I—Zozwx (as5 € Fa).

1€Np 1€Np 1€Ng

Then #(0) = 0 = ago = 0. Since «i; ; € {0,1}, f(v) is a sum of positive
powers of v. Since v? = v we get that f(v) is a sum of v, which is either v or 0
in this ring. Since 6(v) = v + 1, we obtain that € is not a polynomial map on
A.
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Computing all Dual-Containing (6, §)-Codes

We choose the smallest unitary subring B of A such that A = Blay, ..., as]
(s € N) is a free algebra then
m @ and ¢ are polynomial maps over B

m all solutions of an equation system &£ in A™ correspond to the solutions
of the corresponding equation system &’ in B™*

|
If a Grobner basis algorithm exists for B, then we can compute all
dual-containing cyclic left module (6, §)-codes C = Rg/Rf C R/Rf for the
fixed parameters [n, k] by solving the system &’.
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Computing all Dual-Containing (6, §)-Codes

Express the unknown coefficients go, ..., gn—k—1, fio, - .., h—1 € A as
linear combinations in a given B-basis
B[go,h -3 90,55+ s 9n—k—1,15- -+ 9n—k—1,s5 ho,la v 7h0,87 LR hk—l,l; ) hk—l,s]

Expressions in images under compositions of § and § of g and i become
polynomials

We impose that g divides gh on the right by imposing that all the
coefficients of the remainder to be zero.

We also impose C- C C by imposing all the entries M " - M to be zero.

Multivariate polynomial system with coefficients in B = Solve using
Grébner basis
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Computational Results for A = Fy[v]/(v? + v)

Frobenius ring A = Fa[v]/(v? 4+ v) of order 4. There are two automorphisms
0, = Id and 6, of order two, and two non-trivial endomorphisms 5 and 6,.
Any f-derivations ¢ is determined by §(u) (note that §(1) = §(0) = 0)

Automorphism Endomorphism
0, =1d ‘ 92(’0)2’04-1 H 93(1})20 ‘ 94(’0):1 ‘
01=0{v—0 |v—0 v =0 vi= 0
(52 v 1
03 Vv Vv
04 vi—v+1 vi—v+1
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Computational Results for A = Fy[v]/(v? + v)

Table: Best Hamming, Lee and Bahoc dy, dy,, dp distance of dual-containing
(6, 6)-codes over Fy[v]/[v? + v].

[ n\ k| 8 9 |10[11]12]
3

4

5

6 ,2,2

7 0 0

8 2,2,412,2,21]2,2,

9 0 0 0 11,1

10 2,2,212,2,2| 0 0 1222

11 0 0 0 0 10|

We follow define the Lee weight of 0, 1, v, v + 1 respectively as 0,2,1, 1 and

the Bachoc weight respectively as 0,1, 2, 2.
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Computational Results for A = Fy[v]/(v? + v)

Table: Hamming weight enumerator of dual-containing (6, ¢)-codes over
Fo[v]/[v? + v].

| [n, k] | Hamming Weight

| Constructed with (6, 6)

|

[4,2] 1+ 6w? + 9uw? all combinations (6, §) provide such an example
' 1+ 4w? + 4w + Tw* (92, 52), (93, 53), (94, (54)
| 1631 | 1+ 9w? + 27w + ... | all combinations (¢, §) provide such an example |
1+ 9w? + 24w3 + ... | all combinations (6, §) provide such an example
1+ 17w? + 24w + ... | (02, 03), (02, 63)
[6,4] 9
1+ 2w+ 11w + ... (93,53),(94,54)
1+ 13w? + 24w + ... | (05,03), (04,64)
1+ 12w? + 54w* + ... | all combinations (6, §) provide such an example
(8,4] 1+ 28w? + 56w® + ... | (62,0)
! 1 +4w2+38w4+ (02,52),(93,53),(94,(54)
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Computational Results for A = Fy[v]/(v? + v)

Table: For the dual-containing codes C, is C* a cyclic module code?

(n\k] 2 [ 3 | 4 [ 5 | 6 | 7 [ 8 [9]
3 None

4 All Some

5 / /

6 All Some | Some

7 All / /

8 All Some | Some | Some

9 / / / None

10 All | Some | / /Al
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Computational Results for A = Fa[u]/(u?)

The frobenius chain ring A = Fa[u]/(u?) is a free Fo-algebra Fa[u] with Fo
basis [1, u]. The only automorphism of A is the identity 61 : x — z. There is a
unique endomorphism defined by 62(u) = 0 (note that 62(1) = 1) which is a
polynomial map on Fy and on A itself 6, : 2 +— 2. .

Automorphism || Endomorphism
91 =1d 92 u—0
01=0|u—0 ur—0
(52 u— 1
03 U u U U
54 u—u+1

Ulm Univeristy, Institute of Communications Engineering



Computational Results for A = Fa[u]/(u?)

Table: Best Hamming, Lee, and Euclidean distances of dual-containing cyclic module
(6,8)-codes over Fa[u]/(u?).

(n\k] 2 | 3 [ 4 | 5 [ 6 [ 7 | 8] 9 |
4 2,4,412,2,2

5 0 |1,2,2

6 2,4,412,2,212,2,2

7 3,3,3| 0 |1,2,2

8 4,4,412,4,412,2,2]2,2,2

9 0 0 0 [1,2,2

10 2,4,6 2,45 0 0 |2,2,2]

We define the Lee weight of 0, 1, u, u + 1 respectively as 0, 1,2, 1 and the
Euclidean weight respectively as 0, 1,4, 1.

Ulm Univeristy, Institute of Communications Engineering



Computational Results for A = Fa[u]/(u?)

Table: Hamming weight enumerator of dual-containing (6, §)-codes over Fa[u]/[u?].

| [n, k] | Hamming Weight | Constructed with (6, 4) |
[4 2] 1+ 2’11)2 + 8w3 + 571}4 (Id, 0), (Id, (52), (Id, (53), (02, (52)
14 6w? + 9wt all maps
1+ 4w? + 30w + ... (Id, 0), (A2, 62)
1+ 4w? + 46w* + ... (Id,0)
[8,4] | 1+ 4w? + 16w + ... (Id, 0)
1+ 12w? + 54w + . .. all maps
1+ 26w* + 64w® + ... (Id, 02)
1+ 4w? + 16w3 + 94w* + ... | (Id,0), (Id, =)
[8,5] 1+ 4w? 4+ 16w’ + 110w* + ... | (Id,0)
T+ 1202 + 102wt + .. all maps
1+ 16w? + 8w + 114w* + ... [ (Id, 62)
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Computational Results for A =y

Consider Fy = Fy(a) where a? = o + 1. The automorphism group is of order
2, generated by the frobenius automorphism z — 22 which is a polynomial

map on F4 and Fa.

Automorphism
0, =1d ‘ 92(@)=a+1

0h=0|la—0 |a—=0
(52 a1
03 a—
04 a—a+1
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Computational Results for A =y

Table: The best Hamming, Lee and Euclidean dy, dy,, dg distance of §;-Hermitian
dual-containing codes Rg/Rf C R/Rf over Fy.

in\k| 2 | 3 [ 4 ] 5 | 6 [ 7 | 8 [ 9 |
4 2,2,212,2,2

5 3,3,3]1,1,1

6 4,4,412,2,2] 2,2,2

7 3,3,3 0 1,1,1

8 2,2,2] 2,2,2 | 2,2,2 | 2,2,2

9 0 0 0 1,1,1

10 (4,4,4) | (3,3,3) | (2,2,2) | (2,2,2) | (2,2,2) |

We define the Lee weight of 0, 1, o, « + 1 respectively as 0,2, 1,1 and we
define the Euclidean weight respectively as 0, 1,2, 1.
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Table: Weight enumerator of 8;-Hermitian dual-containing cyclic module (6, §) codes

over Fy.
| [n, k] | Hamming Weight Enumerator | Constructed with (6, 6) |
4,3] 1+ 18w? + 242w3 + 2131w4 \ all maps
1+ 6w + 12w? + 18w?° + 27w (02, 92)
| [54] [ 1+ 9w+ 30w? + 54w® + 81w® + 81uw® \ (62,62) |
(6,5] 1+ 45w? + 12o2w3 + 3153w4 - 3604w5 + 1835w6 ) all maps
1+ 12w + 57w? + 144w? + 243w* + 324w + 243w (0, 62)
| [7.6] | 1+ 15w + 93w? + 315w® + 675w + 1053w’ + ... | (02, 62) |
8.7] 1+ 84w? + 336112)3 + 14703w4 + ... ) all maps
1+ 18w + 138w? + 594w + 1620w + . .. (02, 62)
| [9.8] | 1+ 21w + 1927 + 1008w® 4 3402w” + ... \ (62, 62) \
[10,9] 1+ 135w? + 7202w3 + 44103w4 + 151240w5 +... all maps
1+ 24w + 255w* + 1584w?> + 6426w* + . .. (02, 02)
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Computation Results for the Galois Ring A = GR(4, 2)

A= GR(4,2) = Zyu] = (Z/AZ)[u]/(u® + u + 1) is a frobenius ring of order
16 and has two automorphismes:
u 91 =1d
® The zero derivation is the only id-derivation
u QQ(U) =3u+3
B @, is isomorphic to the cyclic group Cs of order 2

B The 65-derivations are all inner and all 16 possibilities exist
(i.e.d:aw Ba—6x(a)B,Vp € A)
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Computation Results for the Galois Ring A = GR(4, 2)

Table: The best Hamming distance dy of dual-containing codes Rg/Rf C R/Rf

over GR(4,2).

| [n,k] | existing code for map (6;,8;) | bestdy | Weight Distribution
32 | L1:(22),24),(2,6),28), [ 1+ 45w + 210w’
211 7(2,10), (2,12), (2, 14), (2, 16)
[4,2] (2,1),(2,3),(2,9),(2,11) 3 1+ 60w? + 195w*
[4,3] All maps 2 1+ 90w? + 840w? + 3165w
[5,3] 0 / /
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