A Gröbner approach to dual containing cyclic left module (θ, δ)-codes $R g / R f \subset R / R f$ over finite

 commutative frobenius rings

Our setting:

- A is a finite commutative frobenius ring
- θ is a unitary endomorphism of A
- δ is a θ-derivation $\delta: A \rightarrow A$ such that, for all $a, b \in A$
- $\delta(a+b)=\delta(a)+\delta(b)$,
- $\delta(a \cdot b)=\delta(a) \cdot b+\theta(a) \cdot \delta(b)$.
- Exponential notation: $\theta(a)=a^{\theta}$ and $\delta(a)=a^{\delta}$
- $R=A[X ; \theta, \delta]:=\left\{\sum_{i=0}^{n} a_{i} X^{i} \mid a_{i} \in A, n \in \mathbb{N}\right\}$ is a skew polynomial ring (multiplication is defined using the rule $X a=a^{\theta} X+a^{\delta}$ which is extended using associativity and distributivity)
- $\mathcal{C}=R g / R f \subset R / R f$ is a cyclic left module (θ, δ)-code with $f, g \in R$, f monic, $f=h g$ with $\operatorname{deg}(f)=n$ and $\operatorname{deg}(g)=n-k$
- $\mathcal{C}^{\perp}=\{\boldsymbol{v} \mid\langle\boldsymbol{v}, \boldsymbol{c}\rangle=0, \forall \boldsymbol{c} \in \mathcal{C}\}$, dual containing means $\mathcal{C}^{\perp} \subset \mathcal{C}$

Consider a monic polynomial $f=h g$ in $R=A[X ; \theta, \delta]$ of degree 4 with $g=g_{1} X+g_{0}, h=\sum_{i=0}^{3} h_{i} X^{i}$. The code $\mathcal{C}=R g / R f \subset R / R f$ is a $[4,3]_{A}$ code whose generating matrix is

$$
G=\left(\begin{array}{cccc}
g_{0} & g_{1} & 0 & 0 \\
g_{0}^{\delta} & g_{1}^{\delta}+g_{0}^{\theta} & g_{1}^{\theta} & 0 \\
g_{0}^{\delta^{2}} & g_{0}^{\delta \theta}+g_{0}^{\theta \delta}+g_{1}^{\delta^{2}} & g_{0}^{\theta^{2}}+g_{1}^{\delta \theta}+g_{1}^{\theta \delta} & g_{1}^{\theta^{2}}
\end{array}\right) .
$$

Parity Check Matrix

The existence of the parity check matrix as a generator matrix of C^{\perp} for our setting was already shown in

- Mhammed Boulagouaz and Abdulaziz Deajim. Characterizations and Properties of Principal (f, σ, δ)-Codes over Rings. arXiv preprint arXiv:1809.10409 (2018).
- Mhammed Boulagouaz and Abdulaziz Deajim. "Matrix-Product Codes over Commutative Rings and Constructions Arising from (σ, δ)-Codes." Journal of Mathematics 2021 (2021): 1-10.
Additional assumption we need: $\exists \hbar \in R: f=h g=g \hbar$. We give a proof within the setting of skew polynomial rings

Parity Check Matrix construction

- A word $w \in R$ of degree $<n$ is a code word of \mathcal{C} if and only if $w \cdot \hbar=0$ in $R / R f$.
- Let M be an $n \times n$ matrix defined as

$$
\boldsymbol{M}=\left(\begin{array}{cc}
\operatorname{coeffs}(\hbar) & \bmod f \\
\operatorname{coeffs}(X \hbar) & \bmod f \\
\vdots & \\
\operatorname{coeffs}\left(X^{n-1} \hbar\right) & \bmod f
\end{array}\right)
$$

then $C=\left\{\vec{w} \in A^{n} \mid \vec{w} \boldsymbol{M}=\overrightarrow{0}\right\}$, i.e. $C=1 \operatorname{ker}(\boldsymbol{M})$ is a left kernel of \boldsymbol{M}.

Parity Check Matrix Example

$$
\begin{aligned}
& n=3, k=1, f=X^{3}+\sum_{i=0}^{2} f_{i} X^{i} \in R, g=X^{2}+g_{1} X+g_{0} \text { and } \\
& \hbar=\hbar_{1} X+\hbar_{0} . w=c_{0}+c_{1} X+c_{2} X^{2} \in \mathcal{C} .
\end{aligned}
$$

$$
\begin{aligned}
w \hbar \bmod f= & \left(c_{2}\left(\hbar_{1}^{\theta \delta}+\hbar_{1}^{\delta \theta}+\hbar_{0}^{\theta^{2}}-\hbar_{1}^{\theta^{2}} f_{2}\right)+c_{1} \hbar_{1}^{\theta}\right) X^{2} \\
& +\left(c_{2}\left(\hbar_{1}^{\delta^{2}}+\hbar_{0}^{\theta \delta}+\hbar_{0}^{\delta \theta}-\hbar_{1}^{\theta^{2}} f_{1}\right)+c_{1}\left(\hbar_{1}^{\delta}+\hbar_{0}^{\theta}\right)+c_{0} \hbar_{1}\right) X \\
& +c_{2}\left(\hbar_{0}^{\delta^{2}}-\hbar_{1}^{\theta^{2}} f_{0}\right)+c_{1} \hbar_{0}^{\delta}+c_{0} \hbar_{0}
\end{aligned}
$$

We obtain the condition $\boldsymbol{w} \in \mathcal{C} \Leftrightarrow \boldsymbol{w} \cdot \boldsymbol{M}=\mathbf{0}$ where $\boldsymbol{w}=\left(c_{0}, c_{1}, c_{2}\right)$ and

$$
\boldsymbol{M}=\left(\begin{array}{ccc}
\hbar_{0} & \hbar_{1} & 0 \\
\hbar_{0}^{\delta} & \hbar_{1}^{\delta}+\hbar_{0}^{\theta} & \hbar_{1}^{\theta} \\
\hbar_{0}^{\delta^{2}}-\hbar_{1}^{\theta^{2}} f_{0} & \hbar_{1}^{\delta^{2}}+\hbar_{0}^{\theta \delta \delta}+\hbar_{0}^{\delta \theta}-\hbar_{1}^{\theta^{2}} f_{1} & \hbar_{1}^{\theta \delta}+\hbar_{1}^{\delta \theta}+\hbar_{0}^{\theta^{2}}-\hbar_{1}^{\theta^{2}} f_{2}
\end{array}\right) .
$$

Parity Check Matrix Example

$$
\begin{aligned}
& n=3, k=1, f=X^{3}+\sum_{i=0}^{2} f_{i} X^{i} \in R, g=X^{2}+g_{1} X+g_{0} \text { and } \\
& \hbar=\hbar_{1} X+\hbar_{0} . w=c_{0}+c_{1} X+c_{2} X^{2} \in \mathcal{C} .
\end{aligned}
$$

$$
\begin{aligned}
w \hbar \bmod f= & \left(c_{2}\left(\hbar_{1}^{\theta \delta}+\hbar_{1}^{\delta \theta}+\hbar_{0}^{\theta^{2}}-\hbar_{1}^{\theta^{2}} f_{2}\right)+c_{1} \hbar_{1}^{\theta}\right) X^{2} \\
& +\left(c_{2}\left(\hbar_{1}^{\delta^{2}}+\hbar_{0}^{\theta \delta}+\hbar_{0}^{\delta \theta}-\hbar_{1}^{\theta^{2}} f_{1}\right)+c_{1}\left(\hbar_{1}^{\delta}+\hbar_{0}^{\theta}\right)+c_{0} \hbar_{1}\right) X \\
& +c_{2}\left(\hbar_{0}^{\delta^{2}}-\hbar_{1}^{\theta^{2}} f_{0}\right)+c_{1} \hbar_{0}^{\delta}+c_{0} \hbar_{0}
\end{aligned}
$$

We obtain the condition $\boldsymbol{w} \in \mathcal{C} \Leftrightarrow \boldsymbol{w} \cdot \boldsymbol{M}=\mathbf{0}$ where $\boldsymbol{w}=\left(c_{0}, c_{1}, c_{2}\right)$ and

$$
\boldsymbol{M}=\left(\begin{array}{ccc}
\hbar_{0} & \hbar_{1} & 0 \\
\hbar_{0}^{\delta} & \hbar_{1}^{\delta}+\hbar_{0}^{\theta} & \hbar_{1}^{\theta} \\
\hbar_{0}^{\delta^{2}}-\hbar_{1}^{\theta^{2}} f_{0} & \hbar_{1}^{\delta^{2}}+\hbar_{0}^{\theta \delta \delta}+\hbar_{0}^{\delta \theta}-\hbar_{1}^{\theta^{2}} f_{1} & \hbar_{1}^{\theta \delta}+\hbar_{1}^{\delta \theta}+\hbar_{0}^{\theta^{2}}-\hbar_{1}^{\theta^{2}} f_{2}
\end{array}\right) .
$$

In order to find dual containing codes we have to impose that $\boldsymbol{M}^{\top} \cdot \boldsymbol{M}$ to be zero.

- If A is a finite field \mathbb{F}_{q} then θ is of the form $a \mapsto a^{p^{m}}$ and δ is of the form $a \mapsto \beta a-\theta(a) \beta . \Rightarrow$ All entries of M become polynomials in the coefficients of \hbar and g and allow sophisticated computations.
- In general θ and δ are not polynomial maps

Example

For $A=\mathbb{F}_{2}[v] /\left(v^{2}+v\right)=\mathbb{F}_{2}[1, v]$ there is an automorphisms $\theta: v \mapsto v+1$ which is not a polynomial map over A.
Suppose that the automorphism θ is a polynomial map on A of the form

$$
f: x \mapsto \sum_{i \in \mathbb{N}_{0}}\left(\alpha_{i, 1} v+\alpha_{i, 0}\right) x^{i}=\sum_{i \in \mathbb{N}_{0}} \alpha_{i, 1} v x^{i}+\sum_{i \in \mathbb{N}_{0}} \alpha_{i, 0} x^{i} \quad\left(\alpha_{i, j} \in \mathbb{F}_{2}\right) .
$$

Then $\theta(0)=0 \Rightarrow \alpha_{0,0}=0$. Since $\alpha_{i, j} \in\{0,1\}, f(v)$ is a sum of positive powers of v. Since $v^{2}=v$ we get that $f(v)$ is a sum of v, which is either v or 0 in this ring. Since $\theta(v)=v+1$, we obtain that θ is not a polynomial map on A.

Computing all Dual-Containing (θ, δ)-Codes

Idea

We choose the smallest unitary subring B of A such that $A=B\left[a_{1}, \ldots, a_{s}\right]$
($s \in \mathbb{N}$) is a free algebra then

- θ and δ are polynomial maps over B
- all solutions of an equation system \mathcal{E} in A^{m} correspond to the solutions of the corresponding equation system \mathcal{E}^{\prime} in $B^{m s}$

If a Gröbner basis algorithm exists for B, then we can compute all dual-containing cyclic left module (θ, δ)-codes $\mathcal{C}=R g / R f \subset R / R f$ for the fixed parameters $[n, k]$ by solving the system \mathcal{E}^{\prime}.

- Express the unknown coefficients $g_{0}, \ldots, g_{n-k-1}, \hbar_{0}, \ldots, \hbar_{k-1} \in A$ as linear combinations in a given B-basis
$B\left[g_{0,1}, \ldots, g_{0, s}, \ldots, g_{n-k-1,1}, \ldots, g_{n-k-1, s}, \hbar_{0,1}, \ldots, \hbar_{0, s}, \ldots, \hbar_{k-1,1}, \ldots, \hbar_{k-1, s}\right]$
- Expressions in images under compositions of θ and δ of g and \hbar become polynomials
- We impose that g divides $g \hbar$ on the right by imposing that all the coefficients of the remainder to be zero.
- We also impose $C^{\perp} \subset C$ by imposing all the entries $\boldsymbol{M}^{\top} \cdot \boldsymbol{M}$ to be zero.
- Multivariate polynomial system with coefficients in $B \Rightarrow$ Solve using Gröbner basis

Frobenius ring $A=\mathbb{F}_{2}[v] /\left(v^{2}+v\right)$ of order 4. There are two automorphisms $\theta_{1}=\operatorname{Id}$ and θ_{2} of order two, and two non-trivial endomorphisms θ_{3} and θ_{4}. Any θ-derivations δ is determined by $\delta(u)$ (note that $\delta(1)=\delta(0)=0$)

	Automorphism		Endomorphism	
	$\theta_{1}=\mathrm{Id}$	$\theta_{2}(v)=v+1$	$\theta_{3}(v)=0$	$\theta_{4}(v)=1$
$\delta_{1}=0$	$v \mapsto 0$	$v \mapsto 0$	$v \mapsto 0$	$v \mapsto 0$
δ_{2}		$v \mapsto 1$		
δ_{3}		$v \mapsto v$	$v \mapsto v$	
δ_{4}		$v \mapsto v+1$		$v \mapsto v+1$

Computational Results for $A=\mathbb{F}_{2}[v] /\left(v^{2}+v\right)$

Table: Best Hamming, Lee and Bahoc d_{H}, d_{L}, d_{B} distance of dual-containing (θ, δ)-codes over $\mathbb{F}_{2}[v] /\left[v^{2}+v\right]$.

$n \backslash k$	2	3	4	5	6	7	8	9	10	11	12
3	1,1,2										
4	2, 2, 4	2, 2, 2									
5		\emptyset	\emptyset								
6		2, 2, 2	2, 2, 2	2,2,2							
7			3, 3, 5	\emptyset	\emptyset						
8			4,4, 7	2, 2, 4	2,2,2	2,2,2					
9				\emptyset	\emptyset	\emptyset	1,1,2				
10				2,2, 2	2,2,2	\emptyset	\emptyset	2, 2, 2			
11					\emptyset	\emptyset	\emptyset	\emptyset	\emptyset		

We follow define the Lee weight of $0,1, v, v+1$ respectively as $0,2,1,1$ and the Bachoc weight respectively as $0,1,2,2$.

Computational Results for $A=\mathbb{F}_{2}[v] /\left(v^{2}+v\right)$

Table: Hamming weight enumerator of dual-containing (θ, δ)-codes over $\mathbb{F}_{2}[v] /\left[v^{2}+v\right]$.

$[n, k]$	Hamming Weight	Constructed with (θ, δ)
[4,2]{}	$1+6 w^{2}+9 w^{4}$	all combinations (θ, δ) provide such an example
	$1+4 w^{2}+4 w^{3}+7 w^{4}$	$\left(\theta_{2}, \delta_{2}\right),\left(\theta_{3}, \delta_{3}\right),\left(\theta_{4}, \delta_{4}\right)$
$[6,3]$	$1+9 w^{2}+27 w^{4}+\ldots$	all combinations (θ, δ) provide such an example
[6,4]{}	$1+9 w^{2}+24 w^{3}+\ldots$	all combinations (θ, δ) provide such an example
	$1+17 w^{2}+24 w^{3}+\ldots$	$\left(\theta_{2}, \delta_{3}\right),\left(\theta_{2}, \delta_{3}\right)$
	$1+2 w+11 w^{2}+\ldots$	$\left(\theta_{3}, \delta_{3}\right),\left(\theta_{4}, \delta_{4}\right)$
	$1+13 w^{2}+24 w^{3}+\ldots$	$\left(\theta_{3}, \delta_{3}\right),\left(\theta_{4}, \delta_{4}\right)$
	$1+12 w^{2}+54 w^{4}+\ldots$	all combinations (θ, δ) provide such an example
	$1+4 w^{2}+36 w^{5}+\ldots$	$\left(\theta_{2}, 0\right)$
	$1+38 w^{4}+\ldots$	$\left(\theta_{2}, \delta_{2}\right),\left(\theta_{3}, \delta_{3}\right),\left(\theta_{4}, \delta_{4}\right)$

Table: For the dual-containing codes C, is C^{\perp} a cyclic module code?

$n \backslash k$	2	3	4	5	6	7	8	9			
3	None										
4	All	Some									
5		$/$	$/$								
6		All	Some	Some							
7			All	$/$	$/$						
8			All	Some	Some	Some					
9				$/$	$/$	$/$	None				
10				All	Some	$/$	$/$	All			

The frobenius chain ring $A=\mathbb{F}_{2}[u] /\left(u^{2}\right)$ is a free \mathbb{F}_{2}-algebra $\mathbb{F}_{2}[u]$ with \mathbb{F}_{2} basis $[1, u]$. The only automorphism of A is the identity $\theta_{1}: x \mapsto x$. There is a unique endomorphism defined by $\theta_{2}(u)=0$ (note that $\left.\theta_{2}(1)=1\right)$ which is a polynomial map on \mathbb{F}_{2} and on A itself $\theta_{2}: x \mapsto x^{2}$. .

	Automorphism	Endomorphism
	$\theta_{1}=\mathrm{Id}$	$\theta_{2}: u \mapsto 0$
$\delta_{1}=0$	$u \mapsto 0$	$u \mapsto 0$
δ_{2}	$u \mapsto 1$	
δ_{3}	$u \mapsto u$	$u \mapsto u$
δ_{4}	$u \mapsto u+1$	

Computational Results for $A=\mathbb{F}_{2}[u] /\left(u^{2}\right)$

Table: Best Hamming, Lee, and Euclidean distances of dual-containing cyclic module (θ, δ)-codes over $\mathbb{F}_{2}[u] /\left(u^{2}\right)$.

$n \backslash k$	2	3	4	5	6	7	8	9			
4	$2,4,4$	$2,2,2$									
5		\emptyset	$1,2,2$								
6		$2,4,4$	$2,2,2$	$2,2,2$							
7			$3,3,3$	\emptyset	$1,2,2$						
8			$4,4,4$	$2,4,4$	$2,2,2$	$2,2,2$					
9				\emptyset	\emptyset	\emptyset	$1,2,2$				
10				$2,4,6$	$2,4,5$	\emptyset	\emptyset	$2,2,2$			

We define the Lee weight of $0,1, u, u+1$ respectively as $0,1,2,1$ and the Euclidean weight respectively as $0,1,4,1$.

Computational Results for $A=\mathbb{F}_{2}[u] /\left(u^{2}\right)$

Table: Hamming weight enumerator of dual-containing (θ, δ)-codes over $\mathbb{F}_{2}[u] /\left[u^{2}\right]$.

[n, k]	Hamming Weight	Constructed with (θ, δ)
[4,2]	$1+2 w^{2}+8 w^{3}+5 w^{4}$	(Id, 0), (Id, $\left.\delta_{2}\right),\left(\mathrm{Id}, \delta_{3}\right),\left(\theta_{2}, \delta_{2}\right)$
	$1+6 w^{2}+9 w^{4}$	all maps
[8,4]	$1+4 w^{2}+30 w^{4}+\ldots$	$(\mathrm{Id}, 0),\left(\theta_{2}, \delta_{2}\right)$
	$1+4 w^{2}+46 w^{4}+\ldots$	(Id, 0)
	$1+4 w^{2}+16 w^{3}+\ldots$	(Id, 0)
	$1+12 w^{2}+54 w^{4}+\ldots$	all maps
	$1+26 w^{4}+64 w^{5}+\ldots$	$\left(\mathrm{Id}, \delta_{2}\right)$
[8,5]	$1+4 w^{2}+16 w^{3}+94 w^{4}+\ldots$	(Id, 0), (Id, δ_{2})
	$1+4 w^{2}+16 w^{3}+110 w^{4}+\ldots$	(Id, 0)
	$1+12 w^{2}+102 w^{4}+\ldots$	all maps
	$1+16 w^{2}+8 w^{3}+114 w^{4}+\ldots$	(Id, δ_{2})

Computational Results for $A=\mathbb{F}_{4}^{\prime}$

Consider $\mathbb{F}_{4}=\mathbb{F}_{2}(\alpha)$ where $\alpha^{2}=\alpha+1$. The automorphism group is of order 2 , generated by the frobenius automorphism $x \mapsto x^{2}$ which is a polynomial map on \mathbb{F}_{4} and \mathbb{F}_{2}.

	Automorphism	
	$\theta_{1}=\mathrm{Id}$	$\theta_{2}(\alpha)=\alpha+1$
$\delta_{1}=0$	$\alpha \mapsto 0$	$\alpha \mapsto 0$
δ_{2}		$\alpha \mapsto 1$
δ_{3}		$\alpha \mapsto \alpha$
δ_{4}		$\alpha \mapsto \alpha+1$

Computational Results for $A=\mathbb{F}_{4}$

Table: The best Hamming, Lee and Euclidean d_{H}, d_{L}, d_{E} distance of θ_{2}-Hermitian dual-containing codes $R g / R f \subset R / R f$ over \mathbb{F}_{4}.

$n \backslash k$	2	3	4	5	6	7	8	9
4	$2,2,2$	$2,2,2$						
5		$3,3,3$	$1,1,1$					
6		$4,4,4$	$2,2,2$	$2,2,2$				
7			$3,3,3$	\emptyset	$1,1,1$			
8			$2,2,2$	$2,2,2$	$2,2,2$	$2,2,2$		
9				\emptyset	\emptyset	\emptyset	$1,1,1$	
10				$(4,4,4)$	$(3,3,3)$	$(2,2,2)$	$(2,2,2)$	$(2,2,2)$

We define the Lee weight of $0,1, \alpha, \alpha+1$ respectively as $0,2,1,1$ and we define the Euclidean weight respectively as $0,1,2,1$.

Table: Weight enumerator of θ_{2}-Hermitian dual-containing cyclic module (θ, δ) codes over \mathbb{F}_{4}.

$[n, k]$	Hamming Weight Enumerator	Constructed with (θ, δ)
$[4,3]$	$1+18 w^{2}+24 w^{3}+211 w^{4}$ $1+6 w+12 w^{2}+18 w^{3}+27 w^{4}$	all maps
$[5,4]$	$1+9 w+30 w^{2}+54 w^{3}+81 w^{4}+81 w^{5}$	$\left(\theta_{2}, \delta_{2}\right)$
$[6,5]$	$1+45 w^{2}+120 w^{3}+315 w^{4}+360 w^{5}+183 w^{6}$ $1+12 w+57 w^{2}+144 w^{3}+243 w^{4}+324 w^{5}+243 w^{6}$	$\left(\theta_{2}, \delta_{2}\right)$
$[7,6]$	$1+15 w+93 w^{2}+315 w^{3}+675 w^{4}+1053 w^{5}+\ldots$	all maps
$[8,7]$	$1+84 w^{2}+336 w^{3}+1470 w^{4}+\ldots$ $1+18 w+138 w^{2}+594 w^{3}+1620 w^{4}+\ldots$	
$[9,8]$	$1+21 w+192^{2}+1008 w^{3}+3402 w^{4}+\ldots$	$\left(\theta_{2}, \delta_{2}\right)$
$[10,9]$	$1+135 w^{2}+720 w^{3}+4410 w^{4}+15120 w^{5}+\ldots$	all maps
$1+24 w+255 w^{2}+1584 w^{3}+6426 w^{4}+\ldots$	$\left(\theta_{2}, \delta_{2}\right)$	

$A=G R(4,2)=\mathbb{Z}_{4}[u]=(\mathbb{Z} / 4 \mathbb{Z})[u] /\left(u^{2}+u+1\right)$ is a frobenius ring of order 16 and has two automorphisms:

- $\theta_{1}=\mathrm{Id}$
- The zero derivation is the only id-derivation
- $\theta_{2}(u)=3 u+3$
- θ_{2} is isomorphic to the cyclic group C_{2} of order 2
- The θ_{2}-derivations are all inner and all 16 possibilities exist (i.e. $\delta: a \mapsto \beta a-\theta_{2}(a) \beta, \forall \beta \in A$)

Table: The best Hamming distance d_{H} of dual-containing codes $R g / R f \subset R / R f$ over $G R(4,2)$.

$[n, k]$	existing code for map $\left(\theta_{i}, \delta_{j}\right)$	best d_{H}	Weight Distribution
$[3,2]$	$(1,1),(2,2),(2,4),(2,6),(2,8)$, $(2,10),(2,12),(2,14),(2,16)$	2	$1+45 w^{2}+210 w^{3}$
$[4,2]$	$(2,1),(2,3),(2,9),(2,11)$	3	$1+60 w^{3}+195 w^{4}$
$[4,3]$	All maps	2	$1+90 w^{2}+840 w^{3}+3165 w^{4}$
$[5,3]$	\emptyset	$/$	$/$

