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Abstract—The sum-rank metric arises as an algebraic ap-
proach for coding in MIMO block-fading channels and multi-
shot network coding. Codes designed in the sum-rank metric
have raised interest in applications such as streaming codes,
robust coded distributed storage systems and post-quantum
secure cryptosystems. The sum-rank metric can be seen as a
generalization of the well-known Hamming metric and the rank
metric. As a relatively new metric, there are still many open
theoretical problems for codes in the sum-rank metric. In this
paper we investigate the geometrical properties of the balls with
sum-rank radii motivated by investigating covering properties of
codes.

Index Terms—balls with sum-rank radii, sum-rank metric
codes, geometric properties

I. INTRODUCTION

The sum-rank metric arises from the problems in com-
munication over the channels which can be modelled as
multiplicative-additive matrix channels, especially with multi-
slot usage. Before the explicit introduction of the sum-rank
metric in multi-shot network coding literature [1]–[4], the
problem was first considered in coding for MIMO block-
fading channels [5], [6] and design of AM-PSK constellations
[7]. The minimum sum-rank distance is a direct analogue to
transmit diversity gain and the maximum sum-rank distance
property is a direct analogue to rate-diversity optimality. An
explicit construction of optimal space-time codes from sum-
rank metric codes over finite field was first given in [8]. Other
than the studies for communications, sum-rank metric codes
have been considered in the applications such as network
streaming [9], distributed storage systems [10]–[12] and post-
quantum secure code-based cryptosystem [13], [14].

Motivated by the various applications, extensive research
on sum-rank metric codes has been done in recent years
in the subareas of fundamental coding-theoretical properties
[15]–[19], constructions of perfect/optimal/systematic sum-
rank metric codes [20]–[26] and decoding algorithms [27]–
[33].

In this paper we present recent results on the geometrical
properties of balls in the sum-rank metric. A ball in sum-
rank metric with center x and radius τ is the set of all
vectors having sum-rank distance at most τ to the center
x. The ball around a vector is a fundamental object for
investigating several coding-theoretical properties, e.g., the list
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decoding capacity [28], the sphere-packing bound and Gilbert-
Varshamov bound on the size of codes [15], [16].

The main contribution of this work is the characterization
of the intersection of two balls with sum-rank radii in Sec-
tion III-C, which was left as an open problem in the previous
study on the covering radius of sum-rank metric codes in [19].
We give a general expression on this quantity in Theorem 1 by
a simple counting argument and derive simpler expressions for
two special cases in Theorem 2 and Theorem 3 respectively
by using the tool of elementary linear subspaces.

The rest of the paper is organized as follows: We define the
sum-rank metric as well as spheres and balls with sum-rank
radii in Section II. After summarizing known results of the
volume of a single ball in the sum-rank metric in Section III-A
and introducing the elementary linear subspace as a tool in
Section III-B, we present recent new results on the size of the
intersection of two balls.

II. PRELIMINARIES

Let Fqm be an extension field of a finite field Fq and let
n, k, ℓ, η be positive integers. In this paper we consider linear
codes as k dimensional subspaces of Fn

qm , where each vector
x = [x1| . . . |xℓ] ∈ Fn

qm consists of ℓ blocks x1, . . . ,xℓ ∈ Fη
qm

each of length η. Therefore we have the relation n = ℓ · η.
Considering Fqm as an m-dimensional vector space over Fq ,
a vector xi ∈ Fη

qm can also be represented as a matrix Xi ∈
Fm×η
q . The rank of xi is defined as the rank of the matrix

Xi, i.e., rkq(xi) := rk(Xi). For xi ∈ Fη
qm it holds that

rkq(xi) ∈ {0, . . . , µ}, where µ := min{m, η}.

Definition 1. Let x = [x1| . . . |xℓ] ∈ Fn
qm . We define the

(ℓ-)sum-rank weight of x as

wtSR,ℓ : Fn
qm → N, x 7→

∑ℓ
i=1 rkq(xi)

and the (ℓ-)sum-rank distance between two vectors x,x′ ∈
Fn
qm as

dSR,ℓ : Fn
qm × Fn

qm → N,
(x,x′) 7→ dSR,ℓ(x,x

′) := wtSR,ℓ(x− x′).

For an arbitrary subspace V ⊂ Fn
qm the (ℓ-)sum-rank distance

of a vector x ∈ Fn
qm \ V to the subspace V is defined as the

(ℓ-)sum-rank distance of x to the closest vector in V , i.e.,

dSR,ℓ(x,V) = min
v∈V

{dSR,ℓ(x,v)}.



The (ℓ-)sum-rank distance dSR,ℓ is a metric over Fn
qm , the

so-called sum-rank metric. For ℓ = 1 it corresponds to the
rank metric and for ℓ = n to the Hamming metric. Hence we
denote throughout the paper by wtSR,1, wtSR,n, dSR,1 and
dSR,n the weight and the distance in rank metric (ℓ = 1) and
in Hamming metric (ℓ = n), respectively. For a given vector
x ∈ Fqm it holds that wtSR,1(x) ≤ wtSR,ℓ(x) ≤ wtSR,n(x).

Analog to [34] we define spheres and balls in the sum-rank
metric and give definitions for their volume.

Definition 2. Let τ ∈ Z≥0 with 0 ≤ τ ≤ ℓ · µ and x ∈ Fn
qm .

The sum-rank metric sphere with radius τ and center x is
defined as

Sℓ(x, τ) := {y ∈ Fn
qm | dSR,ℓ(x,y) = τ}.

Analogously, we define the ball of sum-rank radius τ with
center x by

Bℓ(x, τ) :=
⋃τ

i=0 Sℓ(x, i).

We also define the following cardinalities:

VolSℓ
(τ) := |Sℓ(x, τ)|,

VolBℓ
(τ) := |Bℓ(x, τ)| =

∑τ
i=0 VolSℓ

(i).

The volume of a sphere or a ball is independent of its
center, since the sum-rank metric is invariant under translation
of vectors, i.e., VolSℓ

(τ) and VolBℓ
(τ) are the volumes of

any sphere or ball of radius τ . We define the volume of the
intersection of two balls with sum-rank radii τ1, τ2 and sum-
rank distance δ between their centers as the number of vectors
lying in the intersection, i.e.,

VolIℓ
(τ1, τ2, δ)

:=|Bℓ(x1, τ1) ∩ Bℓ(x2, τ2)| , with dSR,ℓ(x1,x2) = δ .

Note that this quantity is also independent of their centers.
Obviously if δ > τ1 + τ2, VolIℓ

(τ1, τ2, δ) = 0

III. BALLS IN THE SUM-RANK METRIC

In this section we give the cardinality of the intersection
of two balls in sum-rank metric. In order to do so, we first
introduce some known facts about the volume of a single ball
in the sum-rank metric in Section III-A and about the concept
of so-called elementary linear subspaces in Section III-B. In
Section III-C we consider the intersection of two balls in
the sum-rank metric. In Theorem 1 we derive the number of
vectors lying in the intersection VolIℓ

(u, s, t) of balls of radii
u and s, such that their respective centers x1 and x2 have sum-
rank distance t to each other. Moreover we give this volume
of the intersection for two special cases in Theorem 2 and
Theorem 3 for which the computation can be done faster.

A. Volume of a Single Ball in the Sum-Rank Metric

In order to give this quantity we first introduce some
notations and summarize some known results. The number
of m×n matrices over Fq for a given rank t ≤ min{m,n} is

NMq(n,m, t) :=

[
n
t

]
q

·
∏

t−1
i=0(q

m − qi)

(see e.g., [35]), where
[
n
t

]
q

:=
∏t

i=1
qn−t+i−1

qi−1 denotes the q-

Gaussian binomial coefficient, which is defined by the number
of t-dimensional subspaces of Fn

q . Moreover we define the
following set of ordered partitions with bounded number of
bounded summands:

τt,ℓ,µ :=
{
t = [t1, . . . , tℓ] |

∑ℓ
i=1 ti = t ∧ ti ≤ µ,∀i

}
. (1)

Its cardinality corresponds to the number of possibilities how
to partition the sum-rank weight t of a vector into ℓ blocks
of at most rank µ. By common combinatorial methods, we
obtain (see also [36, Lemma 1.1])

|τt,ℓ,µ| =
∑ℓ

i=0(−1)i
(
ℓ
i

)(
t+ℓ−(µ+1)i

ℓ−1

)
≤

(
t+ℓ−1
ℓ−1

)
. (2)

If each summand has its own bound, we denote the bounds
by a vector µ = [µ1, . . . , µℓ] and define the set of ordered
partitions as

τt,ℓ,µ :=
{
t = [t1, . . . , tℓ] |

∑ℓ
i=1 ti = t ∧ ti ≤ µi,∀i

}
. (3)

Finally we give the volume of a sphere containing all
vectors in Fn

qm of sum-rank weight t, that is VolSℓ
(t) =∑

t∈τt,ℓ,µ

∏ℓ
i=1 NMq(η,m, ti). Hence the volume of a ball of

sum-rank radius t is

VolBℓ
(t) =

t∑
j=0

∑
t∈τj,ℓ,µ

ℓ∏
i=1

NMq(η,m, ti).

Note that this can be computed with complexity Õ
(
ℓ2t3 +

ℓdt(m+η) log(q)
)

using the efficient algorithm for computing
VolSℓ

in [30, Theorem 6 and Algorithm 1].

B. Elementary Linear Subspaces

The concept of elementary linear subspaces was extensively
studied in [37], [38] and [39]. In this subsection we give the
definition of an elementary linear subspace, summarize some
known results and also adapt a known result for the usage in
the sum-rank metric.

Definition 3. Denote by V := ⟨b1, . . . , bk⟩Fqm
⊂ Fn

qm a k-
dimensional subspace of Fqm spanned by the basis vectors
b1, . . . , bk. If bi ∈ Fn

q ,∀i ∈ {1, . . . , k}, then V is called
an elementary linear subspace of Fn

qm . Denote the set of all
elementary linear subspaces of of Fn

qm with dim(V) = k by
Ek(Fn

qm).

Lemma 1. [38, Lemma 1] Each vector x ∈ Fn
qm with

wtSR,1(x) = k belongs to a unique elementary linear sub-
space V ∈ Ek(Fn

qm).

The following lemma draws the connection between ele-
mentary linear subspaces of Fη

qm and the sum-rank weight of
a vector in Fn

qm .

Lemma 2. [19, Lemma 5] Let v = [v1| . . . |vℓ] ∈ Fn
qm with

vi ∈ Fη
qm ,∀i ∈ {1, . . . , ℓ} then wtSR,ℓ(v) ≤ k if and only if

there are elementary linear subspaces V1, . . . ,Vℓ of Fη
qm with

vi ∈ Vi,∀i ∈ {1, . . . , ℓ} such that
∑ℓ

i=1 dim(Vi) = k.



Lemma 3. Let x = [x1| . . . |xℓ] ∈ Fn
qm be a vector of sum-

rank weight τ with a fix sum-rank weight distribution rk(xi) =
τi for all i ∈ {1, . . . , ℓ} and

∑ℓ
i=1 τi = τ . Then there exists a

unique cartesian product of elementary linear subspaces V :=
V1 × . . .× Vn with Vi ∈ Eτi(F

η
qm) such that x ∈ V .

Proof. Follows directly by Lemma 1.

For any V ∈ Ek(Fn
qm) there is a V̄ ∈ En−k(Fn

qm) such that
V ⊕V̄ = Fn

qm . For any vector v ∈ Fn
qm we denote by v(V) the

projection of v on V along V̄ .

Lemma 4. [37, Lemma 3] Let V ∈ Ek(Fn
qm) and let u ∈ V

having rank k, then rk(u(A)) = a and rk(u(B)) = k − a for
any A ∈ Ea(Fn

qm) and B ∈ Ek−a(Fn
qm) such that A⊕B = V .

Lemma 5. [37, Lemma 4] Let V ∈ Ek(Fn
qm) and let u ∈ V

having rank k. For any A ∈ Ea(Fn
qm) and B ∈ Ek−a(Fn

qm)
such that A⊕ B = V , the functions

ϕu : Ea(Fn
qm)× Ek−a(Fn

qm) → A, (A,B) 7→ u(A)

ψu : Ea(Fn
qm)× Ek−a(Fn

qm) → B, (A,B) 7→ u(B)

are both injective.

Lemma 6. [37, Lemma 2] Let V ∈ Ek(Fn
qm) and let A ∈

Ea(V). Then there exist qa·(k−a) elementary linear subspaces
B ∈ Ek−a(V) such that A ⊕ B = V . Moreover there are

qa·(k−a) ·
[
k
a

]
q

such ordered pairs (A,B).

C. Volume of the Intersection of Two Balls in the Sum-Rank
Metric

In this section we give the number of vectors lying in the
intersection of two sum-rank metric balls. First we give a
general expression on this cardinality in Theorem 1 and then
derive the expressions for two special cases in Theorem 2 and
Theorem 3 respectively, which can be computed faster.

In [38] the number of vectors lying in the intersection of
two spheres in the rank metric of radii u and s and distance
t between their centers was derived, that is

J (u, s, t, n,m)

:=

∑n
i=0 NMq(n,m, i)Ku(i, n,m)Ks(i, n,m)Kt(i, n,m)

qmnNMq(n,m, t)
,

where Kj(i, n,m) is a q-Krawtchouk polynomial (see [40])
and defined as

Kj(i, n,m) :=

j∑
l=0

(−1)j−lqlm+(j−l
2 )

[
n− l
n− j

]
q

[
n− i
l

]
q

.

Moreover the cardinality of all vectors lying in the intersection
of two balls with rank metric radii u and s and distance t
between their centers was given in [38],

I(u, s, t, n,m) :=

u∑
i=0

s∑
j=0

J (u, s, t, n,m).

This leads to the volume of the intersection of two balls in
sum-rank metric.

Theorem 1. Let u, s, t be positive integers such that u+s ≥ t.
The number of vectors v ∈ Fn

qm lying in the intersection of
two balls with sum-rank radii u and s and sum-rank distance
t between their centers is

VolIℓ
(u, s, t) =∑

u=[u1,...,uℓ]
∈τu,ℓ,µ

∑
s=[s1,...,sℓ]
∈τs,ℓ,µ

∑
t=[t1,...,tℓ]
∈τt,ℓ,µ

ℓ∏
i=1

I(ui, si, ti, η,m).

Proof. Let Bℓ(x, u) and Bℓ(y, s) be two sum-rank metric balls
in Fn

qm with dSR,ℓ(x,y) = t. For fix partitions of their radii
u =

∑ℓ
i=1 ui and s =

∑ℓ
i=1 si and the distance between

their centers t =
∑ℓ

i=1 ti, we have that for each block i ∈
1, . . . , ℓ the number of vectors vi ∈ Fη

qm with at most rank
distance ui to xi and also dSR,1(yi,vi) ≤ si is given by
I(ui, si, ti, η,m). Hence the number of vectors v ∈ Fn

qm with
at most sum-rank distance u to x and sum-rank distance at
most s to y is given by

∏ℓ
i=1 I(ui, si, ti, η,m) for this choice

of the partitions. For an arbitrary choice of the partitions of
the radii u and s and the distance between the centers t the
claim follows.

Computing the cardinality of the intersection of two spheres
for this general case is computationally demanding. Therefore,
in the following we give the volume of the intersection of
two spheres for two special cases, which can be computed
efficiently.

Lemma 7. Let x,y ∈ Fn
qm with wtSR,1(y) = 1 and

wtSR,1(x) = r. Then there exist

(qn − qr)(qm − qr)

q − 1

such pairs of (x,y) fulfilling wtSR,1(x) + wtSR,1(y) =
wtSR,1(x− y).

Proof. Let x,y ∈ Fn
qm with wtSR,1(y) = 1 and wtSR,1(x) =

r. We denote by ⟨x⟩row the Fq-row space of X (the matrix
representation in Fm×n

q of x ∈ Fn
qm ) and by ⟨x⟩col the

Fq-column space of X . Then wtSR,1(x) + wtSR,1(y) =
wtSR,1(x − y) if and only if dim(⟨x⟩row ∩ ⟨y⟩row) =
dim(⟨x⟩col ∩ ⟨y⟩col) = {0} whereas this statement is equiva-
lent to ⟨y⟩row ̸⊂ ⟨x⟩row and ⟨y⟩col ̸⊂ ⟨x⟩col. The probability
that ⟨y⟩row ⊂ ⟨x⟩row under the condition that y has rank 1 is
given by

P (⟨y⟩row ⊂ ⟨x⟩row | wtSR,1(y) = 1) =

[
r
1

]
q[

n
1

]
q

=
qr − 1

qn − 1

and hence

P (⟨y⟩row ̸⊂ ⟨x⟩row | wtSR,1(y) = 1) = 1− qr − 1

qn − 1
.



A similar statement can be obtained for the corresponding
column space:

P (⟨y⟩col ̸⊂ ⟨x⟩col | wtSR,1(y) = 1) = 1− qr − 1

qm − 1
.

Since |{y ∈ Fn
qm | wtSR,1(y) = 1}| =

[
n
1

]
q

· (qm − 1) =

(qm−1)(qn−1)
q−1 , one gets

P (⟨y⟩row ̸⊂ ⟨x⟩row ∧ ⟨y⟩col ̸⊂ ⟨x⟩col | wtSR,1(y) = 1)

· |{y ∈ Fn
qm | wtSR,1(y) = 1}|

=
(qm − 1)(qn − 1)

q − 1
·
(
1− qr − 1

qn − 1

)
·
(
1− qr − 1

qm − 1

)
=

(qn − qr)(qm − qr)

q − 1
.

We show in the following theorems the number of the
vectors lying in the intersection of two balls with sum-rank
metric radii for two special cases. Analog statements for the
rank metric were given in [37, Proposition 4 and 5].

Theorem 2. Let x,y ∈ Fn
qm such that dSR,ℓ(x,y) = δ. Then

VolIℓ
(δ, 1, δ) =|Bℓ(x, δ) ∩ Bℓ(y, 1)|

=1 +
(qm − 1)(qn − 1)

q − 1

−
∑

δ=[δ1,...,δℓ]
∈τδ,ℓ,µ

ℓ∑
i=1

(qη − qδi) · (qm − qδi)

q − 1
.

Proof. Let x,y ∈ Fn
qm such that dSR,ℓ(x,y) = δ. Since the

sum-rank metric is invariant under the translation of vectors
we assume w.l.o.g. that y = 0 and wtSR,ℓ(x) = δ. The set
of vectors lying in the intersection Bℓ(x, δ)∩Bℓ(y, 1) consist
of the zero vector as well as all vectors v ∈ Fn

qm lying on
the sphere Sℓ(y, 1) without those having sum-rank distance at
least δ + 1 from x. However since

dSR,ℓ(v,x) ≤ wtSR,ℓ(x) + wtSR,ℓ(v) = δ + 1

we only need to subtract the number of vectors having exactly
sum-rank distance δ + 1 to x. Therefore

|Bℓ(x, δ) ∩ Bℓ(y, 1)| = |{0}|+
|{v ∈ Sℓ(y, 1)}| − |{v ∈ Sℓ(y, 1) | dSR,ℓ(v,x) = δ + 1}|.

Since the sum-rank weight of a vector is 1 if and only if its
rank weight is 1, the cardinality

|{v ∈ Sℓ(y, 1)}| = |{v ∈ Fn
qm | wtSR,1(v) = 1}|

=
(qm − 1)(qn − 1)

q − 1
.

Now in order to compute

{v ∈ Sℓ(y, 1)} \ {v ∈ Sℓ(y, 1) | dSR,ℓ(v,x) = δ + 1}

we consider a fixed sum-rank weight decomposition of x =
[x1| . . . |xℓ] such that rk(xi) = δi for all i ∈ {1, . . . , ℓ} and

∑ℓ
i=1 δi = δ. Now let v ∈ Fn

qm be a non-zero vector with
wtSR,ℓ(v) = 1, i.e., there is exactly on i ∈ {1, . . . , ℓ} such
that rk(vi) = 1 and rk(vj) = 0 for all j ∈ {1, . . . , i− 1, i+
1, . . . , n}. Therefore for a fix non-zero block vi it holds, that
dSR,ℓ(v,x) = δ+1 if and only if dSR,1(vi,xi) = δi+1. Now
we want to find the number of vectors vi ∈ Fη

qm having rank
distance δi+1 to the vector xi, which has rank δi. By lemma 7
there are (qη−qδi )·(qm−qδi )

q−1 such vectors. We have this amount
of vectors for each possible non-zero block i ∈ {1, . . . , ℓ},
so in total there are

∑ℓ
i=1

(qη−qδi )·(qm−qδi )
q−1 such vector v in

the intersection for a fix partition of δ and hence the claim
follows.

Theorem 3. Let x,y ∈ Fn
qm such that dSR,ℓ(x,y) = δ then

VolIℓ
(γ, δ − γ, δ) = |Bℓ(x, γ) ∩ Bℓ(y, δ − γ)|

=
∑

δ=[δ1,...,δℓ]
∈τδ,ℓ,µ

∑
γ=[γ1,...,γℓ]
∈τγ,ℓ,δ

ℓ∑
i=1

qγi·(δi−γi) ·
[
δi
γi

]
q

for 0 ≤ γ ≤ δ.

Proof. Let x,y ∈ Fn
qm such that dSR,ℓ(x,y) = δ. Because of

the translational symmetry of the sum-rank metric we again
assume w.l.o.g. that x = 0 and wtSR,ℓ(y) = δ. Let’s fix a
partition of wtSR,ℓ(y) = δ =

∑ℓ
i=1 δi, then from Lemma 3 it

follows that there is a unique cartesian product of elementary
linear subspaces V := V1× . . .×Vn with Vi ∈ Eδi(F

η
qm) such

that y ∈ V . We also fix a partition of γ =
∑ℓ

i=1 γi.
We first prove that all vectors v ∈ Bℓ(0, γ) ∩ Bℓ(y, δ − γ)

are lying in V = V1 × . . .× Vn. Let vi = vVi
i + vWi

i , where
Wi ∈ Eη−δi(F

η
qm) such that Vi ⊕ Wi = Fη

qm for each block
i ∈ {1, . . . , ℓ} and W := W1 × . . . × Wℓ. Now for all v ∈
Bℓ(0, γ) ∩ Bℓ(y, δ − γ) we have that

wtSR,ℓ(v
V) ≤ wtSR,ℓ(v) ≤ γ, (4)

since v ∈ Bℓ(0, γ) and v ∈ Bℓ(y, δ − γ), we have

wtSR,ℓ((y − v)V) ≤ wtSR,ℓ(y − v) ≤ δ − γ . (5)

Since vV +(y−v)V = (v+(y−v))V = y(V) = y, we have

δ = wtSR,ℓ(y) = wtSR,ℓ(v
V + (y − v)V)

≤ wtSR,ℓ(v
V) + wtSR,ℓ((y − v)V)

≤ γ + δ − γ = δ .

Then together with the inequalities in (4) and (5), we have
that

wtSR,ℓ(v
V) =wtSR,ℓ(v) = γ (6)

wtSR,ℓ((y − v)V) =wtSR,ℓ(y − v) = δ − γ. (7)

Now (6) leads to

γ =

ℓ∑
i=1

rkq(v
V
i ) =

ℓ∑
i=1

rkq(vi) =

ℓ∑
i=1

rkq(v
V
i + vW

i ) . (8)

Since vV
i and vW

i must be linearly independent (because
Vi ⊕Wi = Fη

qm ) it follows that rkq(vV
i ) ≤ rkq(v

V
i + vW

i ) =



rkq(vi) for all i ∈ {1, . . . , ℓ}. Together with equation (8) it
implies that

rkq(v
V
i ) = rkq(vi) , ∀i ∈ {1, . . . , ℓ} . (9)

Analogously we get from equation (7) that

rkq((yi − vi)
V) = rkq(yi − vi) , ∀i ∈ {1, . . . , ℓ} . (10)

Moreover ⟨v(V)⟩Fqm
∩ ⟨(y − v)(V)⟩Fqm

= {0}. In particular

⟨v(Vi)
i ⟩Fqm

∩ ⟨(yi − vi)
(Vi)⟩Fqm

= {0} , ∀i ∈ {1, . . . , ℓ} .
(11)

Equation (9) implies that

⟨v(Wi)
i ⟩Fqm

⊂ ⟨v(Vi)
i ⟩Fqm

,∀i ∈ {1, . . . , ℓ} (12)

and similarly it follows with equation (10) that

⟨(yi − vi)
(Wi)⟩Fqm

⊂ ⟨(yi − vi)
(Vi)⟩Fqm

, ∀i ∈ {1, . . . , ℓ} .
(13)

Now with the relations (11), (12) and (13) we obtain

⟨v(Wi)
i ⟩Fqm

∩ ⟨(yi − vi)
(Wi)⟩Fqm

= {0} , ∀i ∈ {1, . . . , ℓ} .
(14)

Together with y
(Wi)
i +(vi−yi)

(Wi) = 0 for all i ∈ {1, . . . , ℓ}
one gets v

(Wi)
i = (yi − vi)

(Wi) = 0 and hence vi ∈ Vi for
all i ∈ {1, . . . , ℓ} which implies that v ∈ V .

In the second part of this proof we show that vi is
necessarily a projection of yi onto some elementary linear
subspace Ai of Vi for all i ∈ {1, . . . , ℓ}. If vi ∈ Vi fulfills that
rkq(vi) = γi and rkq(yi−vi) = δi−γi for all i ∈ {1, . . . , ℓ}
then each vi belongs to some elementary linear subspace Ai

of Vi and each yi − vi belongs to some elementary linear
subspace Bi of Vi such that Ai⊕Bi = Vi for all i ∈ {1, . . . , ℓ}.
Hence vi = y

(A)
i and yi − vi = y

(B)
i for all i ∈ {1, . . . , ℓ}.

Conversely for any Ai ∈ Eγi
(Fη

qm) and any Bi ∈ Eδi−γi
(Fη

qm)

such that Ai⊕Bi = Vi, the vector y(A)
i has rank weight γi and

rank distance δi − γi from yi by Lemma 4. From Lemma 5
it follows that all these vectors y

(A)
i are distinct. Hence for

each block we have as many vectors yi as ordered pairs (A,B)
for a fix partition of δ and γ. It follows from Lemma 6 that

there are qγi·(δi−γi)·
[
δi
γi

]
q

such ordered pairs. And hence there

are
∑ℓ

i=1 q
γi·(δi−γi) ·

[
δi
γi

]
q

vectors v = [v1| . . . |vn] such that

every block vi is projection of yi onto some elementary linear
subspace Ai of Vi for a fix partition of δ and γ. Finally we
get

|Bℓ(x, γ) ∩ Bℓ(y, δ − γ)|

=
∑

δ=[δ1,...,δℓ]
∈τδ,ℓ,µ

∑
γ=[γ1,...,γℓ]
∈τγ,ℓ,δ

ℓ∑
i=1

qγi·(δi−γi) ·
[
δi
γi

]
q

,

where τδ,ℓ,µ and τγ,ℓ,δ are defined as in (1) and (3), respec-
tively.

IV. CONCLUSION AND FUTURE WORK

Motivated by an open problem from a previous work [19]
on covering properties of sum-rank metric codes, we derived
the volume of the intersection of two balls of sum-rank radii
u and s having sum-rank distance t between their respective
centers. Furthermore we considered two special cases where
this volume can be computed efficiently and we derived closed
expressions for the volume of the intersection of two balls in
these cases. Finding upper and lower bounds on the volume
of the intersection of two sum-rank metric balls that can
be computed fast would also be interesting and helpful for
considering covering properties of sum-rank metric codes.
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[12] U. Martı́nez-Peñas and D. Napp, “Locally repairable convolutional codes
with sliding window repair,” IEEE Transactions on Information Theory,
vol. 66, no. 8, pp. 4935–4947, 2020.

[13] G. D’Alconzo, “Code Equivalence in the Sum-Rank Metric: Hardness
and Completeness,” Cryptology ePrint Archive, 2022.

[14] “security considerations for mceliece-like cryptosystems based on lin-
earized reed-solomon codes in the sum-rank metric.”

[15] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani, “Fundamental Prop-
erties of Sum-Rank-Metric Codes,” IEEE Transactions on Information
Theory, vol. 67, no. 10, pp. 6456–6475, 2021.

[16] C. Ott, S. Puchinger, and M. Bossert, “Bounds and genericity of sum-
rank-metric codes,” in 2021 XVII International Symposium” Problems
of Redundancy in Information and Control Systems”(REDUNDANCY).
IEEE, 2021, pp. 119–124.
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