
 173

Chapter VIII
Enabling Adaptive

Process-Aware Information
Systems with ADEPT2

Manfred Reichert
University of Ulm, Germany

Peter Dadam
University of Ulm, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

In dynamic environments it must be possible to quickly implement new busi ness processes, to enable
ad-hoc deviations from the defined business processes on-demand (e.g., by dynamically adding, delet-
ing or moving process activities), and to support dynamic pro cess evolution (i.e., to propagate process
schema chan ges to already running process instances). These fundamental requirements must be met
without affecting process consistency and robustness of the process-aware information system. In this
chapter the authors describe how these challenges have been addressed in the ADEPT2 process manage-
ment system. Their overall vision is to provide a next generation technology for the support of dynamic
processes, which enables full process lifecycle management and which can be applied to a variety of
application domains.

INtrODUctION

In today’s dynamic business world the economic
success of an enterprise increasingly depends on
its ability to quickly and flexibly react to changes
in its environment. Generally, the reasons for such
changes can be manifold. As examples consider the
introduction of new regulations, the availability

of new medi cal tests, or changes in customers’
attitudes. Companies and organizations therefore
have recognized business agility as prerequisite
for being able to cope with changes and to deal
with emerging trends like business-on-demand,
high product and service variability, and faster
time-to-market (Weber, Rinderle, & Reichert,
2007).

174

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Process-aware information systems (PAISs)
offer promising perspectives in this respect, and a
growing interest in aligning information systems
in a process-oriented way can be observed (Weske,
2007). As opposed to data- or function-centered
information systems, PAISs separate process logic
and application code. Most PAISs describe process
logic explicitly in terms of a process template pro-
viding the schema for handling respective business
cases. Usually, the core of the process layer is built
by a process management system which provides
generic functions for modeling, configuring, ex-
ecuting, and monitoring business processes. This
separation of concerns increases maintainability
and reduces cost of change (Mutschler, Weber, &
Reichert, 2008a). Changes to one layer often can
be performed without affecting other layers; e.g.,
changing the execution order of process activities
or adding new activities to a process template
can, to a large degree, be accomplished without
touching the application services linked to the
different process activities (Dadam, Reichert,
& Kuhn, 2000). Usually, the process logic is ex-
pressed in terms of executable process models,
which can be checked for the absence of errors
already at buildtime (e.g., to exclude deadlocks
or incomplete data flow specifications). Examples
for PAIS-enabling technologies include workflow
management systems (van der Aalst & van Hee,
2002) and case handling tools (van der Aalst,
Weske, & Grünbauer, 2005; Weske, 2007).

The ability to effectively deal with process
change has been identified as one of the most
fundamental success factors for PAISs (Reich-
ert & Dadam, 1997; Müller, Greiner, & Rahm,
2004; Pesic, Schonen berg, Sidorova, & van der
Aalst, 2007). In domains like healthcare (Lenz
& Reichert, 2007; Dadam et al., 2000) or au-
tomotive engineering (Mutschler, Bumiller, &
Reichert, 2006; Müller, Herbst, Hammori, &
Reichert, 2006), for example, any PAIS would
not be accepted by users if rigidity came with it.
Through the described separation of concerns
PAISs facilitate changes. However, enterprises

running PAISs are still reluctant to adapt process
implementations once they are running properly
(Reijers & van der Aalst, 2005; Mutschler, Re-
ichert, & Bumiller, 2008b). High complexity and
high cost of change are mentioned as major reasons
for not fully leveraging the potential of PAISs.
To overcome this unsatisfactory situation more
flexible PAISs are needed enabling companies to
capture real-world processes adequately without
leading to mismatches between computerized
business processes and those running in reality
(Lenz & Reichert, 2007; Reichert, Hensinger,
& Dadam, 1998b). Instead, users must be able to
deviate from the predefined processes if required
and to evolve PAIS implementations over time.
Such changes must be possible at a high level of
abstraction and without affecting consistency and
robustness of the PAIS.

Changes can take place at both the process type
and the process instance level. Changes of single
process instances, for example, become necessary
to deal with excep tional situ ations (Reichert &
Dadam, 1998a; Minor, Schmalen, Koldehoff, &
Bergmann, 2007). Thus they often have to be
accom plished in an ad-hoc manner. Such ad-hoc
changes must not affect PAIS robust ness or lead
to errors; i.e., none of the exe cution guarantees
en sured by formal checks at buildtime must be
violated due to dynamic process chan ges. Process
type changes, in turn, are continuously applied
to adapt the PAIS to evolving business processes
(Casati, Ceri, Pernici, & Pozzi, 1998; Rinderle,
Reichert, & Dadam, 2004b; Pesic et al., 2007).
Regarding long-running processes, evolving
process schemes also require the migration of
already running process instances to the new
schema version. Im portant challenges emerging
in this context are to perform instance migrations
on-the-fly, to guarantee compliance of migrated
instances with the new schema version, and to
avoid performance penalties (Rinderle, Reichert,
& Dadam, 2004a).

Off-the-shelf process management systems
like Staffware, WebSphere Process Server and

 175

Enabling Adaptive Process-Aware Information Systems with ADEPT2

FLOWer do not support dynamic structural pro-
cess changes or offer restricted change features
only (Weber et al., 2007). Several vendors promise
flexible process support, but are unable to cope
with fundamental issues related to process change
(e.g., correctness). Most systems completely lack
support for ad-hoc changes or for migrating
process instances to a changed process schema.
Thus, application developers are forced to real-
ize workarounds and to extend applications with
respective process support functions to cope
with these limitations. This, in turn, aggravates
PAIS development and PAIS maintenance sig-
nificantly.

In the ADEPT2 project we have designed and
implemented a process management system which
allows for both kinds of structural changes in a
flexible and reliable manner (Reichert, Rinderle,
Kreher, & Dadam, 2005). The design of such a
process management technology constitutes a
big challenge. First, many trade-offs exist which
have to be dealt with. For example, complexity
of dynamic process changes increases, the higher
expres siveness of the used process modeling
formalism becomes. Second, complex inter-
dependencies between the different features of
such a technology exist that must be carefully
understood in order to avoid implementation gaps.
Process schema evolution, for example, requires
high-level change operations, schema versioning
support, change logging, on-the-fly migration of
running process instances, and dynamic worklist
adaptations (Weber et al., 2007). Thus the inte-
grated treatment of these different system features
becomes crucial. Third, even if the conceptual pil-
lars of adaptive process management technology
are well understood, it still will be a quantum leap
to implement respective features in an efficient,
robust and integrated manner.

This chapter gives insights into the ADEPT2
process management system, which is one of
the few systems that provide integrated support
for dynamic structural process changes at dif-
ferent levels. Using this next generation process

management technology, new processes can be
composed in a plug & play like fashion and be flex-
ibly executed during run-time. ADEPT2 enables
support for a broad spectrum of processes ranging
from simple document-centred processes (Karbe
& Ramsperger, 1991) to complex processes that
integrate distri bu ted application services (Khalaf,
Keller, & Leymann, 2006). We illustrate how
ad-hoc changes of single process instances as
well as process schema changes with (optional)
propa gation of the changes to running process
instances can be supported in an integrated and
easy-to-use way.

The remainder of this chapter is structured as
follows: We first give background information
needed for the understanding of the chapter. Then
we show how business processes can be mod-
eled and enacted in ADEPT2. Based on this we
introduce the ADEPT2 process change framework
and its components. Following these conceptual
considerations we sketch the architecture of the
ADEPT2 system and give insights into its design
principles. We conclude with a summary and
outlook on future work.

bAcKGrOUNDs AND bAsIc
NOtIONs

When implementing a new process in a PAIS its
logic has to be explicitly defined based on the
modeling constructs provided by a process meta
model. More precisely, for each business process
to be supported, a process type represented by
a process schema is defined. For one particular
process type several process schemes may exist
representing the different versions and the evolu-
tion of this type over time.

Figure 1 shows a simple example of a process
schema (in ADEPT2 notation). It com prises
seven activities which are connected through
control edges. Generally, control edges specify
precedence relations between activities. For
example, activity order medical examination is

176

Enabling Adaptive Process-Aware Information Systems with ADEPT2

followed by activity make appoint ment, whereas
activities prepare patient and inform patient can
be executed in parallel. Furthermore, the process
schema contains a loop structure, which allows
for the repetitive execution of the depicted process
fragment. Finally, data flow is mo de led by link-
ing activities with data elements. Respective data
links either represent a read or a write access of
an activity to a data element. In our example, for
in stance, activity perform examination reads data
element patientId, which is written by activity
order medical examination before.

Based on a process schema new process
instances can be created and exe cu ted. Each of
these process instances logically corresponds to a
different business case. The PAIS orchestrates the
process instances according to the lo gic defined
by their process schema. Generally, a large num-
ber of process instances, being in different states,
may run on a particular process schema.

To deal with evolving processes, exceptions
and uncertainty, PAISs must be flexible. This can
be achieved either through structural process
changes (Reichert & Dadam 1998a; Rinderle et

al., 2004a) or by allowing for loose ly specified
process models (Sadiq, Sadiq, & Orlowska, 2001;
Adams, ter Hofstede, Edmond, & van der Aalst,
2006). In the following we focus on structural
schema adaptations and show how they can be
accomplished in a PAIS during runtime. Loose ly
specified process models, in turn, enable flexibility
by leaving parts of the process model unspeci-
fied at build-time and by allowing end users to
add the missing information during run-time.
This approach is especially useful in case of
uncertainty as it allows for deferring decisions
from build- to run-time, when more information
becomes available. For example, when treating a
cruciate rupture for a patient we might not know
in advance which treatment will be exactly per-
formed in which execution order. Therefore, this
part of the process remains unspecified during
build-time and the physician decides on the exact
treatment at run-time. For additional information
we refer to the approaches followed by Pockets
of Flexibility (Sadiq et al., 2001) and Worklets
(Adams et al., 2006).

Figure 1. Example of a process schema (in ADEPT2 notation)

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientId

report

data element

AND join

data flow control flow

yes

no

role = doctor

role = radiologist

Actor =
Actor("peform examination")

stArtLOOP

AND split

ENDLOOP

write data edge

read data edge

loop backward edge
(Et =LOOP_E)

normal control edge
(Et =cONtrOL_E)

 177

Enabling Adaptive Process-Aware Information Systems with ADEPT2

In general, structural adaptations of a process
schema can be triggered and performed at two
levels, the process type and the process instance
level.

Process schema changes at the type level (in
the following denoted as process schema evolu-
tion) become necessary to deal with the evolving
nature of real-world processes (Rinderle et al.,
2004b); e.g., to adapt the process schema to legal
changes or to a redesigned business process. In
PAISs process schema evo lution often requires
the dynamic propa ga tion of the corresponding
changes to related process in stances, particularly
if these instances are long-running. For example,
assume that in a patient treatment process, due
to a new legal require ment, patients have to be
educated about potential risks of a surgery before
this in ter ven tion takes place. Let us further as-
sume that this change is also relevant for patients
for which the treatment has al rea dy been started.
In such a scenario, stopping all on go ing treat-
ments, aborting them and re-starting the treat-
ments is not a viable option. As a large num ber
of treatment processes might be running at the
same time, applying this change manually to all
ongoing treat ment processes is also not a feasible
option. In stead system support is required to add
this additional activity to all patient treatments
for which this is still feasible; i.e., for which the
surgery has not yet started.

Ad-hoc changes of single process instances,
in turn, are usually required to deal with excep-
tions or unanticipated situations, resulting in an
instance-specific process schema afterwards
(Reichert & Dadam, 1997). In particular, such
ad-hoc changes must not affect other process
instances. In a medical treatment process, for
example, the current medication of a particular
patient might have to be discontinued due to an
allergic reaction of this patient.

PrOcEss MODELING AND
ENActMENt IN ADEPt2

When designing an adaptive process management
system several trade-offs exist which have to be
carefully considered. On the one hand, as known
from discussions about workflow patterns (van
der Aalst, ter Hofstede, Kiepuszewski, & Barros,
2003), high expressiveness of the used process
meta model allows to cover a broad spectrum
of processes. On the other hand, with increasing
expres siveness of the used process meta model,
dynamic process changes become more difficult to
handle for users (Reichert, 2000). When designing
ADEPT2 we kept this trade-off in mind and we
found an adequate balance between expressive-
ness and runtime flexibility. Though ADEPT2
uses a block-structured modeling approach, it
enables a sufficient degree of expressiveness due
to several modeling extensions and relax ations; for
a detailed discussion we refer to (Reichert, 2000)
and (Reichert, Dadam, & Bauer, 2003a).

Process Modeling in ADEPt2

The ADEPT2 process meta model allows for the
integrated modeling of different process aspects
including process activities, control and data flow,
actor assignments, organizational, semantical,
and temporal constraints, and resources. Here we
focus on the basic concepts available for modeling
control and data flow, and we sketch how new
processes can be composed in a plug & play like
fashion. We refer to reading material covering
other aspects at the end of this section.

Basic Concepts for Control Flow
Modeling

In ADEPT2 the control flow of a process schema
is represented as attributed graph with disting-
uish able node and edge types (Reichert et al.,
2003a). This allows for efficient cor rect ness

178

Enabling Adaptive Process-Aware Information Systems with ADEPT2

checks and eases the handling of loop backs.
Formally, a control flow schema corresponds to
a tuple (N,E, ...) with node set N and edge set
E. Each control edge e ∈ E has one of the edge
types CONTROL _ E, SYNC _ E, or LOOP _ E:
CONTROL _ E expresses a normal precedence
relation, whereas SYNC _ E allows to express
a wait-for relation between activities of parallel
branches. The latter concept is similar to links
as used in WS-BPEL. Regarding Figure 2, for
example, a necessary pre-condition for enabling
activity H is that activity E either is completed
or skipped before (see below). Finally, LOOP _ E
represents a loop backward edge.

Similarly, each node n ∈ N has one of the
node types STARTFLOW, END FLOW, ACTIV-
ITY, STARTLOOP, ENDLOOP, AND-/XOR-Split,
and AND-/XOR-Join. Based on these elements,
we can model sequences, parallel branchings,
conditional branchings, and loop backs. ADEPT2
adopts concepts from block-structured pro cess
description languages, but enriches them by ad-
ditional control structures in order to increase
expressiveness. More precisely, branchings as

well as loops have exactly one entry and one
exit node. Fur thermore, control blocks may be
nested, but are not allowed to overlap (cf. Figure
2). As this limits expressive power, in addition,
the aforementioned synchronization edges can
be used for process modeling (see Reichert &
Dadam, 1998a; Reichert, 2000).

We have selected this relaxed block structure
because it is quickly understood by users, allows
to provide user-friendly, syntax-driven process
modeling tools (see below), enables the realiza-
tion of high-level change patterns guaranteeing
soundness, and makes it possible to implement
efficient algorithms for process analysis. Note
that we provide relaxations (e.g., synchronization
edges and backward failure edges) and extensions
(e.g., temporal constraints, actor assignments),
respectively, which allow for sufficient expres-
siveness to cover a broad spectrum of processes
from different domains. We already applied the
ADEPT1 technology in domains like healthcare,
logistics, and e-commerce, and the feedback we
received was very positive (Müller et al., 2004;
Bassil, Keller, & Kropf, 2004; Bassil, Benyoucef,

Figure 2. Block-structuring of ADEPT2 process models

Loop

A b

c

D

f
E

G H

I J

Sequence

Parallel Branching

Conditional branching

Sequence

Synchronization

STARTFLOW

ENDFLOW

PROCESS

XOR-
split

XOR-
join

AND-
join

AND-
split

 179

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Keller, R., & Kropf, 2002; Golani & Gal, 2006).
In particular, the expressiveness of our meta
model was considered as being sufficient in most
cases. We are currently applying ADEPT2 in
other domains like construction engineering and
disaster management, and we can make similar
observations here.

Basic Concepts for Data Flow Modeling

Data exchange between activities is realized
through writing and reading (global) process vari-
ables (denoted as data elements in the following).
In this context, ADEPT2 considers both basic and
complex data types. In addition, user-defined types
are supported. Data elements are connected with
input and output parameters of process activities.
Each input parameter of a particular activity is
mapped to exactly one data element by a read
data edge and each activity output parameter is
connected to a data element by a write data edge.
An example is depicted in Figure 1. Activity
order medical examination writes data element
patientID which is then read by the subsequent
activity per form ex a mination.

The total collection of data elements and data
edges con stitutes the data flow schema. For its
modeling, a number of constraints must be met.
The most im por tant one ensures that all data
elements mandatorily read by an activity X must
have been written before X becomes enabled; in
particular, this has to be ensured independently
from the execution path leading to activation of X
(Reichert, 2000). Note that this property is crucial
for the proper invocation of activity programs
without missing input data.

Process Composition by Plug & Play of
Application Components

Based on the described modeling concepts a new
process can be realized by creating a process
template (i.e., process schema). Among other

things such a template describes the control flow
for the process activities as well as the data flow
between them. It either has to be defined from
scratch or an existing template is chosen from
the process template repository and adapted as
needed (“process cloning”).

Afterwards application components (e.g., web
services or Java components) have to be assigned
to the process activities. Using the ADEPT2 pro-
cess editor these components can be selected from
the component repository and be inserted into
the process template by drag & drop. Following
this, ADEPT2 analyzes whether the application
functions can be connected in the desired order;
e.g., we check whether the input parameters of
application functions can be correctly supplied
for all possible execution paths imposed by the
process schema. Only those process templates
passing all correctness checks may be released
and transferred to the runtime system. We denote
this feature as correctness by construction.

When dragging application components from
the repository and assigning them to particular
activities in the process template, the process de-
signer does not need to have detailed knowledge
about the imple men tation of these components.
Instead the component repository provides an inte-
grated, homogeneous view as well as access to the
different components. Internally, this is based on a
set of wrappers provided for the different types of
application components. Our chosen architecture
allows to add new wrappers if new component
types have to be supported. Currently, ADEPT2
allows to integrate different kinds of application
components like electronic forms, stand-alone
executables, web services, Java library functions,
and function calls to legacy systems.

Process Enactment in ADEPt2

Based on a given process schema new process
instances can be created and started. State tran-
sitions of a single activity instance are depicted
in Figure 3. Initially, activity status is set to

180

Enabling Adaptive Process-Aware Information Systems with ADEPT2

NOT _ ACTIVATED. It changes to ACTIVATED
when all precondi tions for executing this activity
are met. In this case corresponding work items are
inserted into the worklists of authorized users. If
one of them selects the respective item from his
worklist, activity status changes to RUNNING
and respective work items are re mo ved from the
worklists of other users. Furthermore, the appli-
cation component associated with the activity is
started. At successful termination, activity status
changes to COMPLETED.

To determine which activities are to be ex-
ecuted next, process enactment in ADEPT2 is
based on a well-defined oper a tion al semantics
(Reichert & Dadam, 1998a; Reichert, 2000).
For each process instance we further maintain
information ab out its current state by assigning
markings to its activities and con trol edges re-
spectively. Figure 4 depicts an example showing
two process instances in different states.

Similar to Petri Nets, markings are determined
by well defined marking and enactment rules.
In particular, ADEPT2 maintains markings of
already passed regions (except loop backs). Fur-
thermore, activities belonging to non-selected
paths of a conditional bran ching are marked as

SKIPPED. Note that this allows to easily check
whether certain changes may be applied in the cur-
rent status of a process instance or not (see later).
As aforementioned, ADEPT2 ensures dynamic
pro per ties like the absence of deadlocks, proper
process termination, and reachability of markings
which enable the activation of particular activity.
The described block structuring as well as the used
node and edge types help us to accomplish this
in an efficient manner. Deadlocks, for example,
can be excluded if the process schema (excluding
loop backs) does not contain cycles (Reichert &
Dadam, 1998a).

For each data element ADEPT2 stores dif-
ferent versions of a data object during runtime
if available. In more detail, for each write access
to a data element, always a new version of the
respective data object is created and stored in
the run time database; i.e., data objects are not
physically overwritten. This allows us to use
different versions of a data element within dif-
ferent branches of a bran ching with AND-Split
and XOR-Join. As shown in (Reichert et al.,
2003a) maintaining data object ver sions is also
important to enable correct rollback of process
instances at the occurrence of semantical errors
(e.g., activity failures).

Figure 3. Internal state transitions of a process activity

f inish

start

start

select

disable

deselect

NOT_ACTIVATED ACTIVATED

WAITI NG

SUSPENDED STARTED

RUNNING

suspend

FAILED COMPLETEDSKIPPED

SELECTED

TERMINATED

enable

resume

abort

skip

disable

skip

skip

super state

(sub-) state

action leading to
state transition

 181

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Other Process Aspects covered in
ADEPt2

Activities and their control as well as data flow
are not the only viewpoints supported in our ap-
proach. ADEPT2 also considers organizational
models (Rinderle & Reichert, 2007a), actor and re-
source assignments (Rinderle & Reichert, 2005b;
Rinderle-Ma & Reichert, 2008c), and application
components. In related projects, we have further
looked at temporal constraints (Dadam, Reichert,
& Kuhn, 2000), partitioned process schemes with
distributed enactment (Reichert, Bauer, & Dadam,
1999; Bauer, Reichert, & Dadam, 2003), and con-
figurable process visualizations (Bobrik, Bauer,
& Reichert; 2006; Bobrik, Reichert, & Bauer,
2007). All these viewpoints are not only relevant
for process modeling, but have to be considered in
the context of (dynamic) process changes as well
(Reichert & Bauer, 2007; Rinderle & Reichert,
2005b, 2007a; Dadam et al., 2000). On the one
hand, each of the aspects can be primary subject
to (dynamic) change. On the other hand, the dif-

ferent aspects might have to be adjusted due to
the change of another aspect (e.g., adaptation of
temporal constraints when changing the control
flow structure). To set a focus, however, in this
chapter we restrict ourselves to control and data
flow changes. The above given references provide
further information on the other aspects.

Note that we consider process correctness only
at the syntactical level in this chapter (e.g., absence
of deadlock-causing cycles and correctness of data
flow). Respective checks are fundamental for both
process modeling and process change. However,
errors may be still caused at the semantical level
(e.g., due to the violation of business rules) though
not affecting the robustness of the PAIS. There-
fore, the integration and verification of domain
knowledge flags a milestone in the development
of adaptive process management technology. In
the SeaFlows project, we are currently developing
a framework for defining semantic constraints
over processes in such a way that they can express
real-world domain knowledge on the one hand
and are still manageable concerning the effort

Figure 4. Examples of two process instances running on the process schema from Figure 1

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_Etrue

false

user = "Dr. Quincy"

role = radiologist

Process instance I1

patientId = "smith"

t

current value: "smith"

Ns=Nodestate,
 Ns = ActIVAtED

 Ns = rUNNING

 Ns = cOMPLEtED

Es = Edgestate
 Es = trUE_sIGNALED

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_Etrue

false

Actor = "Dr. bond"

Actor = "Dr. Kitchen"

Process instance I2

patientID = "Major"

t

current value: "Major"

Actor = "Dr. Kitchen"

report = Id4763

t

patientID = "Major"

t

report = Id4763

t

182

Enabling Adaptive Process-Aware Information Systems with ADEPT2

for maintenance and semantic process verifica-
tion on the other hand (Ly, Göser, Rinderle-Ma,
& Dadam, 2008). This viewpoint can be used to
detect semantic conflicts (e.g., drug incompat-
ibilities) when modeling process schemes, apply-
ing ad-hoc changes at process instance level, or
propagating process schema changes to already
running process instances, even if they have been
already individually modified themselves; i.e.,
SeaFlows provides techniques to ensure semantic
correctness for single and concurrent changes
which are, in addition, minimal regarding the set
of semantic constraints to be checked. Together
with further optimizations of the semantic checks
based on certain process meta model properties
this allows for efficiently verifying processes.
Altogether, the SeaFlows framework provides the
basis for process management systems which are
adaptive and semantic-aware at the same time;
note that this is a fundamental issue when think-
ing of business process compliance. For further
details we refer to (Ly et al., 2008; Ly, Rinderle,
& Dadam, 2008).

ADEPt2 PrOcEss cHANGE
frAMEWOrK

This section deals with fundamental aspects of
dynamic process changes as supported by AD-
EPT2. Though we illustrate relevant issues along
the ADEPT2 process meta model, it is worth
mentioning that most of the described concepts
can be applied in connection with other process
modeling formalisms as well; see (Reichert,
Rinderle, & Dadam, 2003b) and (Reichert &
Rinderle, 2006) for examples.

requirements

In order to adequately deal with process changes
during runtime users need to be able to define
them at a high level of abstraction. Several fun-

damental requirements, which will be discussed
in the following, exist in this context:

1. Support of structural adaptations at
different levels. Any framework enabling
dynamic process changes should allow for
structural schema adaptations at both the
process type and the process instance level.
In principle, the same set of change patterns
should be applicable at both levels.

2. Enabling a high level of abstraction when
defining process changes. It must be pos-
sible to define structural process adapt ations
at a high level of abstraction. In particular, all
complexity associated with the adjustment
of data flows or the adaptation of instance
states should be hidden from users.

3. Completeness of change operations. To be
able to define arbitrary structural schema ad-
aptations a complete set of change operations
is required; i.e., given two correct schemes
it must be always possible to transform one
schema into the other based on the given set
of change operations.

4. Correctness of changes. The ultimate
ambition of any change framework must be
to ensure correctness of dynamic changes
(Rinderle, Reichert, & Dadam, 2003). First,
structural and behavioral sound ness of the
modified process schema should be guaran-
teed independent from whe ther the change
is applied at instance level or not. Second,
when performing struc tural schema changes
at instance level, this must not lead to incon-
sistent pro cess states or errors. Therefore, an
adequate correctness criterion is needed to
de cide whether a given process instance is
compliant with a modified process sche ma.
This criterion must not be too restrictive, i.e.,
no process instance should be need lessly
excluded from being migrated to the new
schema version.

5. Change efficiency. We must be able to ef-
ficiently decide whether a process instance is

 183

Enabling Adaptive Process-Aware Information Systems with ADEPT2

compliant with a modified schema. Further-
more, when migrating compliant instances
to the modified schema, state adaptations
need to be accomplished automatically and
in an efficient way.

We show how ADEPT2 deals with these
fundamental requirements. There exist addi-
tional challenges not treated here, but which have
been considered in the design of the ADEPT2
framework as well: change authorization (Weber,
Reichert, Wild, & Rinderle, 2005a), change trace-
ability (Rinderle, Reichert, Jurisch, & Kreher,
2006b; Rinderle, Jurisch, & Reichert, 2007b),
change annotation and reuse (Weber, Wild, &
Breu, 2004; Rinderle, Weber, Reichert, & Wild,
2005a; Weber, Rinderle, Wild, & Reichert, 2005c;
Weber, Reichert, & Wild, 2006), and change
mining (Günther, Rinderle, Reichert, & van der
Aalst, 2006; Günther, Rinderle-Ma, Reichert,
van der Aalst, & Recker, 2008; Li, Reichert, &
Wombacher, 2008b). The given references provide
additional reading material on these advanced
aspects.

support of change Patterns in
ADEPt2

Two alternatives exist for realizing structural
adaptations of a process schema (Weber et al.,
2007). A first option is to realize the schema
adaptations based on a set of change primitives
like add node, remove node, add edge, and
remove edge (Minor et al., 2007). Following
such a low-level approach, the reali zation of a
particular change (e.g., to move an activity to a
new position) requires the combined appli cation of
multiple change primitives. To spe cify structural
adaptations at this low level of abstraction is a
complex and error-prone task. Furthermore, when
applying a single change primitive, sound ness of
the resulting process schema cannot be guaranteed
by construction; i.e., it is not possible to associate
formal pre-/post-conditions with the application

of single change primitives. Instead, correctness
of a process schema has to be explicitly checked
after applying the respective set of primitives.

Another, more favorable option is to base
structural adaptations on high-level change opera-
tions (Weber et al., 2007), which abstract from the
concrete schema transformations to be conducted;
e.g., to in sert a process fragment between two sets
of nodes or to move process fragments from their
current position to a new one (Reichert & Dadam,
1998a). Instead of specifying a set of change
primitives the user applies one or few high-level
change patterns to define a sche ma adaptation.
Following this approach, it becomes possible to
associate pre-/post-conditions with the respective
change operations. This, in turn, allows the PAIS
to guaran tee soundness when applying the pat-
terns (Reichert, 2000). Note that soundness will
be crucial if changes have to be defined by end
users or—even more challenging—by intelligent
software agents (Müller et al., 2004; Golani &
Gal, 2006; Bassil et al., 2004). In order to meet
this fundamental goal ADEPT2 only considers
high-level change patterns. Of course, the same
patterns can be used for process modeling as well,
enabling the already mentioned “correctness by
construction”. A similar approach is provided in
(Gschwind, Koehler, & Wong, 2008).

ADEPT2 provides a complete set of change
patterns and change operations respectively based
on which structural adaptations at the process
type as well as the process instance level can be
expressed. In particular, this can be accomplished
at a high le vel of abstraction. Furthermore, the
change patterns are applicable to the whole pro-
cess schema; i.e., the region to which the respec-
tive change operation is applied can be chosen
dynamically (as opposed to late modeling of
loose ly specified process models where changes
are usually re stric ted to a predefined region). This
allows to flexibly deal with exceptions and to cope
with the evolving nature of busi ness processes.
Furthermore, the application of a change pattern to
a sound pro cess schema results in a sound schema

184

Enabling Adaptive Process-Aware Information Systems with ADEPT2

again, i.e., structural and behavioral soundness
of the schema are preserved.

We do not present the complete set of change
patterns supported by ADEPT2 (Weber et al.,
2007; Weber, Reichert, & Rinderle, 2008b), but
only give selected examples in the following:

• Insert process fragment: This change op-
eration can be used to add process frag ments
to a given process schema. One parameter
of this oper ation describes the position at
which the new fragment is embedded in
the schema; e.g., ADEPT2 allows to serially
insert a frag ment between two succeeding
activities or to insert new fragments bet-
ween two sets of activities (Reichert, 2000).
Special cases of the lat ter variant include the
insertion of a process fragment in parallel
to another one (pa ral lel insert) or the asso-
ciation of the newly added fragment with
an execution condition (conditional insert).
Figure 5a depicts an example of a parallel
inser tion.

• Delete process fragment. This change
operation can be used to re move a process
fragment. Figure 5b and Figure 5c depict
two simple examples.

• Move process fragment. This change op-
eration allows users to shift a process frag-
ment from its current position in the process
schema to a new one. One parameter of this
operation specifies the way the fragment is
re-embed ded in the process schema after-
wards. Though the move operation could be
re alized by the combined use of the insert
and delete operation, ADEPT2 introduces
it as separate operation since it provides a
higher level of abstraction to users.

Other examples of ADEPT2 change operations
include the embedding of a process fragment in
a conditional branch or loop construct, and the
addition or deletion of synchronizations between
parallel activities. When applying such high-
level changes, ADEPT2 automatically reduces
complexity through simple schema refactoring

Figure 5. Insertion and deletion of process activities in ADEPT2

 a)

b)

Add Activity X parallel to Block (B,

B
D

E
C

F
H

I
G

X

A

A B
D

E
C

F
H

I
G

X

silent
activity

c)

A C B
Delete Activity B

A C A C B

A

C

D

B

A D B
Delete Activity C empty branch

A

C

D

B

 185

Enabling Adaptive Process-Aware Information Systems with ADEPT2

(Reichert & Dadam, 1998a); e.g., empty branches
or unnecessary nodes are removed after change
application (cf. Figure 5). Generally, the change
patterns offered by ADEPT2 can be also used
for a large variety of behavior preserving process
refactorings (Weber & Reichert, 2008a).

Generally, structural adaptations of a control
flow schema have to be combined with adjust-
ments of the data flow schema in order to preserve
soundness. As simple example consider Figure 6
where activity B shall be deleted from the depicted
process schema. To preserve schema correctness
we must deal with the data dependencies activi-
ties D and E have on activity B. Figure 6 shows
four basic options supported by ADEPT2 in this
context: (a) cascading deletion of data-dependent
activities; (b) insertion of an alter nate activity
which writes the respective data element; (c)
insertion of an auxiliary service (e.g., an elec-
tronic form) which is invoked when deleting B, or
insertion of an auxiliary service which is invoked
when start ing the first data-dependent activity (D
in our example). Which of these four options is
most fa vo rable in a given context depends on the
semantics of the activity to be primarily deleted. It
therefore has to be chosen by the process designer

at buildtime or by the user requesting the deletion
at runtime. Re gard ing the example from Figure 1,
for instance, deletion of activity generate report
should be always accom panied by deletion of
activity validate report since the second activity
strongly depends on the first one; i.e., option (a)
has to be applied. ADEPT2 allows to explicitly
specify such strong dependencies at build time,
which enables the runtime system to automatically
apply option (a) if required. By contrast, option
(c) might be favorable when deleting automated
activity make appointment in Figure 1; e.g., in
case the appointment is exceptionally made by
phone and therefore can be manually entered
into the system.

In summary, ADEPT2 provides a complete
set of high-level change operations which can be
used for specifying structural adaptations as well
as for accomplishing structural comparisons of
process schemes (Li, Reichert, & Wombacher,
2008a). In particular, these high-level operations
cover most of the change patterns described in
(Weber et al. 2007; Weber et al., 2008b). Finally,
the application of ADEPT2 operations to a correct
process schema results in a correct schema again.
Basic to the latter is the formal semantics defined

Figure 6. Adjusting data flow in the context of an activity deletion

a)

B C D E

 d

A

C D E

 d

A

C D E

 d

A D E

 d

CA

c) d)

A DC E

d

V
b)

Delete Activity B
… and possible adjustments of data flow

186

Enabling Adaptive Process-Aware Information Systems with ADEPT2

for the supported change patterns (Rinderle-Ma,
Reichert, & Weber, B.; 2008b).

Ensuring correctness of Dynamic
changes

So far, we have only looked at structural schema
adaptations without considering the state of the
pro cess instances running on the respective
schema. In this subsection we dis cuss un der
which conditions a structural schema change
can be applied at the process in stance level as
well. Obviously, structural adaptations have to
be restricted with re spect to the current state
of an instance. As example consider Figure 7a.
Acti vity X is serially added between activities
A and B resulting in a correct process schema
after wards. Consider now process instance I from
Figure 7b. When applying the schema change to
this instance, an inconsistent state would result;
i.e., activity B would have state COMPLETED
though its preceding activity X would still be in
state ACTIVATED.

To avoid such inconsistencies we need a formal
foundation for dynamic changes. In the following,
let I be an instance running on process schema S
and having marking MS. Assume further that S is
trans formed into another correct process schema
S’ by apply ing change Δ. Then the following two
issues arise:

1. Can Δ be correctly propagated to process
instance I, i.e., can Δ be applied to I without
causing inconsistencies? For this case, I is
denoted as being compliant with the modi-
fied schema S’.

2. How can we migrate a compliant instance
I to S’ such that furt her execution of I can
be based on S’? Which state adaptations
become ne cessary and how can they be
automatically accomplished?

Both issues are fundamental for any adap-
tive process management system. While the first
one concerns pre-conditions on the state of the
respective instance, the second one is related to
post-conditions to be satisfied after the dynamic
change. We need an efficient method allowing for
automated compliance checks and instance migra-
tions. Intuitively, instance I would be compliant
with the modified schema S’ if it could have been
executed according to S’ as well and had produced
the same effects on data elements (Rinderle et al.,
2004b; Casati et al., 1998). Trivially, this will be
always the case if instance I has not yet entered
the region affected by the change. Generally, we
need information about the previous execution
of instance I to decide on this and to deter mine
a correct follow-up marking when structurally
adapting it. At the logical level we make use of the
execution history (i.e., trace) kept for each process
instance. We assume that this execution history

Figure 7. Schema change and inconsistency due to uncontrolled change propagation at instance level

Serial Insertion of X between A and B

CA B A X CB

CA B
4

A X CB
45

Instance l with history H: start(A), end(A), start(B), end(B), start(C)

?

a)

b)

 187

Enabling Adaptive Process-Aware Information Systems with ADEPT2

logs events related to the start and completion
of activity executions. Obviously, an instance I
with history H will be com pliant with modified
schema S’ and therefore can migrate to S’ if H
can be produced on S’ as well. We then obtain a
correct new state (i.e., marking) for instance I by
“replaying” all events from H on S’ in the order
they occurred.

Taking our example from Figure 7b this
property does not hold for instance I. Therefore
the depicted schema change must not be applied
to this instance. As another example consider the
process instance from Figure 8a and assume that
activity C shall be moved to the position between
activities A and B resulting in schema S’. Since
the execution history of I can be produced on
S’ as well the instance change will be allowed
(cf. Figure 8b). Note that we have to deactivate
activity B and activate activity C in this context
before proceeding with the flow of control. Similar
considerations hold for the instance from Figure
8a when moving activity C to a position parallel to
activity B resulting in process schema S’’. Again
this change is valid since the execution history of
I can be produced on S’’ as well (cf. Figure 8c).

Note that the described compliance criterion
is still too restrictive to serve as general correct-
ness principle. Concerning changes of a loop
structure, for example, it might needlessly exclude
instances from migration, particularly if the loop
is its nth run (n>1) and previous iterations do not
comply with the new schema version. We refer to

(Rinderle et al., 2004b) for relaxations provided
in this context.

Generally, it would be no good idea to guar-
antee compliance and to deter mine follow-up
markings of compliant instances by accessing the
whole execution history and by trying to replay it
on the modified schema. This would cause a per-
formance penalty, particularly if a large number
of instances were running on the schema to be
modified (see below). ADEPT2 therefore utilizes
the semantics of the applied change operations as
well as infor mation on the change context to ef-
ficiently check for compliance and to adapt state
markings of compliant instances when migrating
them to the new schema version (Rinderle et al.,
2004b). For example, an activity in state COM-
PLETED or RUNNING must be not deleted from a
process instance. Or when adding a new activity
to a process instance or moving an existing one,
the corresponding execution history must not
contain any entry related to successor activities
of the added or shifted activity. This would be
the case, for example, if the successor nodes had
marking NOT _ ACTIVATED or ACTIVATED.
Obviously, this does not hold for the scenario
depicted in Figure 7.

In summary, the ADEPT2 change framework
is based on a well-defined correctness criterion,
which is independent of the ADEPT2 process
meta model and which is based on an adapted no-
tion of trace equivalence (Rinderle et al., 2004a).
This compliance criterion considers control as

Figure 8. Process instance I and two possible changes (Movement of activity C)

A B C D
C

DA B
A C B D

a) b) c) d d d

I on S (with history [start (A), end(A)]) I on S’

I on S’’

AND-Split AN D-Join

188

Enabling Adaptive Process-Aware Information Systems with ADEPT2

well as data flow changes, ensures correctness of
instances after migration, works correctly in con-
nection with loop backs, and does not needlessly
exclude instances from migrations. To enable
effi cient compliance checks, precise and easy
to implement compliance conditions have been
defined for each change operation. ADEPT2 auto-
ma tically adapts the states of compliant instances
when migrating them to an updated schema. Fi-
nally, we are currently working on the relaxation
of the described compliance criterion in order
to increase the number of process instances that
can be dynamically and automatically migrated
to a new process schema version (Rinderle-Ma,
Reichert, & Weber, 2008a).

scenarios for Dynamic Process
changes in ADEPt2

After having introduced the basic pillars of the
ADEPT2 change framework we now sketch how
ADEPT2 supports dynamic process changes at
different levels.

Ad-Hoc Changes of Single Process
Instances

Figure 9 a – h illustrate how the interaction be-
tween the ADEPT2 system and the end user looks
like when performing an ad-hoc change. In this
example, we assume that during the execution of
a particular process instance (e.g., the treatment of
a certain patient under risk) an additional lab test
becomes necessary. Assume that this medical test
has not been foreseen at buildtime (cf. Figure 9a).
As a consequence, this particular process instance
will have to be individually adapted if the change
request is approved by the system. After the user
has pressed the “exception button” (cf. Figure 9b),
he can specify the type of the intended ad-hoc
change (cf. Figure 9c). If an insert operation shall
be applied, for example, the system will display
the tasks that can be added in the given context

and for which the user has respective authorization
(cf. Figure 9d). As aforementioned, these tasks
can be based on simple or complex application
components (e.g., write letter or send email), or
even be complete processes.

Generally, authorized users can retrieve the
task to be dynamically added to a particular
process instance from the ADEPT2 activity
repository. This repository organizes the tasks
in different categories, pro vides query facilities
to retrieve them, and maintains the information
necessary to plug the tasks into an instance schema
(e.g., interface specification and task attributes).
We restrict access to exactly those tasks that can
be added in the given context; i.e., selectable
tasks depend on the profile of the current user,
the process type, the process instance, etc. For
details we refer to (Weber et al.; 2005a). Finally,
ADEPT2 also allows for the reuse of ad-hoc
changes previously applied in a similar problem
context. Basic to this reusability are case-based
reasoning techniques (Weber, Reichert, Wild, &
Rinderle-Ma, 2008c).

Following this task selection procedure, the
user simply has to state after which activities
in the process the execution of the newly added
activity shall be started and before which activi-
ties it shall be finished (cf. Figure 9e). Finally,
the system checks whether the desired structural
adaptation is valid in the given state of the instance
(cf. Figure 9f and Figure 9g). In this context, the
same checks are performed as during buildtime
(e.g., to ensure for the absence of deadlocks). In
addition, the current process instance state is taken
into account when modifying the instance.

As already discussed, such adaptations can
be specified at a high level of abstraction (e.g.
“Insert Step X between activity set A1 and ac-
tivity set A2”), which eases change definition
significantly. All change operations are guarded
by pre-conditions which are either automatically
checked by the system when the operation is
invoked or which are used to hide non-allowed
changes from users. Post-conditions guarantee

 189

Enabling Adaptive Process-Aware Information Systems with ADEPT2

a) An exception occurs b) User presses the "exception button"

c) User selects type of the ad-hoc change d) User selects step to be inserted

e) User specifies where to insert the step f) System checks validity of the change

g) Change can be applied h) User continues work

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exceptional case –
we need an additional

lab test !Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exceptional case –
we need an additional

lab test ! Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception
Insert task?
Delete task?
shift task?

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception
Insert task?
Delete task?
shift task?

select Activity
schedule counsel examination

Lab test
Prepare patient for operation

Inform patient

Wash patient

schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

select Activity
schedule counsel examination

Lab test
Prepare patient for operation

Inform patient

Wash patient

schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

End

startExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

EndEnd

startstartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

End

startExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPt
checking if insertion

of step is possible

- Please wait -

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

End

start

EndEnd

startstartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPt
checking if insertion

of step is possible

- Please wait -

ADEPt
checking if insertion

of step is possible

- Please wait -

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

End

startExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPt
Insertion is possible!

Great !!

Explanation
Operation risks

X-ray

check
Anesthesiology

Examination

End

start

EndEnd

startstartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPt
Insertion is possible!

ADEPt
Insertion is possible!

Great !!

Lab test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation risks

X-ray

check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

Lab testLab test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation risks

X-ray

check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

Figure 9. Ad-hoc change in ADEPT2 (User view)

190

Enabling Adaptive Process-Aware Information Systems with ADEPT2

that the resulting process instance is correct again.
Furthermore, all change operations and change
patterns respectively are made available via the
ADEPT2 API (application programming inter-
face) as well. The same applies for the querying
interface of the ADEPT2 repository. This allows
for the implementation of sophisticated end user
clients or even automated agents (Müller et al.,
2004).

To enable change traceability ADEPT2 stores
process in stance chan ges in change logs (Rinderle
et al., 2006b, 2007b). Together with execution
logs, which cap ture enactment information of
process instances, the structure and state of a
par ti cu lar process instance can be reconstructed
at any time. Both change and execution log are
also val uable sources for process learning and
process optimization (Günther et al., 2008; Li et
al., 2008b).

By performing the described ad-hoc devia-
tion inside the PAIS the added task becomes an
integral part of the respective process instance.
This way full system support becomes possible
relieving the user from handling the exception;
i.e., task execution can be fully coordinated by
the PAIS, the task can be automatically assigned
to user worklists, its status can be monitored by
the PAIS, and its results can be analyzed and
evaluated in the context of the respective process
instance. By contrast, if the exception had been
handled manually, i.e. outside the PAIS, it would
be the intellectual responsibility of the end user
to accomplish task execution, monitoring and
analysis, and to relate the task to the respective
process in stance (e.g., by attaching a “post-it” to
his screen). As we know from healthcare the latter
approach un ne ces sarily burdens users resulting
in organizational overload and omissive errors
(Lenz & Reichert, 2007).

Process Schema Evolution

Though the support of ad-hoc modifications is very
important, it is not yet sufficient. As motivated, for

long-running processes it is often required to adapt
the process schema (from which new instances
can be created afterwards) due to organizational
changes. Then process instances currently run-
ning on this process schema can be affected by the
change as well. If processes are of short duration
only, already running instances can be usually
finished according to the old schema version.
However, this strategy will not be applicable for
long running processes. Then the old process
schema version may no longer be applicable, e.g.,
when legal regulations have changed or when the
old process reveals severe problems.

One solution would be to individually modify
each of the running process instances by apply-
ing corresponding ad-hoc changes (as described
above). However, this would be too inefficient
and error-prone if a multitude of running pro-
cess instances had been involved. Note that the
number of active process instances can range
from dozens up to thousands (Bauer, Reichert,
& Dadam, 2003); i.e., compliance checking and
change propagation might become necessary for
a large number of instances.

An adaptive process management system must
be able to support correct changes of a process
schema and their propagation to already running
process instances if desired. In other words, if a
process schema is changed and thus a new ver-
sion of this schema is created, process instances
should be allowed to migrate to the new schema
version (i.e., to be transferred and re-linked to the
new process schema version). In this context, it
is of particular importance that ad-hoc changes
of single process instances and instance migra-
tions do not exclude each other since both kinds
of changes are needed for the support of long-
running processes (Rinderle, Reichert, & Dadam,
2004c + 2004d).

The ADEPT2 technology implements the com-
bined handling of both kinds of chan ges. Process
instances which have been individually modified
can be also migrated to a changed process schema
if this does not cause inconsistencies or errors

 191

Enabling Adaptive Process-Aware Information Systems with ADEPT2

in the following. All correctness checks (on the
schema and the state of the instances) needed and
all adaptations to be accomplished when migrating
the instances to the new process schema version
are performed by ADEPT2. The implementation
is based on the change framework and the for-
mal foundations described before. ADEPT2 can
precisely state under which conditions a process
instance can be migrated to the new pro cess
schema version. This allows for checking the
compliance of a collection of process instances
with the changed schema version in an efficient
and effective manner. Finally, concurrent and
conflicting changes at the process type and the
process instance level are managed in a reliable
and consistent manner as well.

Figure 10 a – c illustrate how such a process
schema evolution is con duc ted from the user’s
point of view in ADEPT2. The process designer
loads the pro cess schema from the process tem-
plate repository, adapts it (using the ADEPT2
process edi tor and the change patterns supported

by it), and creates a new schema version (cf. Figure
10a). Then the system checks whe ther the running
process instances can be correctly migrated to the
new process schema version (cf. Figure 10 b+c).
These checks are based on state con ditions and
structural comparisons (in order to ensure compli-
ance and soundness respec tive ly). Furthermore,
the system calculates which adaptations become
necessary to per form the migration at the process
instance level. The ADEPT2 system analyzes all
running in stances of the old schema and creates
a list of instances which can be mi gra ted as well
as a list of instances for which this is not possible
(together with a re port which ex plains the differ-
ent judgments). When pressing the “migration
button” ADEPT2 au tomatically conducts the
migration for all selected process instances (see
Figure 10d).

In ADEPT2, the on-the-fly migration of a
collection of process instances to a modified
process schema does not violate correctness
and consistency properties of these in stances.

Figure 10. Process schema evolution in ADEPT2 (User perspective)

192

Enabling Adaptive Process-Aware Information Systems with ADEPT2

At the system level this is ensured based on the
correctness principle introduced in the previous
section. As example consider Figure 11 where a
new schema version S’ is created from schema
S on which three instances are running. In stance
I1 can be migrated to the new process schema
version. By contrast, instances I2 and I3 cannot
migrate. I3 has progressed too far and is therefore
not compliant with the updated schema. Though
there is no state conflict for I2 this instance can
also not mi grate to S’. I2 was individually modified
by a previous ad-hoc change con flicting with the
depicted schema change at the type level. More
precisely, when propagating the type change to
I2 a deadlock-causing cycle would occur. The
ADEPT2 change framework provides efficient
means to detect such con flicts. Basic to this are
sophis ticated conflict tests (see Rinderle, Reich-
ert, & Dadam, 2004d). In summary, we restrict
propa gation of a type change to those instances for
which the change does not conflict with instance
state or previous ad-hoc changes.

full Process Lifecycle support
through Adaptive Processes

As shown, adaptive process management technol-
ogy like ADEPT2 extends traditional PAISs with
the ability to deal with dynamic structural changes
at different process levels. This enables full life
cycle support as depicted in Figure 12 (Weber,
Reichert, Rinderle, & Wild, 2005b).

At build-time an initial representation of a pro-
cess is created by explicitly modeling its template
from scratch (based on analysis results), by cloning
an existing process template and adapting it, or by
discovering a process model through the mining
of execution logs (1). The first two options have
been described earlier in this chapter; the latter
one requires support by a sophisticated process
mining tool like ProM (van Dongen, de Medeiros,
Verbeek, Weijters, & van der Aalst, 2005).

At run-time new process instances can be
derived from the predefined process template (2).

Figure 11. Process schema evolution in ADEPT2 (System perspective)

 193

Enabling Adaptive Process-Aware Information Systems with ADEPT2

In ge neral, an instance is enacted according to
the process template it was derived from. While
automated activities are executed without user
interaction, non-automated activities are assigned
to the worklists of users to be worked on (3). The
latter is based on actor assignment rules associ-
ated with the non-automated activity.

If exceptional situations occur dur ing run-
time, process participants may deviate from the
predefined schema (4). ADEPT2 balances well
between flexibility and security in this context;
i.e., process changes are restricted to authorized
users, but without nullifying the advantages of a
flexible system by handling authorizations in a too
rigid way. In (Weber, Reichert, Wild, & Rinderle,
2005a) we discuss the requirements relevant in
this context and propose a comprehensive access
control (AC) model with special focus on adap-
tive PAISs. We support both the definition of user
dependent and process type dependent access
rights, and allow for the specification of access
rights for individual change patterns. If desired,
access rights can be specified at an abstract (i.e.,
coarse-grained) level (e.g., for a whole process

category or process template). Fine-grained
specification of access rights (e.g., concerning the
deletion of a particular process activity) is sup-
ported as well, allowing context-based assistance
of users when performing a change. Generally,
the more detailed the respective specifications,
the more costly their definition and maintenance
becomes. Altogether our AC approach allows for
the compact definition of user dependent access
rights restricting process changes to authorized
users only. Finally, the definition of process type
dependent access rights is supported to only allow
for those change commands which are applicable
within a particular process context. For further
details we refer to (Weber et al., 2005a).

While execution logs record information about
the start and completion of activities as well as
their ordering, process changes are recorded in
change logs (5). The ana lysis of respective logs
by a process engineer and by business process
intelligence tools, res pec tive ly, allows to dis-
cover malfunctions or bottle necks (Li, Reich-
ert, & Wombacher, 2008c). In (Li, Reichert, &
Wombacher, 2008b) we additionally provide an

Figure 12. Process lifecycle management in ADEPT2 (See Weber et al., 2005b)

194

Enabling Adaptive Process-Aware Information Systems with ADEPT2

approach which fosters learning from past ad-
hoc changes; i.e., an approach which allows for
mining instance variants. As result we obtain
a generic process model for which the average
distance between this model and the respective
instance variants becomes minimal. By adopting
this generic model as new template in the PAIS,
need for future ad-hoc adaptation decreases; i.e.,
mining execution and change logs can re sult in
an evolution of the process schema; i.e., an up-
dated process schema version (6). In addition, it
becomes possible to provide recommendations
to users about future process enactment based
on execution logs (e.g., Schonenberg, Weber, van
Dongen, & van der Aalst, 2008).

If desired and possible, running process
instances migrate to the new schema version
and continue their execution based on the new
schema (7).

ArcHItEctUrE Of tHE ADEPt2
PrOcEss MANAGEMENt sYstEM

The design of the ADEPT2 system has been gov-
erned by a number of prin ciples in order to realize
a sustainable and modular system architecture.
The considered design principles refer to general
architectural aspects as well as to conceptual
issues concerning the different system features.
Our overall goal was to enable ad-hoc flexibility
and process schema evolution, together with other
process support features, in an integrated way,
while ensuring robustness, correctness, extensi-
bility, per for mance and usability at the same time.
This section summarizes major design principles
and gives an overview of the developed system
architecture.

High-end process management technology like
ADEPT2 has a complexity compar able to database
management systems. To master this complexity
a proper and modular system archi tec ture has
been chosen for ADEPT2 with clear separation
of concerns and well-defined interfaces. This is

fun da men tal to enable exchangeability of imple-
mentations, to foster extensibility of the architec-
ture, and to realize autonomy and independency
of the system components to a large extent. The
overall architecture of ADEPT2 is layered (cf.
Figure 13). Thereby, components of lower layers
hide as much complexity as possible from upper
layers. Basic components are combinable in a
flexible way to realize higher-level services like
ad-hoc flexibility or process schema evolution.
To foster this, ADEPT2 system components
are reusable in different context using powerful
configuration facilities.

To make implementation and maintenance
of the different system components as easy as
possible, each component is kept as simple as
possible and only has access to the information
needed for its proper functioning. Furthermore,
com munication details are hidden from com-
ponent developers and independency from the
used middleware components (e.g., database
management systems) has been realized. Two
important design goals concern avoidance of code
redundancies and system extensibility:

• Avoidance of code redundancies. One
major design goal for the ADEPT2 system
architecture was to avoid code redundan-
cies. For example, components for process
modeling, pro cess schema evolution, and
ad-hoc process changes are more or less
based on the same set of change operations.
This suggests to implement these operations
by one se parate system component, and to
make this component configurable such that
it can be reused in different context. Similar
considerations have been made for other
ADEPT2 com ponents (e.g., visualization,
logging, versioning, and access control).
This design principle does not only reduce
code redundancies, but also results in better
maintainability, decreased cost of change,
and reduced error rates.

 195

Enabling Adaptive Process-Aware Information Systems with ADEPT2

• Extensibility of system functions. Gener-
ally, it must be possible to add new compo-
nents to the overall architecture or to adapt
existing ones. Ideally, such extensions or
changes do not affect other components; i.e.,
their im ple mentations must be robust with
respect to changes of other components. As
example assume that the set of supported
change operations shall be extended (e.g.,
to offer additional change patterns to users).
This extension, however, must not affect the
components realizing process schema evolu-
tion or ad-hoc flexibility. In ADEPT2 we
achieve this by mapping high-level change
operations internally to a stable set of low-
level change primitives (e.g., to add/delete
nodes).

Figure 13 depicts the overall architecture of
the ADEPT2 process management system, which
features a layered and service-oriented architec-
ture. Each layer comprises different components
offering services to upper-layer components. The
first layer is a thin abstraction on SQL, enabling
a DBMS independent implementation of persis-
tency. The second layer is responsible for stor-
ing and locking different entities of the process
management system (e.g., process schemes and

process instances). The third layer encapsulates
essential process support functions including
process enactment and change management. The
topmost layer provides different buildtime and
runtime tools to the user, including a process
editor and a monitoring component.

Components of the ADEPT2 architecture are
loosely coupled enabling the easy exchange of
component implementations. Furthermore, basic
infrastructure services like storage management
or the techniques used for inter-component com-
munication can be easily exchanged. Additional
plug-in interfaces are provided which allow for
the extension of the core architecture, the data
models, and the user interface.

Implementation of the different components
of the ADEPT2 architecture raised many chal-
lenges, e.g., with respect to storage representation
of schema and instance data: Unchanged instances
are stored in a redundant-free manner by refer-
encing their original schema and by capturing
instance-specific data (e.g., activity states). As
example consider instances I1, I3, I4, and I6 from
Figure 14. For changed (”biased”) instances, this
approach is not applicable. One alternative would
be to maintain a complete schema for each biased
instance, another to materialize instance-specific
schemes on-the-fly. ADEPT2 follows a hybrid

Figure 13. Basic Architecture of ADEPT2 (BT: Buildtime; RT: Runtime)

Persistence (DBMS)

LogManager

ProcessRepository ProcessManager DataManager

WorklistManager

OrgModelManager ResourceManagerActivityRepository

ExecutionManager RuntimeEnvironmentChangeOperations

ControlCenter

User interaction layer

Execution layer

Basic services layer

Low-level services layer

RT

RT

RT RT RT(BT) RT(BT)BT

BT/RT

BT/RT

BT

ProcessEditor OrgModelEditor Monitor Simulation/Test
BTBT BT RT

RT

Communication

Configuration &
Registry

Framework

196

Enabling Adaptive Process-Aware Information Systems with ADEPT2

approach: For each biased instance we maintain
a minimal substitution block that captures all
changes applied to it so far. This block is then
used to overlay parts of the original schema when
accessing the instance (I2 and I5 in our example
from Figure 14).

ADEPT2 provides sophisticated buildtime and
runtime components to the different user groups.
This includes tools for modeling, verifying and
testing process schemes, components for monitor-
ing and dynamically adapting process instances,
and different worklist clients (incl. Web clients).
Many applications, however, require adapted
user interfaces and functions to integrate pro-
cess support features the best possible way. On
the one hand, the provided user components are
configurable in a flexible way. On the other hand,
all functions (e.g., ad-hoc changes) offered by the
process management system are made available
via programming interfaces (APIs) as well.

We have implemented the described architec-
ture in a proof-of-concept prototype in order to
demonstrate major flexibility concepts and their
interplay. Figure 15 shows a screen of the AD-
EPT2 process editor, which constitutes the main

system component for modeling and adapting
process schemes.

This editor allows to quickly compose new
process templates out of pre-defined activity
templates, to guarantee schema correctness by
construction and on-the-fly checks, and to inte-
grate application components (e.g., web services)
in a plug-and-play like fashion. Another user
component is the ADEPT2 Test Client. It provides
a fully-fledged test environment for process ex-
ecution and change. Unlike common test tools,
this client runs on a light-weight variant of the
ADEPT2 process ma nagement system. As such,
various execution modes between pure simulation
to production mode become possible.

sUMMArY AND OUtLOOK

The ADEPT2 technology meets major require-
ments claimed for next generation pro cess
management technology. It provides advanced
functionality to support process composition by
plug & play of arbitrary application components,
it enables ad-hoc flexibility for process instances

Figure 14. Managing Template and Instance Objects in the ProcessManager (Logical View)

 197

Enabling Adaptive Process-Aware Information Systems with ADEPT2

without losing control, and it supports process
schema evolution in a controlled and efficient
manner. As opposed to many other PAISs all these
aspects work in interplay as well. For example, it
is possible to propagate process schema changes
to individually modified process instances or to
dynamically compose processes out of existing
application components. All in all such a complex
system requires an adequate conceptual frame-
work and a proper system architecture. ADEPT2
considers both conceptual and architectural is-
sues in the design of a next generation process
management system.

Challenges on which we are currently working
include the following ones: dynamic changes of
distributed processes and process choreographies
(Reichert & Bauer, 2007; Rinderle, Wombacher,
& Reichert, 2006c), data-driven modeling, coordi-
nation and adaptation of large process structures
(Rinderle & Reichert, 2006a; Müller, Reichert,
& Herbst, 2007 + 2008), process configuration
(Hallerbach, Bauer, & Reichert, 2008; Thom,
Reichert, Chiao, Iochpe, & Hess, 2008), process
variants mining (Li et al., 2008b), process visual-

ization and monitoring (Bobrik et al., 2006, 2007),
dynamic evolution of other PAIS aspects (Rinderle
& Reichert, 2005b and 2007; Ly, Rinderle, Dadam,
& Reichert, 2005), and evaluation models for
(adaptive) PAISs (Mutschler, Reichert, & Rinderle,
2007; Mutschler & Reichert, 2008c). All these
activities target at full process lifecycle support
in process-aware information systems (Weber,
Reichert, Wild, & Rinderle-Ma, 2008c).

rEfErENcEs

Adams, M., ter Hofstede, A., Edmond, D., & van der
Aalst, W.M.P. (2006). A service-oriented imple-
men tation of dynamic flexibility in workflows. In
Proceedings of the 14th Int’l Conf. on Cooperative
Information Systems (CoopIS’06), Montpellier,
France, (LNCS 4275, pp. 291-308).

Bassil, S., Benyoucef, M., Keller, R., & Kropf, P.
(2002): Addressing dynamism in e-negotiations by
workflow management systems. In Proceedings
DEXA’02 Workshops, (pp. 655-659).

Figure 15. Screenshot of ADEPT2 Process Editor

198

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Bassil, S., Keller, R., & Kropf, P. (2004). A
workflow-oriented system architecture for the
manage ment of container transportation. In Pro-
ceedings of the 2nd Int’l Conf. on Business Process
Management (BPM’04), Potsdam, Germany,
(LNCS 3080, pp. 116-131).

Bauer, T., Reichert, M., & Dadam, P. (2003). Intra-
subnet load balancing in distributed workflow
management systems. Int’l Journal Cooperative
Information Systems (IJCIS), 12(3), 295-323.

Bobrik, R., Bauer, T., & Reichert, M. (2006)
Proviado – personalized and configurable visu-
alizations of business processes. In Proceedings
7th Int’l Conf. on Electronic Commerce and Web
Technologies (EC-WEB’06), Krakow, Poland,
(LNCS 4082, pp. 61-71).

Bobrik, R., Reichert, M., & Bauer, T. (2007).
View-based process visualization. In Proceed-
ings of the 5th Int’l Conf. on Business Process
Management (BPM’07), Brisbane, Austalia.
(LNCS 4714, pp. 88-95).

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998).
Workflow evolution. Data and Knowledge Engi-
neering, 24(3), 211-238.

Dadam, P., Reichert, M., & Kuhn, K. (2000).
Clinical workflows - the killer application for
process-oriented information systems? In Pro-
ceedings of the 4th Int’l Conf. on Business Infor-
mation Systems (BIS‘2000), (pp. 36-59),Poznan,
Poland. Springer, .

Golani, M. & Gal, A. (2006). Optimizing excep-
tion handling in workflows using process restruct-
uring. In Proceedings of the 4th Int’l Conf. Business
Process Management (BPM’06), Vienna, Austria,
(LNCS 4102, pp. 407-413).

Gschwind, T., Koehler, J., & Wong, J. (2008).
Applying patterns during business process model-
ing. In Proceedings of the 6th Int’l Conf. Business
Process Management (BPM’08), Milan, Italy,
(LNCS 5240, pp. 4-19).

Günther, C.W., Rinderle, S., Reichert, M., & van
der Aalst, W.M.P. (2006). Change mining in adap-
tive process management systems. In Proceedings
of the 14th Int’l Conf. on Cooperative Information
Systems (CoopIS’06), Montpellier, France. (LNCS
4275, pp. 309-326).

Günther, C. W., Rinderle-Ma, S., Reichert, M.,
van der Aalst, W. M. P., & Recker, J. (2008).
Using process mining to learn from process
changes in evolutionary systems. Int’l Journal of
Business Process Integration and Management,
3(1), 61-78.

Hallerbach, A., Bauer, T., & Reichert, M. (2008).
Managing process variants in the process lifecycle.
In: Proceedings of the 10th Int’l Conf. on Enter-
prise Information Systems (ICEIS’08), Barcelona,
Spain, (pp. 154-161).

Karbe, B.. & Ramsperger, N. (1991). Concepts
and implementation of migrating office processes.
Wissensbasierte Systeme, (pp. 136-147).

Khalaf, R., Keller, A., & Leymann, F. (2006).
Business processes for web services: Principles
and applications. IBM Systems Journal, 45(2),
425-446.

Lenz, R., & Reichert, M. (2007). IT support for
healthcare processes – premises, challenges,
perspectives. Data and Knowledge Engineering,
61(1), 39-58.

Li, C., Reichert, M., & Wombacher, A. (2008a).
On measuring process model similarity based
on high-level change operations. In Proceedings
of the 27th Int’l Conf. on Conceptual Modeling
(ER’08), Barcelona, Spain. Springer, (LNCS,
2008).

Li, C., Reichert, M., & Wombacher, A. (2008b).
Discovering reference process models by mining
process variants. In Proceedings of the 6th Int’l
Conference on Web Services (ICWS’08), Beijing,
China. IEEE Computer Society Press.

 199

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Li, C., Reichert, M., & Wombacher, A. (2008c).
Mining based on learning from process change
logs. In Proceedings BPM’08 workshops – 4th
Int’l Workshop on Business Process Intelligence
(BPI’08), Milan, Italy. LNBIP (to appear).

Ly, L.T., Rinderle, S., Dadam, P., & Reichert,
M. (2005) Mining staff assignment rules from
event-based data. In Proceedings of the BPM’05
workshops, Nancy, France. Springer (LNCS
3812, pp. 177-190.

Ly, L.T., Göser, K., Rinderle-Ma, S., & Dadam, P.
(2008). Compliance of semantic constraints – A
re-quirements analysis for process management
systems. In Proceedings 1st Int’l Workshop on
Gover nance, Risk and Compliance - Applications
in Information Systems (GRCIS’08), Montpellier,
France.

Ly, L.T., Rinderle, S., & Dadam, P. (2008). Inte-
gration and verification of semantic constraints
in adaptive process management systems. Data
and Knowledge Engineering, 64(1), 3-23.

Minor, M., Schmalen, D., Koldehoff, A., &
Bergmann, R. (2007). Structural adaptation of
workflows supported by a suspension mechanism
and by case-based reasoning. In Proceedings of
the WETICE’07 workshops, (pp. 370-375). IEEE
Computer Press.

Müller, R., Greiner, U., & Rahm, E. (2004).
AgentWork: A workflow system supporting rule-
based workflow adaptation. Data and Knowledge
Engineering, 51(2), 223-256.

Müller, D., Herbst, J., Hammori, M., & Reichert,
M. (2006). IT support for release management
processes in the automotive industry. In Proceed-
ings of the 4th Int’l Conf. on Business Process
Management (BPM’06), Vienna, Austria. (LNCS
4102, pp. 368-377).

Müller, D., Reichert, M., & Herbst, J. (2007).
Data-driven modeling and coordination of large
process structures. In Proceedings of the 15th Int’l
Conf. on Cooperative Information Systems (Coo-

pIS’07), Vilamoura, Algarve, Portugal (LNCS
4803, pp. 131-149).

Müller, D., Reichert, M., & Herbst, J. (2008). A
new paradigm for the enactment and dynamic
adaptation of data-driven process structures. In
Proceedings of the 20th Int’l Conf. on Advanced
Information Systems Engineering (CAiSE’08),
Montpellier, France (LNCS 5074, pp. 48-63).

Mutschler, B., Bumiller, J., & Reichert, M. (2006).
Why process-orientation is scarce: an empirical
study of process-oriented information systems in
the automotive industry. In Proceedings of the 10th
Int’l Conf. on Enterprise Computing (EDOC ‘06),
Hong Kong,433-440. IEEE Computer Press.

Mutschler, B., Reichert, M., & Rinderle, S. (2007).
Analyzing the dynamic cost factors of process-
aware information systems: a model-based ap-
proach. In Proceedings of the 19th Int’l Conf.
on Advanced Infor mation Systems Engineering
(CAiSE’07), Trondheim, Norway (LNCS 4495,
pp. 589-603).

Mutschler, B., Weber, B., & Reichert, M. (2008a).
Workflow management versus case handling:
results from a controlled software experiment.
In Proceedings of the 23rd Annual ACM Sympo-
sium on Applied Computing (SAC’08), Fortaleza,
Brazil, (pp. 82-89).

Mutschler, B., Reichert, M., & Bumiller, J. (2008b):
Unleashing the effectiveness of process-oriented
information systems: problem analysis, critical
success factors and implications, IEEE Transac-
tions on Systems, Man, and Cybernetics, 38(3),
280-291.

Mutschler, B., & Reichert, M. (2008c). On mod-
eling and analyzing cost factors in information
systems engineering. In Proceedings of the 20th
Int’l Conf. on Advanced Information Systems
Engineering (CAiSE’08), Montpellier, France
(LNCS 5074, pp. 510-524).

Pesic, M., Schonenberg, M., Sidorova, N., & van
der Aalst, W.M.P. (2007). Constraint-based work-

200

Enabling Adaptive Process-Aware Information Systems with ADEPT2

flow models: change made easy. In Proceedings
of the 15th Int’l Conf. on Cooperative Informa-
tion Systems (CoopIS’07), Vilamoura, Algarve,
Portugal (LNCS 4803, pp. 77-94).

Reichert, M., & Dadam, P. (1997). A framework
for dynamic changes in workflow management
systems. In Proc. 8th Int’l Workshop on Database
and Expert Systems Applications, Toulouse, (pp.
42-48).

Reichert, M., & Dadam, P. (1998a). ADEPTflex –
supporting dynamic changes of workflows without
losing control. Journal of Intelligent Information
Systems, 10(2), 93-129.

Reichert, M., Hensinger, C., & Dadam, P. (1998b).
Supporting adaptive workflows in advanced appli-
cation environments. In Proceedings of the EDBT
Workshop on Workflow Management Systems (in
conjunction with EDBT’98 conference), Valencia,
Spain, (pp. 100-109).

Reichert, M., Bauer, T., & Dadam, P. (1999).
Enterprise-wide and cross-enterprise workflow-
manage ment: challenges and research issues
for adaptive workflows. In Proceedings of the
Informatik’99 Workshop on Enterprise-wide and
Cross-enterprise Workflow Management, CEUR
Workshop Proceedings, 24, 56-64.

Reichert, M. (2000). Dynamische Ablaufände-
rungen in Workflow Management Systemen.
Dissertation, Universität Ulm, Fakultät für
Informatik.

Reichert, M., Dadam, P., & Bauer, T. (2003a).
Dealing with forward and backward jumps in
workflow management systems. Int’l Journal
Software and Systems Modeling, 2(1), 37-58.

Reichert, M., Rinderle, S., & Dadam, P. (2003b).
On the common support of workflow type and
instance changes under correctness constraints.
In Proc. 11th Int’l Conf. Cooperative Information
Systems (CooplS ‘03), Catania, Italy (LNCS 2888,
pp. 407-425).

Reichert, M., Rinderle, S., Kreher, U., & Dadam,
P. (2005). Adaptive process management with
ADEPT2. In Proceedings of the 21st Int’l Conf.
on Data Engineering (ICDE’05), Tokyo.

Reichert, M., & Rinderle, S. (2006). On design
principles for realizing adaptive service flows
with BPEL. In Proceedings EMISA’06, Ham-
burg (Lecture Notes in Informatics (LNI), P-95,
pp. 133-146).

Reichert, M., & Bauer, T. (2007): Supporting ad-
hoc changes in distributed workflow management
systems. In Proceedings of the 15th Int’l Conf. on
Cooperative Information Systems (CoopIS’07),
Vilamoura, Algarve, Portugal (LNCS 4803, pp.
150-168).

Reijers, H., & van der Aalst, W. M. P. (2005). The
effectiveness of workflow management systems:
predictions and lessons learned. Int’l Journal of
Information Management, 5, 457–471.

Rinderle, S., Reichert, M., & Dadam, P. (2003).
Evaluation of correctness criteria for dynamic
workflow changes. In Proceedings of the 1st Int’l
Conf. on Business Process Management (BPM
‘03), Eindhoven, Netherlands. Springer (LNCS
2678, pp. 41-57).

Rinderle, S., Reichert, M., & Dadam, P. (2004a).
Correctness criteria for dynamic changes in
workflow systems - a survey. Data and Knowledge
Engineering, 50(1), 9-34.

Rinderle, S., Reichert, M., & Dadam, P. (2004b).
Flexible support of team processes by adaptive
workflow systems. Distributed and Parallel Da-
tabases, 16(1), 91-116.

Rinderle, S., Reichert, M., & Dadam, P. (2004c).
Disjoint and overlapping process changes - chal-
lenges, solutions, applications. In Proceedings
of the 12th Int’l Conf. Cooperative Information
Systems (CoopIS’04), Agia Napa, Cyprus (LNCS
3290, pp. 101-120).

 201

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Rinderle, S., Reichert, M., & Dadam, P. (2004d).
On dealing with structural conflicts between pro-
cess type and instance changes. In Proceedings of
the 2nd Int’l Conf. Business Process Management
(BPM’04), Potsdam, Germany (LNCS 3080, pp.
274-289).

Rinderle, S., Weber, B., Reichert, M., & Wild, W.
(2005a). Integrating process learning and process
evolution - a semantics based approach. In Pro-
ceedings of the 3rd Int’l Conf. Business Process
Management (BPM’05), Nancy, France (LNCS
3649, pp. 252-267).

Rinderle, S., & Reichert, M. (2005b). On the
controlled evolution of access rules in cooperative
information systems. In Proceedings of the 13th
Int’l Conf. on Cooperative Information Systems
(CoopIS’05), Agia Napa, Cyprus. Springer (LNCS
3760, pp. 238-255).

Rinderle, S., & Reichert, M. (2006a). Data-driven
process control and exception handling in process
management systems. In Proceedings of the 18th
Int’l Conf. on Advanced Information Systems
Engineering (CAiSE’06), Luxembourg (LNCS
4001, pp. 273–287).

Rinderle, S., Reichert, M., Jurisch, M., & Kreher,
U. (2006b). On representing, purging and utilizing
change logs in process management systems. In
Proceedings of the 4th Int’l Conf. Business Process
Management (BPM’06), Vienna, Austria (LNCS
4102, 241-256).

Rinderle, S., Wombacher, A., & Reichert, M.
(2006c). Evolution of process choreographies in
DYCHOR. In Proceedings of the 14th Int’l Conf.
on Cooperative Information Systems (CoopIS’06),
Montpellier, France (LNCS 4275, pp. 273-290).

Rinderle, S., & Reichert, M. (2007a). A formal
framework for adaptive access control models.
Journal on Data Semantics, IX, (LNCS 4601)
82-112.

Rinderle, S., Jurisch, M., & Reichert, M. (2007b).
On deriving net change information from change

logs – the DELTALAYER algorithm. In Pro-
ceedings of the 12th Conf. on Database Systems
in Business, Technology and Web (BTW’07),
Aachen, (Lecture Notes in Informatics, LNI-103,
pp. 364-381).

Rinderle-Ma, S., Reichert, M., & Weber, B.
(2008a). Relaxed compliance notions in adaptive
process management systems. In Proceedings of
the 27th Int’l Conference on Conceptual Modeling
(ER’08), Barcelona, Spain. Springer, LNCS.

Rinderle-Ma, S., Reichert, M., & Weber, B.
(2008b). On the formal semantics of change
patterns in process-aware information systems.
In Proceedings of the 27th Int’l Conference on
Conceptual Modeling (ER’08), Barcelona, Spain.
Springer, LNCS.

Rinderle-Ma, S. & Reichert, M. (2008c) Manag-
ing the lfe cycle of access rules in CEOSIS. In
Proceedings of the 12th IEEE Int’l Enterprise
Computing Conference (EDOC’08), Munich,
Germany.

Sadiq, S., Sadiq, W., Orlowska, M. (2001).
Pockets of flexibility in workflow specifications.
In Proceedings of the 20th Int’l Conference on
Conceptual Modeling (ER’01), Yokohama, Japan,
(LNCS 2224, pp. 513-526).

Schonenberg, H., Weber, B., van Dongen, B., &
van der Aalst, W.M.P. (2008). Supporting flexible
processes by recommendations based on history.
In Proceedings of the 6th Int’l Conf. on Business
Process Management (BPM’08). Milan, Italy
(LNCS 5240, pp. 51-66).

Thom, L., Reichert, M., Chiao, C., Iochpe, C., &
Hess, G. (2008). Inventing less, reusing more and
adding intelligence to business process modeling.
In Proceedings of the 19th Int’l Conference on Da-
tabase and Expert Systems Applications (DEXA
‘08), Turin, Italy (LNCS 5181, pp. 837-850).

Van der Aalst, W. M. P., & van Hee, K. M. (2002).
Workflow management: models, methods, and
systems. MIT Press.

202

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Van der Aalst, W. M. P., ter Hofstede, A., Kie-
puszewski, B., & Barros, A. (2003). Workflow
patterns, Distributed and Parallel Databases,
14 (1), 5–51.

Van der Aalst, W. M. P., Weske, M., & Grünbauer,
D. (2005). Case handling: A new paradigm for
business process support. Data and Knowledge
Engineering, 53(2), 129-162.

Van Dongen, B., de Medeiros A., Verbeek,
H., Weijters, A., & van der Aalst, W. M. P. (2005).
The ProM framework: A new era in process
mining tool support. In Proceedings 26th Int’l
Conf. on the Applications and Theory of Petri
Nets (ICATPN’05), Miami, FL (LNCS 3536, pp.
444-454).

Weber, B., Wild, W., & Breu, B. (2004). CBRFlow.
enabling adaptive workflow management through
conversational case-based reasoning. In Proceed-
ings of the ECCBR’04 conference. Madrid, Spain
(LNCS 3155, pp. 434-448).

Weber, B., Reichert, M. Wild, W., & Rinderle, S.
(2005a). Balancing flexibility and security in adap-
tive process management systems. In Proceedings
of the 13th Int’l Conf. on Cooperative Information
Systems (CoopIS’05), Agia Napa, Cyprus (LNCS
3760, pp. 59-76).

Weber, B., Reichert, M., Rinderle, S., & Wild,
W. (2005b). Towards a framework for the agile
mining of business processes. In Proceedings of
the BPM’05 Workshops, Nancy, France (LNCS
3812, pp. 191-202).

Weber, B., Rinderle, S., Wild, W., & Reichert, M.
(2005c) CCBR–driven business process evolution.
In Proceedings of the 6th Int’l Conf. on Case-Based
Reasoning (ICCBR’05), Chicago (LNCS 3620,
pp. 610-624).

Weber, B., Reichert, M., & Wild, W. (2006) Case-
base maintenance for CCBR-based process evolu-
tion. In Proceedings of the 8th European Conf. on
Case-Based Reasoning (ECCBR’06), Ölüdeniz/
Fethiye, Turkey (LNCS 4106, pp. 106-120.

Weber, B., Rinderle, S., & Reichert, M. (2007).
Change patterns and change support features in
process-aware information systems. In Proceed-
ings of the 19th Int’l Conf. on Advanced Information
Systems Engineering (CAiSE’07), Trondheim,
Norway (LNCS 4495, pp. 574-588).

Weber, B. & Reichert, M. (2008a). Refactoring
process models in large process repositories. In
Proceedings of the 20th Int’l Conf. on Advanced
Information Systems Engineering (CAiSE’08),
Montpellier, France (LNCS 5074, pp. 124-139).

Weber, B., Reichert, M., & Rinderle-Ma, S.
(2008b). Change patterns and change support
features – enhan cing flexibility in process-aware
information systems. Data and Knowledge Engi-
neering, 66(3), 438-466.

Weber, B., Reichert, M., Wild, W., & Rinderle-
Ma, S. (2008c). Providing integrated life cycle
support in process-aware information systems.
Int’l Journal of Cooperative Information Systems
(IJCIS), World Scientific Publ. (to appear).

Weske, M. (2000). Workflow management sys-
tems: Formal foundation, conceptual design,
imple mentation aspects. University of Münster,
Germany, Habilitation Thesis.

Weske, M. (2007). Business process management.
Berlin: Springer.

KEY tErMs

Adaptive Process: Refers to the ability of the
process-aware information system to dynamically
adapt the schema of ongoing process instances
during runtime.

Ad-Hoc Process Change: Refers to a process
change which is applied in an ad-hoc manner
to a given process instance. Usually, ad-hoc
instance changes become ne ces sary to deal with
exceptions or situations not anticipated at process
design time.

 203

Enabling Adaptive Process-Aware Information Systems with ADEPT2

Change Pattern: Allows for a high-level
process adaptation at the process type as well
as the process instance level. Examples include
high-level changes like inserting, deleting and
moving process fragments. Change patterns can
be also used to assess the expressiveness of a
process change framework.

Compliance Criterion: Refers to a well-
established correctness criterion that can be ap-
plied to check whether a running process instance
is compliant with a modified process schema or
not (i.e., whether it can dynamically migrate to
this schema or not). For example, compliance
will be always ensured if the execution log of the
respective process instance can be produced on
the new schema as well.

Dynamic Process Change: Refers to a (struc-
tural) change that is applied to the schema of a
running process instance during runtime. After
the change, process execution continues based on
the new schema version of the process instance.

Process Schema Evolution: Refers to the
continuous adaptation of the schema of a par-
ticular process type to cope with evolving needs
and environmental changes. Particularly for
long-running processes, it then often becomes
necessary to migrate already running process
instances to the new schema version.

EXcErcIsEs

1. Which advantages do block-structured
process models offer with respect to process
change?

2. Why is it important to adjust the data flow
schema as well when inserting, delet-
ing or moving activities in a control flow
schema?

3. Which other process aspects, besides data
flow, may have to be adapted when applying
a change pattern to a process schema and
process instance respectively?

4. Consider the process schema resulting from
the change depicted in Figure 5 a). Assume
that activity G shall be deleted from this
schema. Draw the new schema version re-
sulting from this change. Try to avoid the
use of silent activities in this context.

5. Give examples of real-world processes where
ad-hoc deviations from the pre-defined busi-
ness process may become necessary during
process enactment!

6. Consider the process schema from Figure
1 and the corresponding instances from
Figure 4. Assume that new activity pre-
pare examination shall be serially inserted
between activities make appointment and
perform examination.
a. Draw the new process schema version

resulting from this change!
b. Which of the instances could migrate

to the new schema afterwards? Explain
your answer!

7. What are commonalities between the migra-
tion of process instances to a new schema
version (due to the evolution of the cor-
responding process type schema) and the
ad-hoc change of a single process instance?
What are major differ ences?

8. In which respect does the ability of a PAIS
to adapt process instances during runtime
foster process lifecycle management?

9. How can unchanged as well as changed
(i.e., biased) process instances be efficiently
stored in a PAIS? Give an example!

