

Fostering Reuse in the Business Process Lifecycle

- Challenges, Methods, Technologies -

Manfred Reichert

Motivation

- ☐ Processes can become very large and complex
- Thousands of concurrently executed process instances
- ☐ High need for flexibility and adaptability in all phases of the process lifecycle
- PAIS correctness and PAIS robustness are fundamental
- □ Reuse of process artifacts is crucial along the whole process lifecycle

Reusing Application Services in a "Plug & Play"-like Style

Reusing Application Services in a "Plug & Play"-like Style

Process Application Templates Service

Composing process-oriented applications out of process templates and application services

with system-enabled consistency checks

Reusing Application Services in a "Plug & Play"-like Style

"Classical" construction: Context-sensitive list of legal operations

"Classical" construction: Context-sensitive list of legal operations

"Classical" construction: Insertion of nodes ...

□ "Classical" construction: Insertion of data elements ... with continuous

Construction of processes in plug & play fashion

Construction of processes in plug & play fashion

Construction of processes by plug & play fashion: A wizard is guiding ...

Construction of processes by plug & play fashion: A wizard is guiding ...

□ Construction of processes by plug & play fashion

with continuous correctness checks

Construction of processes by plug & play fashion

Goal: No "bad surprises" at run-time!

Introduction: Lifecycle Support for Dynamic Processes

Reference Models and Process Configuration

Reuse Process Models through Configuration: Motivation

Reuse Process Models through Configuration: Motivation

Reuse Process Models through Configuration: Configuring Variants in Existing BPM Tools

Reuse Process Models through Configuration: The Provop Approach

General observation:

Process variants can be created by adapting a common reference model

Reuse Process Models through Configuration: The Provop Approach (Basic Elements)

Reuse Process Models through Configuration: The Provop Approach (Constraining the Use of Options)

Reuse Process Models through Configuration: The Provop Approach (Constraining the Use of Options)

Issues:

- Soundness of configurable process variants has to be ensured considering
 - > context dependencies
 - > option constraints
 - > syntactical correctness notions
- Several different process meta models with specific soundness and correctness criteria
 - generic approach needed
 - using existing verification techniques

Solution: Meta model independent framework to guarantee soundness of a process family

Step 1: Identify valid context descriptions Step 2: Calculate corresponding sets of options Step 3: Check whether options comply with constraints Step 4:
Apply
option set
to base process

Step 5: Check soundness of variant models

Step 1: Identify valid context descriptions

Step 2:
Calculate
corresponding
sets of options

Step 3:
Check whether options comply with constraints

Step 4:
Apply
option set
to base process

Step 5: Check soundness of variant models

Step 1:
Identify
valid context
descriptions

Step 2: Calculate corresponding sets of options Step 3:
Check whether options comply with constraints/

Step 4:
Apply
option set
to base process

Step 5: Check soundness of variant models

Context dependencies:

Step 1: Identify valid context descriptions

Step 2: Calculate corresponding sets of options Step 3: Check whether options comply with constraints Step 4:
Apply
option set
to base process

Step 5: Check Soundness of variant models

Step 1: Identify valid context descriptions

Step 2: Calculate corresponding sets of options Step 3: Check whether options comply with constraints Step 4:
Apply
option set
to base process

Step 5: Check soundness of variant models

Option constraints:

Step 1: Identify valid context descriptions

Step 2: Calculate corresponding sets of options Step 3: Check whether options comply with constraints Step 4:
Apply
option set
to base process

Step 5: Check soundness of variant models

Reuse Process Models through Configuration: The Provop Approach (Guaranteeing Soundness)

Step 1: Identify valid context descriptions

Step 2: Calculate corresponding sets of options

Step 3:

Check whether options comply with constraints/

Step 4: Apply

option set to base process Step 5: Check

soundness of variant models

Variant 1:

CURRENT CONTEXT: Maintenance = "Yes" security critical = "Yes"

- Depends on soundness criteria of underlying process meta model
- Using meta-model specific soundness checking algorithms

Variant 2:

CURRENT CONTEXT: Maintenance ="Yes" security critical = "No"

Variant 3:

CURRENT CONTEXT: Maintenance = "No" security critical = "No"

Reuse Process Models through Configuration: The Provop Approach (Proof-of-Concept Prototype)

Introduction: Lifecycle Support for Dynamic Processes

Re-applying ad-hoc changes in similar context!

REUSING PROCESS CHANGES in the small!

Change Patterns

ADEPT:

Individually adaptable Process Instances

Process Instance

=

(individual) "Process Program"

ADEPT:

Individually adaptable Process Instances

Process Instance

=

(individual) "Process Program"

Achievements:

- Formal process meta model (expressive + restricted enough)
- Formal Criteria for Change Correctness (incl. "Theorems & Proofs")
- Efficient, build-in consistency checks ("no bad surprise")
- Support of a high number of change patterns
- API for accomplishing ad-hoc changes

Start immediately, results are needed before explanation

of operation risks

The Users' View

The ProCycle (= ADEPT + CBRFlow) Approach for Assisting Users in Defining and Reusing Changes:

- ☐ Annotate ad-hoc changes with information about their reasons
- ☐ Support users in retrieving past ad-hoc changes applied in similar problem context
- Assist users in reusing (i.e., re-applying) a past ad-hoc change for a particular process instance when coping with an exceptional situation

Application Context Model

Type

Max

Min

Object

Operative Treatmen

The treatment of cruciate ruptures routinely includes a magnetic resonance tomography (MRT), an X-ray and a sonography. However, for a ပ် Case particular

patient the MRT may have to be skipped as the respective patient has

Initial Treatment &

Operation Planning

cardiac pacemaker. = <Delete(S_{τ} , MRT) >

{ (Does the patient have a cardiac pacemaker?, patient problemList hasPacemaker = 'Yes') }

Sonography

Semi-automated retrieval of similar *instance deviations* using conversational case-based reasoning (CCBR)

Retrieving similar instance deviations based on the actual context

= 'Yes')}	of the knee?,					
List of Questions with Possible Answers						
Question	Possible Answers	Possible Answers				
Does the patient have a cardiac pacemaker?	{Patient.problemList OTHERANSWER}	{Patient.problemList.hasPacemaker = ,Yes', OTHERANSWER}				
Does the patient have fluid in the knee?	{,A significant amou	{,A significant amount', OTHERANSWER}				
Does the patient have an acute effusion of the	{,Yes', OTHERANS\	{,Yes', OTHERANSWER}				
Query qu'		List of Retrieved Cases for Query				
Question	Given Answer	3	qu' 🚯			
Does the patient have a cardiac	OTHERANSWER	1	Case	Appl. Cont	ext Similarity	
pacemaker?			c2		36%	
Does the patient have fluid in the knee?	,A significant		c1		0%	İ

$$sim(qu,c) = \frac{1}{2} * \frac{same(qu,qaSet_c) - diff(qu,qaSet_c)}{|qaSet_c|} + 1$$

amount'

Retrieving similar instance deviations based on actual context + status

List of Retrieved Cases					
Case	Similarity				
c2	75 %	c ₂ does not have any effect, but is adjustable			
c1	0%	c ₁ is not case compliant and not adjustable			

Are the instance deviations of these cases compliant with the process instance to be modified?

Deriving Type Changes from Frequently Occuring Instance Changes

Deriving Type Changes from Frequently Occuring Instance Changes

 Δ_S = <CondInsert(S_I , Follow-Up Examination, Anamnesis & Clinical Examination, Discharge & Documentation),

 $CondInsert(S_I, Puncture, Follow-Up Examination, Discharge & Documentation>$

Introduction: Lifecycle Support for Dynamic Processes

Reuse Process Adaptations in the Large through Learning

Reuse Process Adaptations in the Large through Learning

Change Analysis: Applying Process Mining Techniques to Change Logs

Change Analysis: Applying Process Mining Techniques to Change Logs

Change Analysis: Applying Process Mining Techniques to Change Logs

Reuse Process Adaptations in the Large through Learning

Basic Goal:

How to *discover a reference process model*by mining a collection of *process (instance) variants*in order to

reduce the amount of future process adaptations?

Bias and Distance

- a) S: original process model
- ☐ Important measures:
 - bias
 - change distance
 measure the complexity of process changes

Reformulated Basic Goal:

How to *mine a collection of*process variants such that the

discovered reference process

model has minimal average

distance to the variants?

Process Variants Mining: A Cluster-based Approach

Process Variants Mining: A Cluster-based Approach

- This approach does not consider the old reference model when discovering the new one:
 - We cannot control the mining result, i.e., the new reference model might be quite different from the old one.
 - Migration from the old to the new reference model becomes costly
 - A spaghetti-like process structure may result
 - We would not know which change is more important than others.
- ☐ Idea: old reference model may act as a "counterforce" to control the result of our discovered model.

Possible starting point:

Can we find a model closer to the variants by applying at maximum two changes to the old reference model?

Basic Idea

Process Variants Mining: Automotive Case Study

Process Variants Mining: Healthcare Case Study

Process Variants Mining: Scenarios

Goal: Discover a (new) reference process model which requires less configuration efforts

Introduction: Lifecycle Support for Dynamic Processes

Implementing Changes (at the Technical Level)

Process Schema Evolution & Change Propagation!

Need to Change a Business Process

Process Designer /
Process Administrator

Process Designer Checks Out "Active" Process Template

Process Designer /
Process Administrator

Process Designer / Process Administrator

Process Designer Performs Schema Changes

Process Designer / Process Administrator

www.aristaflow-forum.de