
Jitter Considerations for Worst-Case Performance
Generation in Digital Controller Design

Tobias Bund, Steffen Moser, Steffen Kollmann and Frank Slomka
Institute of Embedded Systems/Real-Time Systems

Ulm University
Email: {tobias.bund | steffen.moser | steffen.kollmann | frank.slomka}@uni-ulm.de

Abstract—One domain of cyber-physical systems are dis-
tributed control systems. The requirements for a control system
are correctness, stability and control performance. One issue
when designing such a controller is that the timing behavior
of the system architecture has a direct impact on the control
performance. In this paper, we present an approach which allows
us to consider the timing during the controller design flow.
Further we propose an approach which allows us to include
the maximal occurring jitter in a control loop. Based on this,
we propose a new co-design method of real-time and control
systems. The controller is designed based on the results of the
average delay estimated by the real-time simulation to reach
best performance in most cases. It is then verified with the
worst- and best-case end-to-end delay bounds calculated by
real-time analysis methods. In the last step, the worst control
performance regarding the jitter is evaluated by constructing a
bad-delay sequence. This approach combines real-time simulation
and analysis for best controller design and verification under
worst-case timing.

I. INTRODUCTION

As the requirements of embedded systems are increasing,
we can see more and more complex architectures consisting of
many inter-networked electronic control units (ECUs). Taking
the automotive industry for example, we can find up to seventy
ECUs in a modern upper-class vehicle. Each ECU consists of
various subcomponents like general and application-specific
processing units, communication networks and memory archi-
tectures. An ECU can be a host for multiple tasks which bring
the challenge of finding a suitable task schedule. All these
degrees of freedom result in a large design space whereof the
system engineer has to choose a solution which must fulfill
all requirements that have been specified for the system.

One possibility to avoid problems when dealing with com-
plex architectures and timing issues are to design an over-
sized platform. In oversized platforms, consisting of more
communication and computation resources, there is in general
less influence among tasks regarding their timing behavior. In
most embedded systems, especially in the automotive domain,
there is a trend in reducing costs and energy by resource
sharing. This results in a more efficient usage of the available
resources and bandwidths, but introduces a non-determinism
in the response times of tasks. Additionally, there are future
trends in embedded systems like multi-core architectures that
lead to timing effects, caused by task migration, that need to
be considered.

One commonly required task in embedded systems is con-
trolling a physical system. This results in real-time constraints,
which, if violated, can not only have a negative impact on
the control performance but may also let the system fails
completely. In embedded systems it is not uncommon that
tasks of a controller, like gathering sensors values, calculating
the actuating signal and driving the actuators are distributed
over more than one ECU. This is, for example, the case if one
sensor value is needed for more than one technical process.
For safety-critical systems it is necessary to know that the
system behaves at any time as classified. For example, in a
car suspension control system a poor controller performance
has direct influence on car maneuverability and therefore car
stability.

A goal in the design of distributed closed-loop control
systems is to achieve that the system remains stable and stays
in the desired performance bounds for all possible disturbances
and timing effects. Hence it is necessary to consider the
underlying architecture in the controller design. So the relevant
timing effects, the average and worst-case delays and the jitter
of the delay have to be extracted. In the literature the jitter
is mainly described statistically, but in this paper, a special
attention is devoted the worst-case jitter behavior.

Finally a new controller design flow is presented that com-
bines the classical controller design with real-time simulation
and analysis, extended with worst-case jitter behavior. The
main idea behind this design flow is to design the controller
with the knowledge of the average delay that appears in the
control loop. In the next step, the design is verified against the
worst-case conditions.

The structure of the paper is as follow: In the next section
we present the problem of jitter in a closed-loop control
system and the work that has been done in this field of
research. Section three describes our system model, containing
the controller and the plant as well as the model, needed for
real-time analysis. Based on the results of real-time analysis
and simulation, we define the model of timing effects, that
are relevant for our method. The next section discusses the
influence of jitter on closed-loop control systems. In the
fifth section, we present a design flow for an embedded
controller by exploiting the described jitter transformation.
Section six illustrates our approach in an example, followed
by a conclusion.

II. PROBLEM FORMULATION AND
RELATED WORK

In complex cyber-physical systems it is very common to
have tasks which share resources for computation as well as
for communication. This creates dependencies among tasks
which may lead to delays when tasks cannot be executed or
messages cannot be sent while the resources are busy. These
delays can occur in a constant and in a varying manner during
the run-time of the system. Differences among two consecutive
time-varying delays are called jitter.

In the following, we will mainly focus on the jitter effects
on control loops. We assume that the control loop is distributed
over the system and uses shared resources which lead to
both, constant and time-varying delays in the communication
with the controller. In controller design, two main criteria are
important: stability and control performance. We will focus on
the control performance in the following.

Control performance can be defined in several ways, the
most common definitions are:
• as maximum overshoot of the step response
• as phase margin
• as integral of absolute error (IAE) or integral of squared

error (ISE)
• as settling time in the step response
The control performance can be seen as a meter to eval-

uate the quality of a controller. While still being stable, a
controller can show a poor performance which means, for
example, too much stress for a mechanical system, too high
energy consumption or even a safety risk. Both, stability and
performance are influenced by the constant delay times and
the jitter which occurs in the system. In many applications
a poor control performance is not acceptable, so there is a
strong need for a method which allows to derive the worst
performance that can be expected for a given dead time and
jitter.

A control loop which suffers only from a constant delay
can be handled much easier than jitter. A constant delay, also
called dead time in the domain of control theory, leads to a
degradation of the control performance, but it can easily be
considered in the design step of a controller because the system
remains time-invariant. Therefore, the methods for controller
design remain valid. Thus, there exist some well-founded
approaches that offer possibilities to integrate the constant
delay into stability and performance considerations, when
developing a controller application. One approache which
allow to cope with dead time is the Nyquist stability criterion
[1], a simple graphical stability criterion, where the gain and
phase of a frequency response of the open control loop are
plotted. Out of this Nyquist plot, a phase margin can be read
that provides an amount of dead time which can be added to
a closed-loop control system before it becomes unstable.

Based on the Nyquist criterion and the small gain theory,
Kao and Lincoln defined the jitter margin which is a simple
stability criterion for systems with time-varying delays in [2].
Cervin et al. further improved this stability criterion in [3] by

splitting the time-varying delay in a constant delay and jitter,
resulting in a less pessimistic test. But it is, as stated above,
not always sufficient to know that the system behaves stable
in all occurrences of dead time and jitter.

An approach to consider the effects of jitter to the control
performance is presented by Lincoln and Cervin in [4]. They
developed the Matlab toolbox Jitterbug which is based on
the ISE performance criterion. The closed-loop digital control
system with delays is modeled as a Markov Jump Linear
System. The evolution of this system with a time-grain leads to
a corresponding covariance of the state, from which the costs
can be calculated. Due to the stochastic manner, this approach
is not sufficient for deriving the worst-case performance and
therefore does not help to analyze the signal behavior in the
worst-case scenario.

Alternative approaches are jitter compensation techniques
as published by Lincoln in [5], where additional information
in the form of time stamps has to be propagated through the
system, leading to a higher utilization. Another approach is the
controller parameter adaption, based on the estimated jitter. A
method to avoid jitter effects in a control loop is the usage of a
time-triggered communication method, as used by Goswami et
al in [6], where sample and actuate only act on constant sample
times with a delay of one sampling period. For systems with
limited resources, where the sensor value can not be sampled at
high rates, a delay of one sample time can lead to unacceptable
control performances. Additionally, a clock is needed in the
actuator that needs to be synchronized.

The above described approaches do not allow to derive the
jitter-caused worst-case performance of the controller or they
require additional effort to compensate the jitter. Our approach
is to construct a delay sequence for given bounds with
knowledge of the control signal sequence. This “bad-delay-
sequence” causes the worst possible control performance. In
the next section, we will introduce a system model which is
the basis for a method that will provide a solution for this
problem.

III. SYSTEM MODEL

To analyze the performance, behavior and stability of a
closed-loop control system, we need to model the system.
A common platform for control modeling and simulation is
Matlab/Simulink. The plant that needs to be controlled consists
of continuous blocks, which represent a differential equation.
Another way to model a physical system would be in the form
of a transfer function in laplace domain.

The architecture surrounding the plant is modeled by blocks
out of the SimEvents [7] toolbox. This is due to the event-
based simulation engine SimEvents provides, following the
discrete event-based behavior of networking elements and
computation units. SimEvents blocks contain queuing, routing
and serving elements to model delays according to the effects
in a distributed architecture or in a multi-core environment.
The controller itself is built out of discrete blocks, as it is
implemented on a computation unit. In sum, the described
model guarantees a flexible and transparent way to simulate

Network

Actuator
node Process Sensor

node

Controller
node

u(t) y(t)

δc
k

δsc
kδca

k

Fig. 1. Model of a distributed closed-loop control system with network
delays (δcak) and (δsck) and computational delay (δck) based on [10].

the system with maximum relation to real behavior. From this
model, we can derive a graph, representing the system model.
A more detailed description about this approach can be found
in [8].

Real-time systems are modeled, including tasks, holding
a best-case and a worst-case execution time. These tasks
are mapped to a resource, where their execution order is
determined by their priority. A resource can be a processor
or a network with a limited capacity. The tasks are linked
to event chains according to their logical execution order and
stimulated by sources, specifying an amount of events per time
units as shown in [9]. It is also possible to generate a graph
representation of the real-time model (a task graph) as given
in [8].

In [8], also a way is described to link a functional Matlab/Si-
mulink model to the real-time analysis by using a bijective
mapping. This is sufficient in most cases, as it regards only
constant delays in the control loop. As we will see in this
paper, we have to expand this to simulation results and to the
amount of jitter that can occur.

Figure 1 shows an example of a closed-loop control system
with several sources of delays (δk), where (δk) may vary within
every k-th sample. In the presented system model, the sensor
samples the data (y(t)) from the plant with a constant period
(h).

Thereby, we assume an ideal sensor with an ideal clock
(no sampling jitter and no clock drift) that samples the sensor
value at fix sample times (tk = k · h) with k ∈ N and a
constant sample period (h = tk+1− tk). The following blocks
are event activated. This means, whenever a block finishes
its execution, or the time allocated to this block expires, the
next block starts its execution. At the end of the chain, an
actuator transforms the control sequence (uk) in a stepwise
constant continuous signal (sample-and-hold). As mentioned
above, the delays (δk) are caused by the execution times and
the blocking times of the controller task, plus the delays in
the network communication.

The next section describes how to calculate valid response-
time bounds based on real-time verification methods.

A. Calculating Time Delays
As mentioned, a time delay in a closed-loop control system

has a direct impact on the control performance. In embedded
systems these time delays are mainly induced by tasks (τi)
which do not hold resources exclusively. Therefore, tasks or
messages can be blocked or interrupted by other tasks or
messages which lead then to time delays which are denoted
as response times (r(τi)).

In early design phases two possibilities are available to
determine these times. The first one is to simulate the system
and to extract from the trace files the response times (r(τi)).
Another possibility is to perform a real-time analysis deliver-
ing absolute bounds for the worst-case (r+(τi)) and best-case
(r−(τi)) response times.

The simulation has the advantage that the average behavior
of the system is considered. From this the average response
and jitter times of a closed-loop control system can be derived.
The great disadvantage of the technique is that corner cases are
not necessarily considered, since a simulation has the typical
coverage problems. Therefore analytical methods have to be
used, able to calculate bounds for the worst-case and best-case
response times in the system. One popular method is the real-
time calculus [9]. The idea is to calculate bounds for the time
behavior based on the min/plus and max/plus algebra.

For this paper the INCHRON Tool-Suite 2.3.0 [11] is used
which enables the possibility to apply both techniques: sim-
ulation and validation. Consequently the condition r−(τi) ≤
r(τi) ≤ r+(τi) holds and allows it to explore the whole time
behavior of a system.

As we will show in section V this condition can be used
by a Matlab/Simulink model to analyze different scenarios.
Since both approaches cover the possibility to calculate the
end-to-end delay in a closed-loop control system, it is possible
to consider the maximum, minimum and average end-to-end
delay. Hence, one scenario could be to explore the closed loop
with maximum or minimum delay. Another scenario is to con-
sider a variable delay between maximum and minimum end-
to-end delay with arbitrary probability distribution functions
and therefore the effect of jitter.

But the question arises, how to create the worst-case per-
formance for a given controller using the results of the real-
time tools. As we will show in the following sections, the
worst-case performance regarding the jitter can be created by
a mixture of timing, functional behavior and knowledge of the
chosen performance criteria and therefore the pure real-time
tools results of a system are not sufficient.

When dealing with jitter, we have to differentiate between
sampling jitter and sampling-actuating jitter. Sampling jitter is
caused by different values for the sampling period, which does
not occur in our system model. We only focus on the sampling-
actuating jitter, that is caused by different values for the time
delay. For controller applications it is adequate, to identify
the response time of tasks in the event-chain of the control
loop. Thus, there exist multiple jitter sources in the signal flow
of a distributed controller. Assuming, the control loop is not
nested or chained in any way, the jitter sources can be summed

together to one jitter in the closed loop. The maximum jitter
of a task (τi) is defined as ji = r+(τi)−r−(τi). The summed
maximum and minimum end-to-end delays can be described
as δmin =

∑
i r
−(τi) and δmax =

∑
i r

+(τi) for all tasks (τi)
in the control loop event chain. Thus the maximum round-trip
jitter, that can occur is jmax = δmax − δmin.

IV. INFLUENCE OF JITTER ON CLOSED-LOOP CONTROL

In this section, we present a method capable of identifying
the delay sequence that causes the worst performance degrada-
tion. We focus in our consideration on the maximum overshoot
on a step response as performance criteria. This is a suitable
criteria, because it is intuitive to identify in the plot of the
control signal and relevant for many real-life systems like car
suspension control. Thereby we assume a sufficiently small
maximum end-to-end delay (δmax < h), which means no
sampled value gets lost.

To identify the maximum overshoot of a closed-loop control
system when influenced by a reference value or a specific
disturbance, we need three kind of information from our
system. First of all we need the actuating signal sequence (uk)
that affects the system. This sequence can be determined out
of a simulation or a measurement of the controlled system.
Further we need to know the behavior of the system on an
impulse on the actuating signal. The sequence of the so called
impulse response is denoted as (φk). Finally the time step
(m · h), when the overshoot occurs must be known.

As the end-to-end delay from sensor to actuator can vary
between (δmin) and (δmax), the time when the actuator begins
to affects the process lies between (tk+δmin) and (tk+δmax).
This means, a time varying end-to-end delay modifies the
duration, on which an actuating signal (uk) affects the process.
The maximum duration on the actuator is given as (h+ jmax)
and the minimum as (h−jmax). Figure 2 displays an example,
where the actuating signal is extended to the duration of
(h+ jmax). As we can see, the maximum additional impulse
on the system is a function of the maximum possible jitter and
the step size between two consecutive actuating signals, e.g.
(uk) and (uk+1).

In our approach, we take advantage of this influence on
the duration of the actuating signal to manipulate the process
in a manner to construct worst performance or the highest
overshoot respectively. The result is of course an improbable
but nevertheless possible scenario.

To reach worst performance, we modify the duration of the
actuating signal with the maximum amount of absolute jitter
that can occur, resulting in the most possible expansion or
reduction of the actuating signal duration. When expanding the
actuating signal by (jmax), one either can retain the duration
of the next actuating signal as the sample period (h), or reduce
it by (jmax).

The choice, which sample to delay and which to shorten by
the maximum jitter depends on two factors. The first one is the
difference between two consecutive actuating signals defined
as ũk = uk+1−uk. The second factor is the impact of the error,
made by jitter in the future, when the overshoot appears. This

uk

uk+1

tk tk+1 tk+2tk+1

jmax

h

tk + δmin tk+2 + δmin
+δmin

Fig. 2. Additional impulse on the system, caused by the additional delay of
(jmax).

is done by the above described impulse response. Since the
error made by the maximum jitter (grey area in figure 2) has
a sufficiently short duration in relation to the sample period,
it can be seen as an impulse on the system. This impulse
is weighted by (m − k)-th element of the above described
impulse response sequence (φm−k), to get the influence from
an expansion on k-th actuating signal on the overshoot at m-th
sample time.

If this procedure is done for all possible sample times up
to (m ·h), the result is a sequence that identifies the impact of
(jmax) on the overshoot for all sample times. By expanding
the actuating signal duration on the local maximums of this
sequence by the maximum jitter and shorten the duration for
the local minimums, the bad delay sequence is defined.

V. CONTROLLER DESIGN FLOW

In this section, we propose a design flow for an embedded
controller by considering time-varying delays based on the
idea presented in section IV.

According to figure 3, the system engineer defines the
platform design of the distributed system at the design en-
trance. On the other side, the task architecture, that defines the
mapping between functionality and software tasks is derived
from the controller design and other functions in the system.
By mapping the task architecture to the hardware platform, the
system architecture is specified. In this step, the scheduling is
assigned to the tasks.

In the next step, suitable information about the occurring
end-to-end delays of the messages that are exchanged by the
components of the distributed controller has to be acquired.
These delays are variable during the run-time of the system
within an interval of best-case and worst-case end-to-end-
delay.

To get the best control performance over the run-time of
the system, the designer has to optimize the controller and to
parametrize its settings in a way that holds best performance
at the average end-to-end delay that occurs in the system.
Therefore, the average end-to-end delay has to be known in
advance of the controller design. It can be obtained from a
simulation of the system’s real-time behavior which has been
described in section III-A.

Task ArchitecturePlatform Design

System Architecture

Verification Methods

Analysis Simulation

Average
End-To-End

Delay

Best-Case/
Worst-Case
End-To-End

Delay

Controller Analysis

MATLAB/Simulink
Simulation Stability Analysis

Controller
Design

Worst-Case
Jitter-

Performance

System
Design

System
Evaluation

Fig. 3. Proposed new design flow for an embedded controller to consider
the effect of time-varying delays to control performance.

While this leads to a controller that delivers its optimum
performance in the average case, we must consider both,
stability and performance for delay times higher or lower than
the average. But this is not enough: We have also to consider
the influence of the end-to-end delay jitter.

At the first step, we focus on the minimum and maximum
end-to-end delays which can occur in the system. The real-
time simulation we used in the previous step to gather the
average end-to-end delay shows the coverage problem which is
quite common for simulations, which means that simulations
do not necessarily find the best and worst case end-to-end
delays. This makes clear that we cannot rely on the simula-
tion only. Therefore we make use of deterministic real-time
analysis to get the absolutely best- and the worst-case end-
to-end delays which can occur in the system. By using this
information, we simulate our controller to check if it holds the
stability and performance requirements even for the absolute
minimum and maximum end-to-end delays.

As previously discussed, not only constant end-to-end de-
lays affect the stability and performance of a controller, they
rather suffer much stronger from time-varying end-to-end
delays jittering between the maximum and minimum value.
Based on the method we present in section IV, we identify
the performance degradation due to jitter.

If the controller analysis does not hold the requirements,
the system design, including the controller, platform and task
architecture and even the scheduling have to be adjusted,
which leads to a re-design phase. If system specifications are
violated, the system design needs to be redesigned.

Fig. 4. Model of active car suspension based on [12].

VI. EXAMPLE

In our example, we demonstrate our approach on an active
car suspension control. An active car suspension control is
implemented for comfort and for car stability reasons. To
affect the chassis dynamic, a linear electric motor is placed
between wheel and chassis. In [12] a simplified model of a
suspension control is proposed and the mathematic equations
of motion are derived. The model consists of a spring-mass-
damper system and a linear motor, modeled as a force (Fa)
between chassis and wheel (see figure 4). The wheel itself is
modelled as a spring to the ground. As the model covers only
a quarter of the car, the mass (mb) denotes a quarter of the
car’s mass and (mw) the mass of one wheel. The dynamics
can be described in the form of a linear state-space model

ẋ(t) = Ax(t) +Bu(t) (1)

with parameters

A =


0 0 1 −1
0 0 0 1

− k1

mb
0 − c1

mb

c1
mb

k1

mw
− k2

mw

c1
mw

− c1
mw

 ,

B =
(
0 0 1

mb
− 1

mw

)T
.

Thereby the system input is denoted as (u) and the state vector
as (x). A detailed description of the states can be found in [12].

The controller is designed as a digital control. Therefore
equation 1 is discretized by the zero-order hold model, ana-
logous to a digital-to-analog converter. The control system is
then in the form of the following difference equation

x(k + 1) = Ax(k) +Bu(k) (2)

with state vector x(k) including n state variables. The accord-
ing state feedback

u(k) = −Kx(k) (3)

is calculated by pole placement.
Our control objective is to minimize the difference between

road and wheel (zw − zr) after a disturbance on the road in
form of a stepwise displacement, as displayed in figure 4. The
smaller the difference (zw− zr), the better the car handling in
the case of a disturbance. Hence, car suspension control is a
safety-critical system in the automotive domain.

δ δmin δmax jmax

0.636mm 0.757mm 3.790mm 4.974mm

TABLE I
OVERSHOOT CAUSED BY DELAY

Based on the controller design with a sample time of
10ms and the surrounding functionality, a task architecture
is derived. The platform architecture consists of three ECUs,
interconnected by a CAN bus. In our case, the messages
assigned to the control loop have the lowest priority on the
CAN bus. Hence, a system architecture is defined with a
bus speed of 500 kbit/s resulting in an overall utilization of
25.88%.

The described real-time system was simulated for a duration
of 3600 s, leveling off a distribution of the end-to-end delay.
The average end-to-end delay (δ) can be calculated out of the
histogram as an arithmetic mean value.

Based on the average end-to-end delay δ = 1786µs,
an improved controller with optimized parameter setting is
designed. This is done by an improved model of the system,
including the average end-to-end delay (δ). A consequence,
when considering δ < h in the controller design is that the
state vector (x(k + 1)) does not only depend on the actual
actuator signal (u(k)), but also on the previous one (u(k−1)).
This is done by expanding the state space vector with the
additional state variable

xn+1(k) = u(k − 1). (4)

We obtain the new differential equation

(
x(k + 1)

xn+1(k + 1)

)
=

(
A b−1
0′ 0

)(
x(k)

xn+1(k)

)
+

(
b0
1

)
uk (5)

where the coefficients (b−1) and (b0) are calculated, as
described in [13] and depend on the amount of delay (δ).

For the ascertained average end-to-end delay and a road-
displacement of 10mm, the maximum overshoot of (zw− zr)
is 0.636mm.

According to that, the controller design is verified against
the highest possible end-to-end delay δmax = 8790µs that
possibly can occur. This delay is calculated from real-time
analysis methods, described in section III-A, resulting in a step
response with an overshoot of 3.79mm. The real-time analysis
also identifies an minimum end-to-end delay that causes an
overshoot of 0.757mm.

Finally an even worse performance, referring to the max-
imum overshoot, can be constructed by assuming a jitter
alternating between minimum and maximum end-to-end delay.
This is done out of the methods described in section IV. The
overshoot of the system, when it is delayed with the bad-delay
sequence, is 4.974mm.

When the overshoot exceeds our specification, we need to
redesign our system by adapting our controller, modifying our
platform or assigning a new scheduling.

VII. CONCLUSION

In this paper we presented an approach for a digital
controller design by using results from a real-time simula-
tion to determine the average end-to-end delay to design a
controller with best performance in most cases. Afterwards,
the controller design is verified against the best-case and
worst-case end-to-end delays, calculated by real-time analysis
methods, to check if the control performances in these points
of operation are satisfying. We could also construct an even
worse performance by combining real-time analysis results
with system characteristics.

To improve the results and push the worst-case performance
to a more optimistic and valid direction, the maximum step
between two consecutive delays has to be regarded. Or, in
other words, is it possible, that a maximum end-to-end delay
(δmax) can follow the minimum end-to-end delay (δmin) or
vice versa?

One further challenge would be to develop an analysis
method that allows to check whether a specific system is
more sensitive to a constant delay or rather to jitter. One
possibility to reduce the jitter sensitivity would be to increase
the sample rate of the controller. This would cause in general
smaller differences between two consecutive actuating signals
and therefore would reduce the influence of jitter. However,
a higher sample rate would possibly result in higher response
times. This tradeoff needs to be studied in further research.

REFERENCES

[1] H. Nyquist, “Regeneration Theory,” Bell System Technical Journal,
vol. 11, no. 1, pp. 126–147, 1932.

[2] C.-Y. Kao and B. Lincoln, “Simple Stability Criteria for Systems with
Time-Varying Delays,” Automatica, vol. 40, 2004.

[3] A. Cervin, B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo, “The
Jitter Margin and Its Application in the Design of Real-Time Control
Systems,” in 10th International Conference on Real-Time and Embedded
Computing Systems and Applications (RTCSA), Göteborg, Sweden, Aug.
2004.

[4] B. Lincoln and A. Cervin, “Jitterbug: A Tool for Analysis of Real-Time
Control Performance,” in Proceedings of the 41st IEEE Conference on
Decision and Control, Las Vegas, NV, Dec. 2002.

[5] B. Lincoln, “Jitter Compensation in Digital Control Systems,” in Amer-
ican Control Conference, 2002, Anchorage, AK, USA, May 2002.

[6] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of Cyber-
Physical Systems via Controllers with Flexible Delay Constraints,” in
16th Asia and South Pacific Design Automation Conference (ASP-DAC),
Yokohama, Japan, 2011.

[7] “SimEvents,” http://www.mathworks.com/products/simevents/.
[8] T. Bund, S. Moser, S. Kollmann, and F. Slomka, “Guaranteed Bounds

for the Control Performance Evaluation in Distributed System Archi-
tectures,” in Proceedings of the International Conference on Real-Time
and Embedded Systems (RTES 2010), Singapore, Sep. 2010.

[9] E. Wandeler, “Modular Performance Analysis and Interface-Based De-
sign for Embedded Real-Time Systems,” Ph.D. dissertation, ETH Zurich,
September 2006.

[10] J. Nilsson, “Real-Time Control Systems with Delays,” 1998.
[11] “Inchron Tool-Suite 2.3.0,” http://www.inchron.com.
[12] K. Hyniova, A. Stribrsky, J. Honcu, and A. Kruczek, “Active Suspen-

sion System with Linear Electric Motor,” WSEAS TRANSACTIONS on
SYSTEMS, vol. 8, pp. 278–287, 2009.

[13] M. S. Branicky, S. M. Phillips, and W. Zhang, “Stability of Networked
Control Systems: Explicit Analysis of Delay,” in Proceedings of the
American Control Conference, Chicago, Illinois, Jun. 2000.

