Advanced Hierarchical Event-Stream Model and the

Real-Time Calculus

Karsten Albers, Steffen Kollmann, Frank Bodmann, Frank

Slomka
Embedded Systems / Real-Time Systems, University of UIm
{surname.name}@uni-ulm.de

6. March 2008

Abstract -Analyzing future distributed real-time systems, autom®énd avionic sys-
tems, requires compositional real-time analysis techasgiVell known established tech-
nigues as Sympta/S and the real-time calculus are candiftatsolving the mentioned
problem. However both techniques use quite simple eventelaodSympta/S is based
on discrete events the real-time calculus on continuoustifioms. Such simple models
has been chosen because of the computational complexibheafansidered mathemati-
cal operations required for real-time analysis. Advanoespiproximation techniques are
allowing the consideration of more expressive descrigtiohevents. In this paper such
a new expressive event model and its analysis algorithm eseritbed. It integrates the
models of both techniques. This also allows to propagatapipeoximation through the
analysis of a distributed system leading to a much more efficinalysis.

We will also show the integration of the the hierachical éx&ream model and there-
fore the event driven real-time analysis, the periodic, tiedsporadic task model with the
real-time calculus. For the event-driven real-time analyffexible approximative analysis
approaches are proposed to allow an efficient real-timeysisal\WWe will provide an easy
but powerful approximative description model for the réale calculus. In contrary to
the existing description model the degree of approximatarhoosable allowing a more
accurate description.

2. RELATED WORK 3

1. Motivation

The module-based design processes make it possible togtliedtomplexity in soft-
ware and hardware design. Systems are built using a setsddimodules. These mod-
ules can be designed and developed separately. They havdesignated interfaces and
connections to other modules of their set. The purpose ofutaoidation is to split the
challenging job of designing the whole system into multigealler jobs, allow the reuse
of modules in different designs or to include IP componehthiod-party vendors.

Every module-based design concept requires a well definedaese-concept for con-
necting the modules. Developing real-time systems regtinethis interface-concept also
to cover the real-time aspects of the modules. A conceptireal-time analysis is re-
quired to handle the modules separatly and allows a projegaft the real-time analysis
results through the system. Itis necessary to propagatesiés of the real-time analysis
of the different modules in an abstract way. The global asiglig built by connecting the
local analyses of the single modules. Therefore it is etislelo have an expressive and
efficient interface describing the influence in timing of anedule to the next module.
One aspect of this interface is the timing description ofws&hich are produced by one
module to trigger the next following module. Another aspgsthe remaining computation
capacity for the next module left over by the previous module

Consider for example a network packet processor as showgurefil. The single
packages are processed by chains of taskhich can be located on different processing
elements$. The processing elemerfescan be processors, dedicated hardware or the com-
munication network. The even&triggering the different tasks are equal to the packages
flowing through the network. Each processing uhitses a fixed-priority scheduling and
the tasks on each unit are sorted by their priority level. lBaskt has, as available ca-
pacity, the capacit left over by the tasks with a higher priority located on the same
processing unit.

The purpose of this paper is to provide an efficient and flexdgproach for the real-
time analysis of such modularized systems. Therefore a golvend sufficient event
model for describing the different time interfaces for tliedent aspects is necessary.

2. Related work

The most advanced approach for the real-time analysis &f aunodulare network
is the real-time calculus by Thiele et al7][[16]. It is based on the network calculus
approach, especially on the concept of arrival and servicees defined by Cruf[and
Parekh and Gallagei.?].

The event pattern is modeled by an arrival cuay€Al) which denotes the number of
events arriving within a time interval of lengtki, a}(Al) denoting the upper bound and
a}(Al) the lower bound for this curve. These functions are subtgdand deliver for

2. RELATED WORK 4

FIGURE 1. Network processor example

everyt the maximum or the minimum number of events respectivly. 3émwice curves
BY(Al) and B} (Al) model the upper and lower bound of the computational reqéres
which can be handled by the ressource during a time intefdahgthAl. The real-time
calculus provides equations to calculate the outgoingalrand service curves out of the
incoming curves of a task.

To make it possible to evaluate the modification equatiodspendently from each
other, a good finit description for the curves is needed. Tdrapdexity of the relation-
ship equations depends directly on the complexity of thicdption. In [L1] and [7] an
approximation for the arrival and service curves was pregdas which each curve is de-
scribed by three straight line segments. One segment besdtie initial offset or arrival
time, one segment the initial bursts and one segment thetiimegate. As outlined in4]
this approach is much to simplified to be suitable for comglestems. It has only a fixed
degree of exactness. No suitable description for the fanés known so far.

In this paper we will propose a model for the curves havindecsable approximation
error. It allows a trade-off between this degree of accueaythe necessary effort for the
analysis to become possible.

Sympta [14],[15] is another approach for the modularized real-time angly&he idea
was to provide a set of interfaces which can connect diffeegant models. Therefore
the different modules can use different event models folyaiga Unfortunatly, the event
models for which interfaces are provided are quite simpl¢14] an event model covering
all these models is described. The problem of these modsatisnultiple bursts or bursts
with different minimum separation times cannot be handlgaitptively.

2. RELATED WORK 5

Events

YYY YYY VYV vvYy ovvy

Time

FIGURE 2. Example Event Stream

However in [L3] a real-time analysis problem was formulated, which caa'sblved
by Sympta/S and the real-time calculus by each techniquieigxly. To solve it, it is
necessary to integrate the models of both techniques ire@owerful new model.

The event stream model proposed by Gres$@f \With its extension the hierachical
event stream model proposed by Albers et §lchn model systems with all kinds of bursts
efficiently. The problem is that it can only model discretemg and not the continious
service function as needed for the real-time calculus.

2.1. Event stream model. For the event stream model a system is described by a set
of communicating tasks. Each task is assigned to one resoyrc@he properties of each
taskt = (C:), c,d) are given by the worst-case execution timeand the deadlind; of the
task and an event patte@triggering the tasks activations.

The key question is to find a good model for the event paélerﬁor real-time analysis
this model has to describe the worst-case densities of afliple event patterns. They lead
to the worst-case demand on computation time. Comparirsg tiverst-case demands with
the available computation time allows to predict the schedullity of a system. The event
stream model gives an efficient general notation for the tdyeand function.

DEFINITION 2.1. ([10, 3, 1]) The event bound functio(Al,®) gives for every in-
tervalAl an upper bound on the number of events occuring from the steamO in any
interval of the lenghAl.

LEMMA 2.2. ([1Q]) The event bound function is a subadditive function. Thatmee
that for each intervalAl and AJ the number of events generated within the intefdtad AJ
is smaller or equal than the sum of the maximum number of exgarterated i\l and
maximum number of events generatedJdn

Y(Al +AJ,0) < Y(AlLO) + Y(AJ,0)

PROOE Y{(Al,©), Y(AJ,©) return the maximum number of events possible within
anyAl or AJ. The events il\l 4+ AJ have to occure either iAl or in AJ. Therefore the
condition holds. O

DEFINITION 2.3. An event strear® is a set of event elemenfs Each event element
is given by a period and an offse&. (6 = (T,a))

01 =1{(6,0),(6,1),(6,3)} (figure 2) describes three events requiring at least an-inter
val Al = 3 to occure, two of them have a minimum distance of 1 time u@iss repeated

2. RELATED WORK 6

At N T T R N
A et SR TR R S

o S BT RPN

FIGURE 3. Example event stream9[]

with a period of 6. In cases where the worst-case density @rfitavis unknown for a con-
crete system, an upper bound can be used for the event stigammodel can describe
any event sequence. Only those event sequences for whiclniéion of sub-additivity
holds are valid event streams.

LEMMA 2.4. ([1Q]) The event bound function for an event stre@rand an interval |

is given by:
Al —ag
Y(AlLO) = { + 1J
ege To
Al>ag
PROOF See B] O

It is a monotonic non-decreasing function. A larger intéfeagth cannot lead to a
smaller number of events. An event stream is called homaggifiit contains only event
elements sharing the same period or event elements havinfjriihperiod.

In figure 3 some examples for event streams can be found. Eherfie®s = {(T,0)}
has a strictly periodic stimulus with a peridd The second examp@g = { (,0), (T, T —
i)} shows a periodic stimulus in which the single events caarjitvithin a jitter interval
of sizej. In the third exampl®; = {(T,0), (T,0), (T,0), (T,t) } three events occur at
the same time and the fourth occurs after a timehis pattern is repeated with a period of
T. Event streams can describe all these examples in an easytaitide way. The offset
value of the first event element is always zero. The reasdmaisthis value models the
shortest interval in which one single event can occur.

For the real-time analysis for this model let us first repé&agedemand bound function
definition for the event streams:

waLn =y Y(Al—dr,er)cr_v;r vgze {T+1J Cr

vrelr
Al >ag+dr

Let 6 be an event element belonging to the event str@wvhich belongs to the task

2. RELATED WORK 7

FIGURE 4. Approximated event stream element

The demand bound function allows a schedulability anakgsisingle processor sys-
tems by testing whether for every intenal the demand is equal or smaller than the
available capacity for this interval. Formally it is tested

VAl 1 W(ALLT) < %(Al)

Often an idealized capacity functicgi with € (Al) = Al is assumed. For an efficient
analysis an approximation is necessary.

2.2. Approximation of event streams.

DEeFINITION 2.5. ([3]) The approximated event-bound-function

Let T be the task triggered by the event stre@nhaving the event stream elemeéht
and k be a chosen number of steps which should be considerdueftask exactly. Let
Alg = dr +ap +KT. We cal¥'(Al, 6, 1,k) with

WAL8.K _{ w(Alg,k,e)JrCTLg(Al —Dlgy) Al >Algy
Y(Al, B) Al < Alg

the approximated event bound function for task

The function is shown in figure 4. The filsevents are evaluated exactly, the remain-
ing events are approximated using the specific utilizatlgr= CTLg The interesting point
of this function is that the error can be boundectgg = + and therefore does depend
on the selectable number of steps only, and is independahteafoncrete values of the
parameters of the tasks.

The complete approximated event-bound function for thenestream model is the
sum of the approximated event-bound function for the sitag&:

W (Al T, k) = Z GZ W' (al, 6,k)
VTelr VOO

The hierachical event stream modg] gxtends the event stream model and allows a
more efficient description of bursts. In this model an evéetnent describes the arrival

4. MODEL 8

not only for just one periodic event but also of a completeo$gieriodic events. This set
of events can also be modeled by an event sequence havingatitimin the number of
events generated by this event sequence. One limit of thifehi®that it can only describe
discrete events. For the approximation it would be appadgifor the model to be capable
also to describe the continuous part of the approximatedtdaind function.

3. Contribution

In this paper we will present an event model covering botadilcrete event model of
Sympta/S and the continuous functions of the real-timeutadc It makes the elegant de-
scription of event bursts in a more tighter way than in the it approach possible and
allows a tighter modeling of the continuous function of tkealrtime calculus by integrat-
ing an approximation with a chooseable degree of exactnésshie model. This does not
only lead to more flexible and simpler analysis algorithma,ibalso allows to propagate
the approximation together with the event models throughdiktributed system leading
to an efficient, flexible and powerful analysis methodology the distributed real-time
systems. The new model can, of course, also model the sdwricgons of the real-time
calculus in the same flexible way and allows therefore thagiration of the discrete event
model of Sympta/S with the continuous service functions.

We will also propose a simple but flexible and powerful apjprative model for the
explicit description of the curves of the real-time calauldThis model combines the de-
scription of arrival and service curves efficiently andatdo model them with a selectable
degree of exactness. This approximation follows the satmerse than the existing approx-
imation for event models as proposed3h [Therefore it is possible to transfeer previously
existing event models, like the periodic or the sporadik tasdel, the event stream model,
the sporadically task model, the model of Sympta/S or thehihical event stream model
in this new model. This allows the integration of the appnaaiive analysis for the event
models and the real-time calculus to a new powerful overalysis for the distributed
systems.

We will outline this transfer methods for the various evertd®ls and the resulting
real-time analysis for the new model for EDF and static jitjascheduling. For the real-
time calculus the new model provides a flexible and efficigpraximative description of
the curves. We will give the concrete algorithm for this middeall operationen necessary
to implement the real-time calculus. This is the first cotemmplementation of the real-
time calculus which is not based on three line-segmentsdici eurve only.

4. Mode€

We will define the hierachical event sequence first. The hibreal event stream is
only a specialised hierachical event sequence fulfillirgdbndition of sub-additivity and
can therefore be described by the same model.

4. MODEL 9

1_

1 5 10Time

FIGURE 5. Example of a simple periodic event sequence

DEFINITION 4.1. A hierachical event sequené= {8} consists of a set of hierar-
chical event elemenfeach describing a pattern of events or of demand which isategke
periodically. The hierarchical event elements are desliby a 5-tuples:

6=(T,al,G,0)

whereTy is the periodag is the offset|q is the limitation of the number of events
or the amount of demand generated by this element during enedyG, and(:)é are the
time pattern showing how the events respectively how theatiehis generated.

The gradientG; describing a constantly growing set of events, gives theberrof
events occurring within one time unit. A val@; = 1 means that after one time unit one
event has occured, after two time units two events and solbmgiiadient allows modeling
approximated event streams as well as modeling the capHei®gources. Both cases can
be described by a number of events which occurs respectiselype processed within one
time unit. (:)é is again a hierarchical event stream (child event streangiwik recursively
embedded irf.

CONDITION 4.2. Either®; = 0 or G5 = 0.

Due to this condition it is not necessary to distribute tingittation between the gra-
dient and the sub-element. This simplifies the analysisaumitiestricting the modelling
capabilities.

The arrival of the first event occurs afi@time units and ad+ T, a+ 2T, a+ 3T, ...,
a+iT (i € N) the other events occurs.

DEeFINITION 4.3. A hierarchical event stream fulfills for evefyt,AJ the condition
Y(Al +A3,0) < Y(AlLO) + Y(AJ,0)

In the following we will give a few examples to show the usagd &he possibilities
of the new model. A simple periodic event stream as outlindjure 5 with period 5 can
be modeled by :

6:=1{(5,0,1,0,e)}

4. MODEL 10

LEMMA 4.4. Let© be an event stream wit® = {64,...,6,}. © can be modeled by
O ={B1,....60} with & = (Tg, a4, 1,2,0)

PrROOF Each of the hierarchical event elements generates examtl\event at each
of its periods following the pattern of the correspondingrelement. O

6, approximated after 10 events would be modeled by:
R 1
@lo = {(OO’ Oa 101 Oa {(51 21 11 Oa e)})7 (001471 007 ‘_E)’ 0)}
Note that 47.u. = 2t.u. + (10— 1) - 5t.u. (t.u. = timeunit) is the point in time in
which the last regular event occurs and therefore the sténeapproximation.
One single event is modeled by:

éZ = {(00,0, 150070)}

A gradient ofeo would lead to an infinite number of events but due to the lititaonly one
eventis generated. An event bound function requiring @ikt 0.75 time units processor
time within each time unit can be described by:

6, = (w,0,0,0.75,0)

With the recursively embedded event sequence any possitikxip of events within a burst
can be modeled. The pattern consists of a limited set of svepeated by the period of
the parent hierarchical event element. For example a béifsteoevents in which the
events have an intra-arrival rate of 2 time units which isetpd after 50 time units can be
modeled by:

63 ={(50,0,5,0,{(2,0,1,0,0)})}
The child event stream can contain grand-child event stsedmr example iD; is used
only for 1000 time units and than a break of 1000 time unitedgired would be modeled
by

64 = {(20000,100,0,03)}

The lengthAl of the interval for which the limitation 06 is reached can be calculated
using a interval bound functios (x,) = min(Al |x = Y(Al, ®)) which is the inverse func-
tion to the event bound functigpZ (1, 0) = 0):

o |5
Aly=7(,65)+2
Ga
Note that this calculation requires the condition of the eldtat eitherG; = 0 or
éé = 0 and that the calculation of the interval bound functiogquiees the distribution of

|5 onthe elements (ﬁ)é.

4. MODEL 11

AEEEEEREELALLLEEERS
0 10 20 30 40

FIGURE 6. Example for overlapping events of different periods

4.1. Assumptions and Conditions. For the analysis it is useful to restrict the model
to event sequences having no overlapping periods. For dedfigure 6):

65 = {(28,0,15,0,{(3,0,1,0,0)})}
The limitation intervamé6 has the length:
Alg = (15-1)-3=42
The first period0,42] and the second peridd8, 70] of the event sequence element over-

lap.

CONDITION 4.5. (Separation Conditionf) fulfills the separation condition if the in-
terval in which events are generated by Gr (:)é is equal or smaller than its period,T

|A
<Té

S15:9g) + 5 <

(3>}

or
Ta
Gy

Ty < Y(T5,05) +

The condition 4.5 does not reduce the space of event patteahsan be modeled by
a hierarchical event sequence.

LEMMA 4.6. A hierarchical event sequence elemérhat does not meet the sepa-
ration condition can be exchanged with a set of event se(quelaxmentsél, .., B with

S(15,6) A - A
k:{ T‘; -‘and9|:(kTé,(l—l)Té+aé,Ié,G@,@é)-

PROOF The proof is obvious and therefore skipped. O

©s can be transferred inlég meeting the separation condition:
5 = {(56.0,15,0,{(3,0,1,2,0)}),(56,28,15,0,{(3,0,1,,0)})}

The separation condition prohibits events of differentégequence elements to over-
lap. We also do not allow recursion, so no event element cahéehild of itself (or a
subsequent child element).

4.2. Hierarchical Event Bound Function. The event bound function calculates the
maximum number of events generateo@)within Al.

4. MODEL 12

LEMMA 4.7. Hierarchical Event Bound FunctidffAl, ©):
Let for anyAl, T definemodAl, T) = Al — |4 | T andY{(Al,0) = 0.

Y(AlL®) = Y(Al, 6)
A|Zaé
Al—ag
min(lé, (Al — aé)Gé
Y(ALB) =< YAl —a,,6p)) Ty = 00,Gy # 0

6
Al—aj, .
|55 |1+ min(l,
mod(AI —aé,Té)Gé
+Y(mod(AI — aé,Té),C:)é)) Té #* OO,Gé % o0

PROOF Due to the separation condition it is always possible tduhe the maxi-
mum allowed number of events for completed peric@ﬂs?%J Ié). Only the last in-
complete fraction of a period has to be considered sepgraten(...)). This remaining
interval is given by subtracting all complete periods, ane offseta from the interval
Al (mod(AI —aé,Té). It has to be distinguished whether the gradient or the ahikeht
stream generates the events. In case of the child eventrsttba number of events is
calculated by using the same function with the remainingrirgl and the new embedded
event sequence. In case of the gradient the number of eesitaply the product of the
gradient and the interval length. The limitation boundsbatiues. O

Independently of the hierarchical level on which an eveguisace element is located
it is considered only once during the calculation for oneiivl. This allows bounding the
complexity of the calculation. It is not necessary for theusences to be homogeneous.

EXAMPLE 4.8. © = {(20,6,10,0,{(3,0,2,1,0)}. Y(Al,®;) is shown in figure 7.
Y(33,0%) is given by

- 27) -
Y(33,0g) = {TAJIé+m|n(lé,mod(27,Té)Gé+Y(m0d(27,Té),Oé))
27 _ . _ .
= | 5g| 10+ min(10,0+Y(7,05)) = 10+min(10,Y(7,0p))
Y(7,6) = Y(7.0)= EJ-2+min(2,mod(7,3)-1+O):4+1:5
Y(33,0¢) = 10+min(10,5) =15

4.3. Reduction and Normalization. In the following we will reduce event streams
to a normal form. The hierarchical event stream model allssveral different description

4. MODEL 13

Events
30 T

20 T

FIGURE 7. Hierarchical event sequené)g

for the same event pattern. For example an event stream
© = {(100,0,20,0,05)}
with
6a={(5,0,2,2,0),(7,2,3,1,0)}
can be rewritten as
6 =1{(100,0,10,0,8,1),(100,0,10,8,)}

with

éa,l = (55 07 27 007 0)
and

éa,z = (77 27 37 17 0)
Event streams having child event streams with several alentents can be transformed
into streams having only child streams with one elements @Hows a better comparison
between different hierarchical event streams:

LEMMA 4.9. An event strean®, = {(Ta, aa,la,0,0,)} with a child elemen®,, =
{A(Tl/’ ay, IA’1, Gy, (:?1), = (Te, a{A(, ko C o ©,)} can be transferred into an equivalent event stream
Op With ©p = {0a1,6a2, ..., Ban, Bax} having only child event sequences with one element

where
bi = (T.aY(Als85),0,8,)
Ay = 1lim(7(15,0,) —¢)
&8

Oax = (@ 5(a,0)lam 5 Y(dla,6}),,0)

4. MODEL 14

ProoOFE We have to distribute the limitatiol on the elements of the child event
sequence. First we have to find the interl for which the limitation of the parent
element, is reached by the child event sequeﬁi‘ap Al’ is given byf(la,@)’a). We have
to calculate the costs required for each of the child evemfiesiece elements fdxl’. It is
given by Y(Al’, él). The problem is that several elements can have a gradientahictly
at the end ofl’. In this situation the sum of(Al’, 8) may exceed the allowed limitation
I5 of the parent element. The total costs is bounded by the blobaation I, rather
than the limitationd/. To take this effect into account we exclude the costs oguyrr
exactly at the end of\l’ for each hierarchical event element and we handle thess cost
seperately modeling them with the hierarchical event et&régx. To do so we calculate
the limitation not byY(Al’,8/) but by Y(Al' — €, 8') wheree is an infinitly small value
excluding only the costs occurring at the end\fexactly. O

4.4. Capacity Function. The proposed hierarchical event stream model can also model
the capacity of processing elements and allows to descy#ieras with fluctuating capac-
ity over the time. In the standard case a processor can handlgme unit execution time
during one time unit real time. For many resources the capecnot constant. The rea-
sons for a fluctuating capacity can be such as operatioessytsisks or variable processor
speeds due to energy constraints.

Assuming the capacity as constant also does not support alaration of the anal-
ysis. This is especially needed for hierarchical schedwdimproaches. Consider for exam-
ple a fixed priority scheduling. In a modular approach eadatrity level gets the capacity
left over by the previous priority level as available capacthe remaining capacity can be
calculated step-wise for each priority level taking onlg temaining capacities of the next
higher priority level into account. Such an approach is gragsible with a model that can
describe the left-over capacities exactly.

DEFINITION 4.10. The service functio(Al, p) gives the minimum amount of pro-
cessing time that is available for processing tasks in atgrial of sizeAl for a specific
resourcep for each intervall . It can also be modeled with the hierarchical event sequence
model.

The service function is superadditiv and fulfills the inetipa (Al + AJ) > B(Al) +
B(AJ) for all Al,AJ. The definition matches the service curves of the real-tialeutus.
We propose to use the hierarchical event stream model aphiciesescription for service
curves.

In the following we will show, with a few examples, how to mbélactuating service
functions with the hierarchical event streams. The constapacity, as shown in 8 a) can
be modeled byfasic= {(,0,,1,0)}

Blocking the service for a certain timéfigure 8 b) is done byByiock = {(o0,t,0,1,0)}

4. MODEL 15

30001

2000+

1000 +

Costs Costs
8004 3000 +
200 | 2000
100 L 10001

T T R R L S
100 200 1000 2000
c)

FIGURE 8. Example service bound functions

A constantly growing service curve in which the service sclked periodically every
100 time units for 5 time units (for example by a task of therafiag system)Brpiock =
{(100,5,95,1,0)} (figure 8 c))

The service for a processor that can handle only 1000 tints with full speed and
than 1000 time units with half speed (figure 8 d)):

Buary = {(20001000500 7), (20000,10001,0)}
These are only a few examples for the possibilities of thig madel.

4.5. Operations. In the following we will introduce some operations on hietscal
event sequences and streams. These are operations to agthaes) to shift them by
certain time values, for example the deadlines, and to shala with for example costs
values. The operations are necessary for the schedufebaits.

4.5.1. Adding(+). The add operation for two event streams can be simply rehlize
by a union of the sets of event elements of the two event sgeam

DEFINITION 4.11. (+ operation) Leta, Og,Oc be hierarchical event streams. If
Oc is the sum of®a and Og (B¢ = Oa + Og) than for each intervall the equation
Y(Al,Oc) = Y(Al,O4) + Y(Al, Op) is true.

LEMMA 4.12. (+ operation) The sur®¢c = O + Og can be calculated by the union
of the event stream elementﬁﬂ, éB:

éc e éAU éB
PROOF

Y(ALOc) = Y(Al,Gp)+ Y(AlGg)

4. MODEL 16

= 3 Y(Al, 6) + > Yalé)
6cOa vBecop

= > Y(Al, 6)
vHcOAUOg

= Y(Al,0,UBpR)

O

The operation works with hierarchical event sequences dsaweavith hierarchical
event streams. It inherits the properties of theperation, so the function is commutative
as well as associative.

4.5.2. Shift Operation(<—, —). The shift operation can be realized by adding or sub-
tracting the shift-value from each offset of all top-levigraents of the event stream. When
subtracting, the shift value has not necessarily to be empuahaller than the smallest off-
set. The event bound functio(Al,®) with Al > 0 can handle negative offsets even
though that negative intervals are not defined.

DEFINITION 4.13. (- shift-operation) Le® be an event sequence that is shifted right
by the valud resulting in the event sequen@é= © — t . Thus the event bound functions
have the following relationship:

YAl —t,0) Al >t

0 else

YA, =

LEMMA 4.14. Y(Al,0) —t = Y(Al,®) if & contains and only contains for each
element) of © an elemen®’ € &' having the following relations t8: Ty = Tj , a3 =
aé+t » Ny =Ny ,@é, :@é , Gé, ZGé

The operatioré’ = O —tcanbe performed by adding the valu® the offseta; for
each event elemefte O for its corresponding counter-elemetite &'

PrROOR

YAl -t,0) = Y vt 2)

60O
Al >t

= 3 Y (Al —t—ag,0)
6co
Alzaéth

= 3 Y (Al - (ag+1),8)
6co
Alzaéth

= 3 Y (Al —ag,8)
6co
Alzaéth

= Y(l,®)

4. MODEL 17

O

The operation to shift a value left by the valueﬁ(— t) can be defined in a similar

way.

DEFINITION 4.15. (— shift-operation) Le® be an event sequence that is shifted left
by the valud resulting in the event sequenéé: © —t . The event bound functions have
the following relationship:

Y(AlL,@') = Y(Al +1,0)

LEMMA 4.16. Y(Al,0) —t = Y(Al,®) if & contains and only contains for each
elementd of © an elemen®’ € @ having the following relations té: Ty =Ts,a5 =
ag—t,ng =ng,05=0;,Gyz =G,

PrROOR

YAl +1.0) = Y Y(Al+t,6)
6O

= 5 Y +t—a3,6)

6cO
A|Zaé7t

= 5 Y —(a3—1),8)

6cO
A|Zaé7t

= Y Yi-a,8)=Y00)

6cO
A|Zaé7t

O

This operation also works on both sequences and streansastsociative with the
operation so we hav@®a + Gg) —t = (G4 — t) + (O — t) and(Ga+ Op) «—t =
—1)+(6Gg —t)aswellagOp—Op) —t = (Op — 1) — (O — t) and(Op — Op) —
= (Gp 1) — (@ —t). Having(® — t) — v we can rewrite it a® — (t + V), having
O — t) « vwe can rewrite it a® — (t —v).

4.5.3. Scaling with a cost valué). Another operation on event streams is to scale
the total stream by a cost value. This is, for example, necgdsr the integration of the
worst-case execution times into the analysis. If the evieeéém uses the number of events
as unit, it is necessary to scale it for analysis with the woase execution time.

+

(+)
(Oa
t
(

DEFINITION 4.17. Let® be the hierarchical event streg@nscaled by the cost value
¢ (& = c®). Than for each intervall the corresponding event bound functions have the
relationship

Y(AlL©) =cY(AlLO)

5. SCHEDULABILITY TESTS 18

LEMMA 4.18. Y(Al, @) = cY(Al, ©) if the child set ofd contains and only contains
for each elemend of the child set 0® an elemen®’ € @ having the following relations
to 6: Té, = Té, aé, = aé , I"lé, = cné ,@é, = C@é s Gé = CGé

All parts of the hierarchical event sequence elementsaeltt the amount of events
are scaled by the variabte

PROOF
cY(AlL®) = cY(Al, 6)
A|Zaé
min(cly, cGy (Al — az) +cY(Al, Op) Tg=o0
. Cl" G~ = 00
cva, gy = 8 %l

{N;%J clg +min(cly,cGzmod(Al — a3, T;)+
+cY(modAl —ag,T3),05)) Tg #
= Al-ay .
{ 1P "J l5 4+ min(l5,Ggmod Al —ag, Tz)+

+Y(modAl —ag,T;),04)) Tg# oo

Y(Al, 8

The operation works with both, streams and sequences.
4.6. Utilization.

LEMMA 4.19. The utilization Y of a task set in which the event generation patterns
are described by hierarchical event streams is giverf(byr € NA (V0 € (:)T)|(Ié # ooV
s
Ur = Yvrer Yvaco, T_Z + Yvrer Zvléeé)r (Uéé + Gé)
Tr#o 5=

T@ =00

Note that event-elements with an infinite period and a fimbté&tion do not contribute
to the utilization.

5. Schedulability tests

For the schedulability tests of uni-processor system usiedierarchical event stream
model analysis, we can integrate the approximation and th#ahle capacity into the
analysis.

5. SCHEDULABILITY TESTS 19

In the following we will show how an efficient schedulabiligst can be realized with
the introduced model and operations. We will first discussstthedulability test for a uni-
processor system using EDF (Earliest Deadline First) adivegd Later we will extend the
result to fixed priority scheduled systems.

5.1. Schedulability testsfor dynamic priority systems. The general schedulability
analysis for EDF is the processor demand criterion but usiegilemand bound function
for the hierarchical event streams. A system scheduled&iitk is feasible if for all inter-
valsAl the demand bound function does not exceed the service mgtidl) < € (Al, p).
Both, the demand bound and the service function can be descand calculated out of
hierarchical event streams. This leads to the test:

Y(Al —d;, 8)c; < €(Al,p)
Vrervgeér
The analysis can be done using the approximation as propoggldFor the exact analysis
an upper bound fohl, a maximum test interval is required to limit the run-timetlod test.
For the hierarchical event stream model one maximum testvak available is the busy
period. An upper bound for it is given by:
A() =minQl[E (A1) > S YAl Or)cr)
vrel

5.2. Response-time calculation for static priority scheduling. In the following we
will show how a worst-case response time analysis for sdiveglwith static priorities can
be performed with the new model. The request bound functidecutates the amount of
computation time of a higher priority task that can integfand therefore delays a lower-
priority task within an intervalAl. In contrast to the event bound function the request
bound function does only contain the events of the starttheévents of the end point of
the interval. The request bound function can be calculasatithe event bound function
in the following way:

d(AlLT) = Alml (Y(4,07)cr)
0<A<Al

For the hierarchical model it is only necessary to handle#se\l = 0 differently than in
the calculation of the event bound functigh(Al,T") = 3 yrer Cr Y ypco, PAI, 6,1) with

Al—ag
s To=e
o(81.6,1) 0 Al —a;<0
T) =
s Al-ag :
|52 |15+ min(l5, Gy (A1 — ag+
®d(modAl —aé,Té),(:)é)) else

With this function it is possible to calculate the worsteassponse times for the tasks:

6. APPROXIMATION 20

LEMMA 5.1. Let T be scheduled with fixed priorities afg ;) containing all task
with a higher priority thant. The response time T 1) for the first event of; is given by:

r(ti1) = min(Al% (Al) > ¢t + P(AlL Thyr))

The value forAl can be calculated by a fix-point iteration starting with= c;. To
calculate the maximum response time it is necessary to dodleailation for all events
within the busy period.

The busy period of a task set is the maximum interval in whighresource is com-
pletely busy, so in which does not exists idle time for theuzse:

2(T) =min(Al|€(Al) > ®(AI,T))

LEMMA 5.2. The worst-case response timetofan be found in the busy period of
any task set containingand). Itis the maximum response time of glly7) where:

r(J,1) = voLnAiln< (AHE(I+Al) > Y(I)er + PI+AlL Thpr)))
r(r) = maxo<y<zm(r(Jd,1)

Jis less or equal than the busy peridd<{ #4(I")). This minimum response time has
to be lower than the deadline of the task.

6. Approximation

To limit the number of test intervals and therefore the cotaponal complexity we
integrate the approximation approach 8f.[We can now integrate the approximation
directly into the model. We allow the approximation of anmvelement to start after the
necessary number of test intervals are reached globalthi®element, independently in
which period of the parent event element this happens. & tte the event elemeftis
a child element of another (parent) event elen@nte have to distinguish fo’ between
those periods in which is evaluated exactly and those in whitis approximated. To do
this it is necessary to splé’ at the last exactly considered intervalébf

6.1. Casesimplesequencewith gradient. Let us consider first a simple hierarchical
event elementd = {(T,a,1,G,0)}

ok is the approximative counter-part fér starting with the approximation aftdsr
exactly considered test interva8¥ is modeled by:

6k = {(oo,o,lA,o,é>,(oo,aA,|,G,o>7(oo,as,oo,}—ﬂ))}

withlp=kl,apn =a+kT,ag=ap+ 'G For the special case with = o we haveap = ag.

EXAMPLE 6.1. Letus, for example considér= {(10,0,3, 1,0)}. The approximation

65 for © afterk =5 exactly considered test intervals is given by

& = {(=,0.150,{(10.0.3.3,0)}). (,503, 3,0), (¢ 56,00, =5 0)}

6. APPROXIMATION 21

wherelp =5-3=15,a5=0+5-10=50,ag = 50+% =56. We can simplify this example
to: ’
3

é5 = {(00707 18707{(1070737%70)})7 (001561007 an)}

Consider another examp@= {(10,2,3,»,0)} with G = . The approximatio®©
is given by:

élo = {(00707 30,0, {(107 2,3, 0, 0)}’ (007 1033, 0)’ (007 103 e, %70)}

or shorter: 3
0'%={(=,0,330,{(10.2,3,,0)},(«, 103, 7 . 0)}

6.2. Approximation of one-level child element. Let us consider a hierarchical event
sequence with one child element:

6 = (T,al,08)
o = (T.4,G,0
Ok is given in this case by:
6 = {(=,0,14,0,6°),

(oovaAv kIl — lAvov{(Taa/allleaw)a

I’ I’ I
(Tva/+_ I_I/ 0)})’(007aB7X’0070)7(00,aB’007?70)}

G’ T
The first element 06k models the part in which the child-elemdditis considered
exactly. In case that the first possible approximation iratfor 6’ occures within the first
period off, we have to start the approximation within this first pericbcﬁo Otherwise it
would not be possible to find a reasonable bound for the nuoflaensidered test intervals
for 6. S06° depends on whethér< kI’ or | > kI’. We have

5] | <kl
{(T,0,1,0,6™)} I >kl
A N [5 [5
9*:{@@m@w@mwﬂ%mmm+ém%@}
6 6
The calculation of, Ig, aa, ag andac are done as follows:

- (e

I >kl

]T+a 1<K
aA:
T+a | > kI

ag = kT+a+d

6. APPROXIMATION 22

Costs ’_’_,_,_r

limitation

FIGURE 9. Cased’ approximatedé not approximated

The approximation 08’ can be done by an elemebtt with a gradienGgx = %

When starting finally the approximation 6fa cost-offsek is required to ensure that
the approximated functioN(Al,ék) is always equal or higher than the exact function
Y(Al, é). Figure 9 outlines this situation. This cost-offset is resagy as a new period of
the parent element splits the approximation of the childhelat. The calculation of can
be done as follows:

l—x = y_ll_—

Y

y gives the interval between the start of the child elenf¥nand the point in time
in which the limitation off is reached. The reaching of the limitation is calculated us-
ing the approximative description of the child elementsAofvith the seperate consid-
eration of every first event of. For a simple child elemerfl = {(T,a,1,0,8')} with

0’ = {(T',d,I’,0,0)} this valuey is given by

y-a)- () = 1V

-1 I
y == I—,+a/:T/I—/—T/+a/
'

6. APPROXIMATION 23

Hence forx:
L]

=l t3 -7

EXAMPLE 6.2. Let us consider the example hierarchical event seguenc

6 =1{(80,2,16,0,0)},6' = {(10,2,3,»,0)}

For the approximatio®1° we get the values:

kl’ 10-3

kl’ 10-3
an — ’7|——‘T+a—’7F—‘80+2—162
as = KT-+a=10-80+2=802
y = T'll—/—T/—i—a/:101—;3—10—#2:45.3333
B yy 45333\
X = |(T)_16(1 o) = 69333
6 = {(«,0,32,0,{(80,2,16,0,{(10,2,3,%,0)})}),
(1621280, {(=0,2,3,,0), (=, 2,0, = 0)
3 16
(80527137E70)}7(°°a802;693330030)3(0078020078_030)}

6.3. Approximation of n-level child element. Let us consider the following hierar-
chical event element with two levels of child elements

6 = {(T.al,0,6))
6 = (14,08}
é// _ {(T// a .G 0)}
We consider the approximatid. 6 is given by
B = {(«,01,0,6°1),(=,an,15,0,6%),

!/
(c,28.1c.0. {(T.& X..0), (T.&.1 ~X. 2.0},

(0,86, %.,0), (.2, 7,0)}

6°1 depends on whethér< kI” or | > kI”. We have

.] I <kl”
0°1 = R
{(T,0,1,0,6™)} 1 >kl"

A A | 5 [5
8’ = {(,0,kl3,0,8), (0,kTs,15,Gg,0), (0, kT + =, 00, & 0)}
Gy Tp

6. APPROXIMATION 24

6°, depends on whethér< kI’ or | > kI’. We have

R) | <kl
0% =

|// |//

{(T’,a”, |//,G//,0), (T/,a” + o |/ — |//’ ﬁﬂ))} [> kI’
The calculation ofa, aa andlg is easy and straight forward:

. R IRECE

I [> kl”
[. < kI
. [H]r=1a 1<k
0 [>kl
lc = kl—(Ia+Ig)
’V%"—‘T-Fal-i-a | <kI”
aA =
T+d+a | > kl”
K’ < kI
" SRR
T I >kl
ac = kT+a

The calculation o¥ is the same as the calculation foin the previous section. We
have
y _ T//! _T//+a//

|I/

e

The calculation ok and y is similar but using the approximation@f. We have

|I

y-a)(5) = 1=
T X7
R
_ T-y
()
Note that, if setting¢’ = |” the calculation ok’ andy’ on the one side andandy on

the other side are the same. Therefore the proposed ddxmrfmnt(:)k can be generalized
to handle event sequences with n-level child event seqgefite calculation is visualized
in figure 9.

In the following we will demonstrate a example by extending éxample 6.2.

EXAMPLE 6.3. Let us consider the example hierarchical event secqlfanc

© = {(100010,1000,&)}

6. APPROXIMATION 25
@ = {(80216,0,0")}
0" = {(102,3,2,0)}

For an approximatioé10 in whichk = 10 test intervals are considered exactly we get
the values:

y = —163_ 32— 453333
(10)
X — 16 <W)_6,9333
80
y = 200989 5 467333
(z0)
1000-67.333
x = 100 <W5>_53'2667
or = {(oo,o,loo,o,é%fi),(oo,lolz100,0,{(00,2,3,00,0),(oo,z,oo,8—3’0,@),
3 6.9333
(80,2,13,E,(D)}),(oo,201Q800,O,{(oo,2,6.933aoo,0),(m,z,m,m,)
16 100
(10002,93.0667 -, 0)}), (2, 10010532667, 0,0), (2, 1001Qe0, - -5 0)}

035 = {(«,0,32,0,{(80,2,16,0,{(10,2,3,0,0)})}), (e, 162 3,00,0),

3 3
(00,162 oo, 30’ 0),(80,162 13, 10 0)}

6.4. Approximation of element with several child elements. A hierarchical event
sequence with several child elements can be transferredaimormalized hierarchical
event sequence in which each event sequence element hasnenghild element. Each
element matches one of the previous pattern and can thefefompproximated following
the rules for this pattern. The overall approximation of évent sequence is than only a
merge of the event sequences of the single pattern.

6.5. Required number of test intervals. In those cases in which the approximation
of the child element starts within the completion of the fppetiod of the parent element
we cannot postpone it until the first period of the parent.dtid not be possible to bound
the number of test intervals for the child hierarchical eéxedement.

EXAMPLE 6.4. Consider the following example:
610 = {100000,40000,{b11}}
b1 = {10,0,5,0}

6. APPROXIMATION 26

Again the approximation may start after 100 test-intervdlse approximated event
element can be written as follows:

B0 = {(,0,40000, {610%),

(2,100003960000, {(«,0,5,,0), (0,0, , %@ O
5
(100000,3995 7. 0)}).
4000
(,1000000804, 0, 0), (°, 100000000, 7777 0) }

o = {(oo,o,soo,{(10,0,5,00,@}),(oo,looos,oo,m,(oo,looooo,%,m}

Postponing the approximation of the child up to the end ofitseperiod of the parent
would cost 3000 additional test intervals. We can still firglraple bound on the required
number of test intervals. For those cases in which the afpiation does not start within
the first period, the number of test intervals for one peribithe parent event element has
to be less than the approximation boundtherwise the approximation would be allowed
somewhere within the first period. Therefore the maximum Ipemof test intervals we
have to additionally consider due to the postponing is bedralso byk, leading to a total
bound of k.

6.6. Splitting points. The splitting points are the points in which the parent eleime
is splitted to destinguish between the non-approximatediam approximated part of one
of its child elements. In general, the parent element idtepliat the first of its completed
period which is greater than the first possible approxinmatiterval of the child element.
Each element can require as many splitting points as itb¢btia-set has members. The
total child-set contains its children, the children of itdldren and so on. The parent chain
contains the parent element of an element, the parent ofatenpelement and so on.

For reason of simplification we consider only normalizeddniehical event sequences,
in which eachd can only have one direct child element at most.

Let él be the lowest-level child element aréd be the highest level parent element.
The splitting point for an elemerd is determined by the upper-most memtﬁ?rof a
parent chain for which the first possible approximationnvekfor k exactly considered
test intervalstéhk of 8 is larger than the end of the first completed perioaﬁprhis first
complete period is given kxyéj +T@,j » SOty > ag, +Téj . The splitting point is the first start
of a new period of} afterts, so

§¢j = Min(Al|Al = ay + KT ADl > tg)

It is necessary to split each element of the parent—child’ndbﬂweerﬁ[andé at this
point. All members of the parent chain éf, which are of cause also member of the parent

6. APPROXIMATION 27

chain of&, are splitted at their first period instead, so
Vi>t|s= ay, —I—Téj

In general we get a matrix of possible splitting points:

LEMMA 6.5. (Splitting points) Letfy, .., 6, be a set of hierarchical event elements
with 6 = (Ty,a1,11,G1,0) and@ = {T,&,l;,0, é,l) forO<i<n. Let‘{j be the splitting
points for element j on the event elem@ptwith the minimum number of k test-intervals
considered exactly foéj. Lett x denote the first possible approximated test intervaﬁjof
after k exact test intervals%f scan be calculated:

§ = minxx=a+yT,yeNx>ty)
) il’j else

o = &
$io= %

PROOF. The first completed period of the hierarchical event elerfeafter the first
possible approximation start for the hierarchical eveemdntéjk gives the potential split-
ting pointﬁf/j. The resulting splitting poing j is only in those cases identical to the po-
tential splitting points’; in which eitherd is the top-level parent elemefit= n) or s¢; |
is smaller than the end of the first period of the parent elérBen. In all other cases,
the completion poinﬁfj is identical to the corresponding completion point of theepa
element of6 , 51 j, which can again be identical to the splitting points of the 1)-th
parent element and so on. O

We can calculate the approximated hierarchical eventrsgaasing these splitting
points.

LEMMA 6.6. Let us consider a chain of hierarchical event streeéls...,(:)n with
Qin = {(Téj ,a@j,léj ,0,0j41)} andop = {(Téj,aéj,léj,Gén,O)}. The approximated event

i
elements are given by the following equations (s 0):

O = (Bli+i<nasj#£sj1}U0)
O = (25 1.2.0). (2.5 1.0, 5.0))
b
A l5.
@Ei+1 = {(oo’al’i’xéﬁoo,q))’(007S,i’007T—AJ,O)}

6

7. EXAMPLE 28

S,j—S,j-1
(oovs,jflv : Té'J Iélaoa SJ # S+l,j
(

9'-,] = {(Té,vovlé,veé,véi*lvj
(Télvaélvlélaeélaéifl,j SJ :S+l,j

A {éllj} S+1j # S+1j+1
{6/;}U€,1 Si1j=Stjn

o, = o
PrROOF Only for those splitting pointﬁfj being different from their predecessor split-
ting pointq‘fjf1 a hierarchical event element can be constructed. The qgthitting) points
would lead to elements generating no events. For the cantistnof the element we have
to distinguish, whether the splitting point is identicaltte corresponding splitting point
of the parent element or whether it is a new value on its owthérfirst caseé#fj = #(+1,j),

the limitation is simply inherited from the parent elemeénthe second cas(dfj #* §k+l,j)’
the limitation has to be calculated by distributing the poas limitation on the new parts.

Note that#(’j;ij(‘j’1 € N by definition and therefore the limitation of the new parts anul-
tiple of the limitation of the single elements. O

The lemma summarizes (and simplifies) the results of theiquewsections. Each
element of the top-parent event sequence and thereforeobadh of elements can be
considered seperately.

7. Example

ExXAMPLE 7.1. Fig. 10 shows the advanced approximation for the evaumd func-
tion of the event strear®; = {(20,0,10,0,(2,0,2,,0))} and compares it with the de-
scription by Sympta/S and by the real-time calculus. For @@t we have used an exe-
cution time of 2, a period of 4, a jitter of 10 and a minimum diste between two events
of 2 time units. The lines of Sympta/S and the real-time dakare nearly identical with
the exception that Sympta/S models discrete events. Taédirthe new model in is exact
form is always equal or below both other lines and in its apjpnated form it is below and
the beginning and than equal to the real-time calculus cufVe degree of approxima-
tion is freely selectable. Note, that the event discreteetiog of the Sympta/S approach
requires additional effort for the analyis.

7. EXAMPLE 29

Costs
— original event bound function, exact case of new model -
— approximate event bound funon, new model
- Sympta/S P i :
-~ real-time calculus JPvSae
D
LT
et
. ,.1:::
T Intervall-length

FIGURE 10. Approximated hierarchical event bound function

The event stream embodies of bursts with five events. Thenaddaapproximated
event stream with an approximation after three events isti@dollowing separation
points:s; 0 =0,8,1=20,5%0=0,51=4,57=60.

Forx andy we have the values:

[- 10-2
y = ——+ad= +0=8
I

2
2
8
oY) -1 £) e

It is given by the following description:

63 = {(«,0,10,0,{(20,0,6,0,(2,0,2,»,0)),(w,10,4,1,0)}),

2
(007 207 125 O? {(203 07 27 ©, 0)7 (207 07 87 Pt

2 0)}),(,60,6,.0), (,60, 2 0)}

Such a description limits the maximum number of test intisrf@r each hierarchical
event element separately. In the example five test intefeathe child element and four
test intervals for the parent element are required. Thisagdmation does also hold with
event sequences as child elements instead of a simple deardrg as in the example.

EXAMPLE 7.2. We have an event elemefat= {100Q0,150,0, {é&b}} with a child
event elemenég’l3 ={10,0,5,,0}. The approximation is allowed after 100 test intervals,
that means within the 4-th period of tlég.

Il —15

150-5
y = M—aég ZT—OZZQO
b b 10
Tog

<
I

R AT ~ 290 _
I68 (1 Té8>_150(1 —1000)—1065

8. INTEGRATION WITH REAL-TIME CALCULUS 30
For the example the resulting approximated event str@,%ﬂ?]reads as follows:

6% = {(oo,o,Goo,o,és),(oo,4ooq144000,{@0,40005,00,0),(oo,4ooooo,%oo,0>,

150

5
(10000,145 75.0)}), (<2, 1000001065, 0,0), (2, 1000000, 7 =< 0)}

8. Integration with Real-Time Calculus

In the following we will propose a new approximative modet fbe curves of the
real-time calculus allowing a less pessimistic modellifighe curves. It guarantees the
approximation error. InJ] such an approximation was proposed for the periodic task
model with EDF scheduling. It is now extended to distribugggtems and is integrated in
the model itself.

8.1. Model. We model each curve of the real-time calculus by a tesfTist {te}
consisting of a set of test-list elemenés= (Al, c,G) each modelling one segment of the
curve.Al is an interval determining the start point of the segmeate costs additionally
occuring at the start of the segment @determines the gradient within the segment and is
the increment between the gradient within the segment angridient within the previous
segment. The total gradient is the sum of all gradients ofipus test list elements with
an intervalAl’ < Al.

For example four events with a distance of 10 to each otheaamacution time of 2
can be modeled by a test lise= {(0,2,0),(10,2,0),(20,2,0),(30,2,0)}. The proposed
model is not limited to model time discrete events, it caro atodel the capacity and
allows to describe systems with varying capacity over timeeti The gradient is usefull to
model the capacities or the remaining capacities of praegssiits (PUs). The standard
case in which a PU can handle one time unit execution timeértiome unit can be modled
by te= (0,0,1). More sophisticated service functions like a case in whicly dalf of
the processor capacity is available during the first 100 timiés can also be described
by a few element§e= {(0,0, %), (100,0, %)}. Note that the gradients are always only
the differences between the resulting gradient and thequs\gradient. Therefore in the
example the functions has a gradient%ofor the first 100 time units and after them a
resulting gradient of 1 for the remaining time.

8.1.1. Approximation.General event models generates an infinit set of events and
would therefore require an infinit number of test-list elerse In the periodic task model
for example each task= (T,c,d) represents an infinit number of jobs sharing the same
worst-case execution timeand relative deadlind and having a periodic release pattern
with periodT. An approximation is necessary to bound this number of efesnand to
allow a fast analysis. The idea for the approximation is tesider the firsh jobs of a task
exactly and to approximation the following jobs by the sfiecitilization of the task. This
approximation can be represented by the test-list moded. sEtection of the parameter

8. INTEGRATION WITH REAL-TIME CALCULUS 31

allows a trade-off between the exactness and the analysis. efor example a task =
(10,2,6) is represented by a test life= {(0,2,0),(10,2,0),(20,2,0), (30, 271—20)}with 4
as degree of exactness.

DerINITION 8.1. ([3]) Letl" be any taskset bound on any resougel et p, be the
resource with the minimum capacity on whichis scheduable. An approximation with
approximation errore is a test algorithm which

(1) returns “non-scheduable” in those cases in whiclon p is non-scheduable

(2) returns scheduable in all those scheduable cases in v#iigh > 1Tlg<5(p|)

(3) canreturns either “scheduable” or “non-scheduable” in ahses withé’ (o) <

%(p) < 1% (p)

This idea can be used in a similar way for all other task andtawedels. Formally, a peri-
odic taskr with T = (T, c,d) and a degree of exactnessafan be transfeered into a test list
Tewith the element3e= {(0,¢;,0), (Tr,¢r,0), (2T¢, ¢, 0), ..., (NTy, Cr, %)} with deadline
d;. We can transfeer this test list further in a test represgritie demand bound function
W(Al, 1) for T by shifting it by the deadlin€éT€ = {(d,c;,0),(T; +d¢,¢r,0), ..., (NTr +
dr.Cr, %)})

The service functions might also require an approximatiurt. in contrary to above
it is necessary to underestimate the original functionsedise function of a processor
which is not available every 100 time units for 2 time unit®da operation system pro-
cesses can be modeled with an degree of exactness offé$Hy{(2,0,1), (100,0,—-1),
(102 0,1), (200,0,—-1), (2020,1), (300.0,—1), (3020, %)}.

8.1.2. Event bound functionThe amount of events occuring in some intenals
therefore the value of the real-time calculus curves canabeutated with the following
event bound function.

DEFINITION 8.2. An event bound functio¥i(Al) gives the amout of event which can
occure at most in any interval of lengfth.

The calculation can be done as follows:

Y(AlLTe) = Z [(Al — Alig)Gig + Cie]
vtgeTe
Dlig <Al

8.2. Real-Time Analysis. In the following we will show how an efficient schedula-
bility analysis can be realized with the introduced modsiiga

8.2.1. EDF. Schedulability analysis for EDF can be done using the psmratemand
criteria which was introduced by Baruah et &, [6].

DEFINITION 8.3. ([5]) The demand bound functidH(Al,T") gives the cummulated
execution requirement of those jobs having release timedaadline withinAl.

8. INTEGRATION WITH REAL-TIME CALCULUS 32

LEMMA 8.4. A task set scheduled with EDF keeps all deadlines if $@reinter-
vals Al > 0 the demand bound functidH(Al,T") does not exceed the available capacity
€ (Al,p) for Al

WAL <F(Al,p)

This can be rewritten as:
PROOF See p] and [3] O

Both, the demand bound and the service function can be 8escly test lists as
we have already seef(Al,IN) — W(AI,I') can be simplified to one test list. The overall
demand bound function of the taskset is the sum of the demanddbfunctions of the
single tasks:

YAl = z Z Y(Al, Te)
VTelr VtecTer
The demand bound function of a single task can be derivedfahiecevents bound

function of this task by shifting this function by the valuktibe deadline:
W(Al, M) =Yl —d,In)

So the resulting analysis for EDF reads:

VAl >0 Y(AILTE)=%(Al,p) — Z Z Y(Al —d;,Te) >0
VTEr vtecTer

For the demand bound function a test list can be calculatedfahe test lists of the
event bound functions using the shift and add functions aseefined in section 8.3.

In algorithm 1 we give the short implementation to proof thedition Y(Al, Te) > 0
for all Al > 0 and therefore to do the real-time analysis.

The best way to do this is to calculate and check the intenfdlse test-list elements
step-wise in rising order starting bM = 0. We have to test each element twice, once
after the costs resulting of the previous gradient are addeldonce after the costs of the
element are added. Otherwise, the situation can occurthéhabsts value can compensate
a negative value of the functions which would therefore baéatiectable.

8.2.2. Analysis for static priorities.The real-time analysis of systems with static pri-
ority scheduling requires another function, the requeatbldunction®(Al,).

DEFINITION 8.5. ([5]) The request bound functiom®(Al) contains the amount of
execution time requested by those events having occureih it

Events occuring exactly at the end/if are excluded:

(D(Al ,Te) = |imA|/ﬁA| Y(All,TE) = EVteieTe[(Al _Altei) . G[Q + Cta]
Altg <Al
For the analysis it is necessary to consider each task gbpera

8. INTEGRATION WITH REAL-TIME CALCULUS 33

Algorithm 1 Feasibility Analysis

Algorithm Superposition
Given: testList Te (sorted with rising Al)
r=0; G=0; Algg=0;
FOR ALL (tecTe
r:=r+ (ae—Algg)G
IF (r <0) THEN
=not scheduable
END IF
I:=r+Ce
IF (r <0) THEN
=not scheduable
END IF
Algg :=Alte; G:=G+Ge
END WHILE
IF (G<0) THEN
=not scheduable
ELSE
=scheduable
END IF

LEMMA 8.6. (similar to B]) The worst-case response time of a task is given by:
rr =min(Al VAl >0 : ¢ (Al',T) — ®(Al',T) > 0)

Schedulability for a job of a taskis given ifr; < d;.

PROOF. See f]. O

The schedulability analysis can also simply be done by dhgdkr eachAl > 0 and
eachr e I': W(Al, T) <%(Al,T)

% (A1, 1) denotes the capacity available for taskvithin Al. For the task with the
highest priority this is the capacity of the resouf€@Al, p). For all other task it is the
remaining part of the capacity after all tasks with a highgonity have been processed.
The calculation of this remaining capacity can be done foheask seperatly. The problem
is that an amout of capacity reached for some interfhlis also available for each larger
intervalAl’ even if betwee\l andAl’ a large amount of computation request occures, so
that ®(Al’, T) — ®(Al,T) > €(Al',T) — €(Al, T). No part of this requested computation
time can be processed withiti as this would require to process it before it is requested.

For the calculation of this remaining capacity the excegdivsts function is useful:

DEFINITION 8.7. ([2]) Exceeding cost¥(Al,IN) denotes those part of the costs re-
guested within the intervall by the tasksef which cannot be processed withih with
either scheduling due to the late request times.

See figure 11 for some examples for exceeding costs. For dedompthe jobiy;
arriving at time 18 and requesting 4 time units computaiioe tat least 2 time units cannot

8. INTEGRATION WITH REAL-TIME CALCULUS 34

Exceeding Costs

LA’ 777
SN
s1777
T 7777
l lllllllll /1777
T D 1 T (/777777 1
11T 1i-1 Livs200007 L+l)
1 Iy
VA A aas
R aas
4777777
VA A aas
7
r R aas
21 T 2777777 T
s 2 1777777 2,j+1
R aas
A 4777777
VA A aas
'3 | = s | * |
1 1
31 3k
T *
4 b ;
T
4.1 DT
41

FIGURE 11. Exceeding costs

be processed withial = 20 even if the job fully gets the remaining processor timee Th
exceeding costs gets an even higher value taking other wbsiccount. Joly, ; alone
would not contribute to the exceeding costs, but togethtir job (1 ; the contribution gets
even higher than the contribution of jafn ; alone. The reason is that the jobs steal the
capacity from each other. Only the sum of the exceeding cdatipu time is relevant not
from which task it is requested. The value and the calculatibthe exceeding costs is
independent of the concrete scheduling.

The exceeding cost function can be used for a simple schatityl@analysis for sys-
tems with static prioritiesZ].

LEMMA 8.8. Atask sef is scheduable if for each taske ' and eacl\l > 0O:

WY(AI, T) + (Al hp(T)) — Y(AIL hp(T)) < €(Al, p)

or if 1j_1 is the task with next higher priority tham:
WAL 1)+ P(AlLT-1) — Y(AlLTi_1) <F(Al,T-1)
The calculation of the remaining capacity can be therforeeday
E (A, 1) =%F(Al,1-1) — P(AlL T-1) + Y(AlL Ti_1)
PROOF SeeP]. O

This allows a step-wise calculation of the remaining cayaand also an integration
of the analysis for EDF and for fixed priority scheduling tcedrierachical schedulability
analysis. The algorithm 2 generates the test-list for theeeding costs funtiow(Al, 7).

8. INTEGRATION WITH REAL-TIME CALCULUS 35

Algorithm 2 Exceeding-costs calculation

Algorithm exceeding cost calculation
Given: T@n // The result of ®—- ¥
// initialize values
Teesut:={}; G:=0; c:=0; Algq:=0
FOR all tec Tay
IF ((c>0)Vv(G>0)) THEN
Cc:=C+ (Alie— Algig)G
END IF
IF(c<0) THEN
Alspiit = Alte + (,—CG)
T&esult := T&esult U (Alspiit,0, —G)
c:=0
END IF

Cnew:= C+ Cte
IF (c>O0AcCpew>0) THEN
T&esult := T&esutUte
ELSE IF (c<O0ACe>0)
Teesult := T&esult U (Alte, Gte, Gte + G)
ELSE IF (C>O0AChew<0)
Teesult := T&esultU (Alte, —C,—G)
ELSE IF (C>O0AChew< OAG+ Ge<0)
Teesult := T&esultU (Alte, —C,—G)
ELSE IF (C>O0AChew< OAG+ Gie>0)
Tenew:= Tehewl (Alte, —C, Gte)
ELSE IF (C<OAChew< O0AG+Gie>0)
Tenew:= TehewU (Alte,0,G+ Gte)
END IF
G =G+ G
€ := maXCnew, 0)
Algig = Alte
END FOR
RETURN Tafesun

Figure 12 visualizes its calculation. The exceeding costfion starts equal to the
difference of the request bound function and the availahfmcity ®O(Al, 7) — € (Al, 1)).
It remains equal to this function until it drops below zero fbe first time, e.g. more
capacity is available than required by requested jobs. Tharexceeding cost function
remains zero until the difference function starts risinginge.g. new request arrives.
Than the exceeding costs function will also rise and rurhinrin parallel to the difference
function but with a higher value.

8.2.3. Practical issues.Blocking time, scheduling overhead and the priority inher-
itance protocol can easily be integrated in the above egumti A blocking timeb can

8. INTEGRATION WITH REAL-TIME CALCULUS 36

(1), cbf(l) rbf(1)—-cbf(l)

Costs Costs

AN

Costs
Costs cbf_remain(l)
exceed(l)

NN .

FIGURE 12. Calculation of the exceeding cost functions

be integrated by either addirgto the equations or by integrating the test-list element
te=(0,b,0).

8.3. Operationsand Basic Functions. In the following we will introduce some op-
erations on test-lists and their implementations.

8.3.1. Adding (+). The add-operation for two test lists can be simply realizgédb
union of the sets of test list elements of the two test lists:

DEFINITION 8.9. (+ operation) LefTea, Tes, Tehew be test lists. IfTeewis the sum
of Tea andTes (Tevew= Tea + Teg) than for each intervall the equationy(Al, Tenew) =
Y(Al,Tea) 4+ Y(Al, Teg) is true.

LEMMA 8.10. (4 operation) The sum Tew= Tea + Tes can be calculated by the
union of the event stream elements of,,Texs:

Teew=TeaUTes

PROOF The proof can be done using the definition of the hierard¢t@eant bound
function:

8. INTEGRATION WITH REAL-TIME CALCULUS 37

Y(Al, Tenew) = Y(AI, Ter)+Y(Al, Teg)

=) [(AI-Akg)Ge +Cgl+ > [(Al —Alig)Gre + Cre]
vtgETe vteeTes

Dlig <Al Dlig <Al
= S [(A1 —Alg)Grg + g = Y(Al, TeaUTes)
VtgeTeaUTes
Dlig <Al

d

8.3.2. Substracting{). The subtraction can be led back to the addition by exchang-
ing Teg with its negation-Tez. So we only need to define the negation of the test list.

DEFINITION 8.11. (~ operation) LefTé = —Te. The negation oT eis defined by the
negation of its corresponding hierarchical event boundtion Y(Al, —Te) = —Y(Al, Te).
It is therefore only the substraction of two functions.

LEMMA 8.12. (— operation) Té= —Te if for each test list element te of Te exists a
corresponding counter element & T€ and vice versa differing only in the negation of
the one-time costs and the gradient. We hakg = Alie, Ge = —Ce and Gy = —G.

In other words for each test list elemeatof Tethe costse and the gradien®e are
exchanged by their negatience and—Gie.

PrROOF

-Y(Al,Te) = -— z [(Al — Alig)Gte + Cig]

vtgeTe
Al <Al

[(Al - Alig) (—Gre) + (—Cte))]
vtgeTe
Dl <Al

= z [(Al —A|te|)Gte, +Cte|]

Vtg cTe
Altg <Al

= Y(I,TE)

O

The operatiori+) is cumulative, same as with the hierarchical event seqsesoave
haveTen+ Tes=Tes+Tesand alsaTea+Tes) + Tec = Tea+ (Tes + Ter).

8.3.3. Shift Operation—, «). The shift operation can be realized by adding or sub-
tracting the shift-value from each interval of all test kdements. We may get test list
elements with negative intervals, which can be handleditietimat the negative interval
values are not defined.

8. INTEGRATION WITH REAL-TIME CALCULUS 38

DEFINITION 8.13. (- shift-operation) Lefebe a test list that is shifted right by the
valuet resulting in the test list€ = Te—t . The event bound functions have the following
relationship:

Y(Al —t,Te) Al >t
Y(AlLTE) = () -
0 else

LEMMA 8.14. Y(AI,Te) — t = Y(AI, T¢€) if T€ contains and only contains for each

element te of Te an element &eT€ having the following relations to Téll,y = Alte+t,

Cte¢ = Cte, Gte = Gre

The operatiom€ = Te— t can be performed by only adding the vatue the interval
Alie of each event elemete € Tefor its corresponding counter-elemedtof Te':

Alig =t+Alie
PROOF

YOI -tTe = 5 [(Al—t)—Dlta)Gig +Ci]
Mg <1

= Y (81— (Dl +1))Grg +]
vtgeTe
Al <Al

=) [(Al-Alg)Gig +Ce)
Vtg cTe
Altg <Al

= YAl TE)
O

The operation to shift a value left by the valueTe(— t) can be defined in an equal
way.

DEFINITION 8.15. (— shift-operation) LefTe be a test list that is shifted left by the
valuet resulting in the test listé = Te«t . The event bound functions have the following

relationship:
Y(AIL, TE) = Y(Al +t,Te)

LEMMA 8.16. Y(Al, Te) —t = Y(AI, T€) if @ contains and only contains for each
test list element te of Te an elemerit¢él' € having the following relations to Te\lyy =

Alte—t, Ge = Ce, Gg = Gte
PrROOF The proof is similar to the proof for the right shift .

YAl +t,Te) = 5 [((Al+t) —Alg)Gre + G
g <01

8. INTEGRATION WITH REAL-TIME CALCULUS 39

= > [(Al—(Alg —1))Grg + G
ek

=) [(Al-Alg)Gig + Ce)

Ve eTe
Altg <Al

= Y(Al,TéE)
0

8.3.4. Scaling with a cost valug). Another operation on test lists is to scale it by a
cost value. This is, for example, necessary for the integraif the worst-case execution
times into the analysis. If the test lists uses the numbevenits as unit, it is necessary to
scale it for analysis with the worst-case execution time.

DEFINITION 8.17. LetT€ be the test lisTe scaled by the cost value (T€ =cTe
Than for each intervahl the corresponding event bound functions have the reldtipns

Y(Al, T€) = cY(Al, Te)

LEMMA 8.18. Y(AI, T€) = cY(Al,Te) if T€ contains and only contains for each test
lists elemen® of the child set of Te an element teT€ having the following relations to
Te: Alig = Alte, G = CCre, G = CGe

All parts of the test list elements related to the amount @&nes are scaled by the
variablec.

PrROOF The proof of this lemma is quite similar to the proofs above.

Y(AlL, Tec = z [(Al — Alg)Gtg +Ctg]C

vtgeTe
Al <Al

= 5 [(A1-Altg) - (Ge©) + (cie)]
vtgeTe
Alg <Al

= 5 [(Al-Ale)Gg +Ge]
VtgeTe
Alg <Al

= Y(Al,TéE)
0

8.3.5. Utilization. An important value for the feasibility analysis is alwaye titi-
lization of an task set.

LEMMA 8.19. The utilization U of a test-list is given by:

Ure= te;eG[e

8. INTEGRATION WITH REAL-TIME CALCULUS 40

u B(l [3 u

R (1) @ R(I)

R O R 1)y
B ()

FIGURE 13. Real-Time Calculus of single task

Note that only the total gradient determines the utilizatiall test list elements only
influence a certain interval being small compared to theitefinterval.

PROOF The proof is based on the fact that in the long run the caoutiob of the last
period gets infinite small compared to the rest.

Y vtecTe (Al — Alie)Gte + Cre

U — i Alge<Al
e AIILnoo Al
_ lim ([(N — Alie)Gre+ Cte])
vtéeTell = Al
Al Gt
B z al (G[e a Ar)
vteeTe™ —%®

- Vte;eete

O

8.3.6. Operations of the real-time calculug& scheduling network is a system con-
sisting of several chains of tasks and a set of resourcesh taskt of the task chain is
mapped to one resourge Tasks mapped on the same resource are scheduled with fixed
priority scheduling. Different tasks of a chain can be mappe different resources. In the
figure 1 the tasksy, 14, Tg forms a task chain and the tasks 14, 77 forms another task
chain. Each task is triggered by an upper and lower arrival cuREAI) andR, (Al) and
the available computational effort for this task is desedilby an upper and lower service
curveBY(Al) andgl(Al).

Figure 13 gives a closer look at one single tasknd their curves. For each task
we have an incoming (upper and lower) arrival cuRigAl) andR,(Al) modelling the
workload fort. It includes and is based on the arrival times of those evgert®rating
workload fort. We also have an (upper and lower) service cuyByéAl) and BL(Al)
modeling the amount of workload that can be handled by the tas

The analysis of a task generates outgoing (upper and lowevpla(R}(Al) and
R.(Al)') and service curvegf(Al) andBl(Al)). The outgoing arrival curve is a modifi-
cation of the incoming arrival curves and is also the incapairrival curve of the following

8. INTEGRATION WITH REAL-TIME CALCULUS 41

Algorithm 3 inf-split

Algorithm inf-split // infocpr<a (R(Al") + B(AI —Al"))

testlist R 3

testlist S=0

FOR all te€R and all teef3
S:=min(S, subAddOneLigR,Alie, 8))
S:=min(S,subAddOneLisi3,Ale, R))

END FOR

RETURN S

Algorithm subAddOnelList Te, Al, T¢€

testlist tmp:=0

tmp:=Te+ Al

Ci=73 weere [Ce + (Al —Alie)Gre]
Alyy <Alte
tmp:=tmpuU{(Al,c,0)

RETURN tmp;

task in the chain. The outgoing service curve is the incoraargice curve reduced by the
workload handled by the task. It is the incoming service euor the task with the next
lower priority on the same resource.

The real-time calculus provides the equations to desdnibediationships between the
incoming and outgoing curveg][For the calculation the functions sup and inf are needed
provinding upper and lower bounds. Their value can be rdaehhut need not to be.

The outgoing service curves, giving the available capdoityhe task with the next
lower priority on the same processor, can be calculated by:

By = min(_ sup {B(Al')—R{(Al)},0)
0<Al'<Al

Br(al) = sup {BYAI")—Ry(al')}

0<Al'<Al
For our model we have already provided equation for calmgahe remaining capac-
ity based on the exceeding cost function. They can be uséeireal-time calculus:

LT) = FALT_1) — PYALT_1) + YAl T 1)
FYUALT) = FYUALT_1)— D (Al T 1)+ Y (Al Ti_1)

We can seB}(Al) = €*(Al, 1) andRS(Al) = ®*(Al, 1).
The outgoing lower arrival curve is given by:
Ri(Al)' = _inf {Ri(Al')+By(o —Al')}
In algorithm 3 gives a concrete implementation for this epien based on test lists.
The idea is to keep eithedl’ or Al — Al’ fixed, calculate the fixed value for eithgy(Al")
or BL(Al —Al’) and complete this value to every possible intetalvith the test list of
the other function. The resulting test list for this comjgetoperation can be calculated

9. CONCLUSION 42

and the overall resulting test list is given by the infimum ravee test lists of all possible
fixed values forAl’ and Al — Al’. Necessary for them is a algorithm to find the step-
wise minimum or infimum of two test lists. The implementatmfnsuch an algorithm is
very straight forward and therefore skipped here. It is $§yngpocessing both list in the
ascending order of their test-list elements and to regateays the dominating element
(the element leading to the lower overall cost value). Irecakdifferent gradients of
the corresponding elements the domination can change atterval Al’ between two
intervals. The calculation dfl’ is simply the calculation of the crossing point of two lines.
The outgoing upper arrival curve is given by:

Rr(Al)"=min(__inf { sup [Ry(Al"+v) - Br(v)] + B (Al — A1)}, BH(AI))

<Al <Al 0<v<oo

We define the sup-add operation handling the inner part oddfoation:
,Sup [REAI V)~ Br(v)]
Its implementation for test lists is given in algorithm 4.
The idea is similar as for the inf-split operation, we als¢dhen interval and build a
test list for all possible completions. But we usekere always as fixed value. The im-
plemetation of the sup or maximums operation is similar it or minimum operation.

9. Conclusion

In this work we presented a new advanced event model eslyesialable for the
modeling of distributed systems. Such a system consistsvefral tasks bound on differ-
ent processing elements, triggering each other. To difidg@toblem of real-time analysis
of the whole system to a problem of real-time analysis of thgle tasks, a model effi-
ciently describing the densities of the events triggerimg tasks (incoming events) and
those events generated by the tasks to trigger other taskgofng events) was required.
Additionally, a model for the capacity of the processingveats available for the tasks
was necessary. This is especially complicated in the cagbksavhigher priority tasks al-
ready having used up a part of the capacity. In this paper ofegzed an unified model as a
whole. Additionally this model is capable to introduce appmations into the description
of the event densities which guarantees a fast evaluatiorehsis an upper bound on the
approximation error.

The new model integrates the efficient modeling of periodit@periodic events, burst
of events in various kinds, approximated event streamsnitial capacity and the remain-
ing capacites of processors in one single model. It can he @agan explicit description
for the arrival, service and capacity curves of the reaktalculus having the necessary
modeling capabilies for them. We have presented the need-ginalysis for this model for
both, systems with dynamic or static priorities.

9. CONCLUSION 43

Algorithm 4 sup-add

Algorithm sup-add // SURcyo(R(I+V)—PB(V))
TestList R 3 -

testList S=0

FOR all te€eR and all teef

// A=V
diff =
> ter G+ (Ble—Ale)Ce] =Y twep [Ce + (Ale — Al)Gre]
Dlyg <Dhe Dl <Ble
//dif f = R(Bhe) —limpy_x, BAI)

Al <Ale
// Hold the point of f

Gr=73 wecr Gt
Al <Ahe

Tamp:= {t¢|te¢ € RAAlyy > Alie}
Tamp:= Tamp— Alte

Tamp:= Tamp+ {(0,diff,Gr)}
S:=supS Tamp)

// Hold the point of R
// Needed inverse [3

G =3 weep Gte
Dl <Bhe

Tamp:= {te|te € RAAly < Alte}
Tamp = {(0,diff,Gg)}
FOR each tg € Tamp
Tamp = T@mp U {(Ale— Alig, C[eII,Gta,l)}
END FOR
S:=supSTamr)
END FOR
RETURN S

We have also propose an efficient approximative model tordesstimulations of
tasks in a distributed real-time system. It was shown thatttodel integrates many other
models describing stimulation in a system and delivers dwedhooseable degree of ap-
proximation a general description of stimulation. In thetngtep we described how a
efficient real-time analysis for the model can be done fdaicstand dynamic priorities. In
order to show the relevant impact of our model and methodsseehe real-time calcu-
lus. We give an efficient way to integrate the real-time caisin our model. Thereby we
show how the abstract described functions can be implerdénta concrete manner. In
future we will use this model for further applications in erdo improve methods for the
real-time analysis.

ACKNOWLEDGEMENT. This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) under the graBi. 47/3-1.

9. CONCLUSION

Al interval

T period

a offset

| limitation

k number of test intervals
C] event stream

6= (T,a event element
e hierachical event stream

0= (T,a1,G,0p) | hierachical event stream eleme

s separation point
Y(AlL©) event bound function
Y(Al,O) demand bound function
J(Al,0) interval bound function

Te test list

te= (Al,c,G) test-list element
c costs
B busy period

TABLE 1.

List of symbols

nt

44

Bibliography

[1] K. Albers, F. Bodmann, and F. Slomka. Hierachical evergaans and event dependency graphsPiior
ceedings of the 18th Euromicro Conference on Real-TimeR@gstECRTS'06pages 97-106, 2006.

[2] K. Albers, F. Bodmann, and F. Slomka. Run-time efficieggdibility analysis of uni-processor systems with
static priorities. InPoceedings of the International Embedded Systems Symp(&&S 2007)2007.

[3] K. Albers and F. Slomka. An event stream driven approxiomafor the analysis of real-time systems. In
IEEE Proceedings of the 16th Euromicro Conference on Rizaé Bystemgages 187-195, Catania, 2004.

[4] K. Albers and F. Slomka. Efficient feasibility analysisrfreal-time systems with edf-scheduling. Pno-
ceedings of the Design Automation and Test Conference iopa(DATE’'05) pages 492-497, 2005.

[5] S.K.Baruah. Dynamic- and static-priority schedulifgecurring real-time taskdnternational Journal of
Real-Time System24:98-128, 2003.

[6] S.K.Baruah, A. Mok, and L.E. Rosier. Preemptive schidphard-real-time sporadic tasks on one proces-
sor. InProceedings of the Real-Time Systems Symposgiages 182—-190, 1990.

[7] S. Chakraborty, S. Kiinzli, and L. Thiele. Performancaleation of network processor architectures: Com-
bining simulation with analytical estimation€omputer Networks11(5):641-665, 2003.

[8] R.L. Cruz. A calculus for network delay. IEEEE Transactions on Information Thegmnpolume 37, pages
114-141, 1991.

[9] K. GresserEchtzeitnachweis ereignisgesteuerter RealzeitsystBmsertation, Dusseldorf, 1993.

[10] K. Gresser. An event model for deadline verification afdhreal-time systems. IRroceedings of the 5th
Euromicro Workshop on Real-Time Systefr®93.

[11] S. Kunzli. Efficient Design Space Exploration for Embedded SystBmS thesis, ETH Zurich No. 16589,
2006.

[12] A.K. Parekh and R.G.Gallager. A generalized procesbkaring approach to flow control in integrated ser-
vice networks. INEEE/ACM Transactions on Networkingolume 1, pages 344-357, 1993.

[13] S. Perathoner, E. Wandler, L. Thiele, A. Hamann, S. iBckér, R. Henia, R. Racu, R. Ernst, and
M. Gonzalez Harbour. Influence of different system abstaston the performance analysis of distributed
real-time systems. IEMSOFT 2007pages 193-202. IEEE Computer Society Press, 2007.

[14] K. Richter. Compositional Scheduling Analysis Using Standart Eventiélo Dissertation, TU Braun-
schweig, 2005.

[15] K. Richter and R. Ernst. Event model interfaces for regeneous system analysis.Rroceedings of the
Design Automation and Test Conference in Europe (DATE2X®)2.

[16] L. Thiele, S. Chakraborty, M. Gries, and S. Kiinzli. Dpsispace exploration for the network processor
architectures. Irist Workshop on Network Processors at the 8th Internati@yahposium for High Perfor-
mance Computer Architecturez002.

45

