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Abstract -Analyzing future distributed real-time systems, automotive and avionic sys-

tems, requires compositional real-time analysis techniques. Well known established tech-

niques as Sympta/S and the real-time calculus are candidates for solving the mentioned

problem. However both techniques use quite simple event models. Sympta/S is based

on discrete events the real-time calculus on continuous functions. Such simple models

has been chosen because of the computational complexity of the considered mathemati-

cal operations required for real-time analysis. Advances in approximation techniques are

allowing the consideration of more expressive descriptions of events. In this paper such

a new expressive event model and its analysis algorithm are described. It integrates the

models of both techniques. This also allows to propagate theapproximation through the

analysis of a distributed system leading to a much more efficient analysis.

We will also show the integration of the the hierachical event-stream model and there-

fore the event driven real-time analysis, the periodic, andthe sporadic task model with the

real-time calculus. For the event-driven real-time analysis, flexible approximative analysis

approaches are proposed to allow an efficient real-time analysis. We will provide an easy

but powerful approximative description model for the real-time calculus. In contrary to

the existing description model the degree of approximationis choosable allowing a more

accurate description.
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1. Motivation

The module-based design processes make it possible to handle the complexity in soft-

ware and hardware design. Systems are built using a set of closed modules. These mod-

ules can be designed and developed separately. They have only designated interfaces and

connections to other modules of their set. The purpose of modularisation is to split the

challenging job of designing the whole system into multiplesmaller jobs, allow the reuse

of modules in different designs or to include IP components of third-party vendors.

Every module-based design concept requires a well defined interface-concept for con-

necting the modules. Developing real-time systems requires for this interface-concept also

to cover the real-time aspects of the modules. A concept for the real-time analysis is re-

quired to handle the modules separatly and allows a propagation of the real-time analysis

results through the system. It is necessary to propagate theresults of the real-time analysis

of the different modules in an abstract way. The global analysis is built by connecting the

local analyses of the single modules. Therefore it is essiential to have an expressive and

efficient interface describing the influence in timing of onemodule to the next module.

One aspect of this interface is the timing description of events which are produced by one

module to trigger the next following module. Another aspectis the remaining computation

capacity for the next module left over by the previous module.

Consider for example a network packet processor as shown in figure 1. The single

packages are processed by chains of tasksτ which can be located on different processing

elementsP. The processing elementsP can be processors, dedicated hardware or the com-

munication network. The eventsΘ triggering the different tasks are equal to the packages

flowing through the network. Each processing unitP uses a fixed-priority scheduling and

the tasks on each unit are sorted by their priority level. Each taskτ has, as available ca-

pacity, the capacityS′ left over by the tasksτ with a higher priority located on the same

processing unit.

The purpose of this paper is to provide an efficient and flexible approach for the real-

time analysis of such modularized systems. Therefore a powerful and sufficient event

model for describing the different time interfaces for the different aspects is necessary.

2. Related work

The most advanced approach for the real-time analysis of such a modulare network

is the real-time calculus by Thiele et al. [7], [16]. It is based on the network calculus

approach, especially on the concept of arrival and service curves defined by Cruz [8] and

Parekh and Gallager [12].

The event pattern is modeled by an arrival curveα f (∆I) which denotes the number of

events arriving within a time interval of length∆I , αu
f (∆I) denoting the upper bound and

α l
f (∆I) the lower bound for this curve. These functions are sub-additive and deliver for
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FIGURE 1. Network processor example

everyt the maximum or the minimum number of events respectivly. Theservice curves

β u
r (∆I) andβ l

r (∆I) model the upper and lower bound of the computational requirements

which can be handled by the ressource during a time interval of length∆I . The real-time

calculus provides equations to calculate the outgoing arrival and service curves out of the

incoming curves of a task.

To make it possible to evaluate the modification equations independently from each

other, a good finit description for the curves is needed. The complexity of the relation-

ship equations depends directly on the complexity of this description. In [11] and [7] an

approximation for the arrival and service curves was proposed in which each curve is de-

scribed by three straight line segments. One segment describes the initial offset or arrival

time, one segment the initial bursts and one segment the longtime rate. As outlined in [4]

this approach is much to simplified to be suitable for complexsystems. It has only a fixed

degree of exactness. No suitable description for the function is known so far.

In this paper we will propose a model for the curves having a selectable approximation

error. It allows a trade-off between this degree of accuracyand the necessary effort for the

analysis to become possible.

Sympta [14],[15] is another approach for the modularized real-time analysis. The idea

was to provide a set of interfaces which can connect different event models. Therefore

the different modules can use different event models for analysis. Unfortunatly, the event

models for which interfaces are provided are quite simple. In [14] an event model covering

all these models is described. The problem of these models isthat multiple bursts or bursts

with different minimum separation times cannot be handled qualitatively.
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However in [13] a real-time analysis problem was formulated, which can’t be solved

by Sympta/S and the real-time calculus by each technique exclusivly. To solve it, it is

necessary to integrate the models of both techniques into one powerful new model.

The event stream model proposed by Gresser [10] with its extension the hierachical

event stream model proposed by Albers et al. [1] can model systems with all kinds of bursts

efficiently. The problem is that it can only model discrete events and not the continious

service function as needed for the real-time calculus.

2.1. Event stream model. For the event stream model a system is described by a set

of communicating tasksτ. Each task is assigned to one resourceρ . The properties of each

taskτ = (Θ̂,c,d) are given by the worst-case execution timecτ and the deadlinedτ of the

task and an event pattern̂Θ triggering the tasks activations.

The key question is to find a good model for the event patternΘ̂. For real-time analysis

this model has to describe the worst-case densities of all possible event patterns. They lead

to the worst-case demand on computation time. Comparing these worst-case demands with

the available computation time allows to predict the schedulability of a system. The event

stream model gives an efficient general notation for the event bound function.

DEFINITION 2.1. ([10, 3, 1]) The event bound functionϒ(∆I ,Θ) gives for every in-

terval∆I an upper bound on the number of events occuring from the eventstreamΘ in any

interval of the lenght∆I .

LEMMA 2.2. ([10]) The event bound function is a subadditive function. That means

that for each interval∆I and∆J the number of events generated within the interval∆I +∆J

is smaller or equal than the sum of the maximum number of events generated in∆I and

maximum number of events generated in∆J:

ϒ(∆I + ∆J,Θ)≤ ϒ(∆I ,Θ)+ ϒ(∆J,Θ)

PROOF. ϒ(∆I ,Θ), ϒ(∆J,Θ) return the maximum number of events possible within

any∆I or ∆J. The events in∆I + ∆J have to occure either in∆I or in ∆J. Therefore the

condition holds. �

DEFINITION 2.3. An event streamΘ is a set of event elementsθ . Each event element

is given by a periodT and an offseta. (θ = (T,a))

Θ1 = {(6,0),(6,1),(6,3)} (figure 2) describes three events requiring at least an inter-

val ∆I = 3 to occure, two of them have a minimum distance of 1 time units. Θ1 is repeated
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FIGURE 3. Example event streams ([9])

with a period of 6. In cases where the worst-case density of events is unknown for a con-

crete system, an upper bound can be used for the event stream.The model can describe

any event sequence. Only those event sequences for which thecondition of sub-additivity

holds are valid event streams.

LEMMA 2.4. ([10]) The event bound function for an event streamΘ and an interval I

is given by:

ϒ(∆I ,Θ) = ∑
θ∈Θ

∆I≥aθ

⌊

∆I −aθ
Tθ

+1

⌋

PROOF. See [3] �

It is a monotonic non-decreasing function. A larger interval-length cannot lead to a

smaller number of events. An event stream is called homogenous if it contains only event

elements sharing the same period or event elements having aninfinit period.

In figure 3 some examples for event streams can be found. The first oneΘ5 = {(T,0)}

has a strictly periodic stimulus with a periodT. The second exampleΘ6 = { (∞,0), (T,T−

j)} shows a periodic stimulus in which the single events can jitter within a jitter interval

of size j. In the third exampleΘ7 = { (T,0), (T,0) , (T,0), (T,t) } three events occur at

the same time and the fourth occurs after a timet. This pattern is repeated with a period of

T. Event streams can describe all these examples in an easy andintuitive way. The offset

value of the first event element is always zero. The reason is that this value models the

shortest interval in which one single event can occur.

For the real-time analysis for this model let us first repeatethe demand bound function

definition for the event streams:

Ψ(∆I ,Γ) = ∑
∀τ∈Γ

ϒ(∆I −dτ ,Θτ)cτ = ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆I≥aθ +dτ

⌊

∆I −aθ −dτ
Tθ

+1

⌋

cτ

Let θ be an event element belonging to the event streamΘ which belongs to the task

τ.
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The demand bound function allows a schedulability analysisfor single processor sys-

tems by testing whether for every interval∆I the demand is equal or smaller than the

available capacity for this interval. Formally it is tested:

∀∆I : Ψ(∆I ,Γ)≤ C (∆I)

Often an idealized capacity functionC with C (∆I) = ∆I is assumed. For an efficient

analysis an approximation is necessary.

2.2. Approximation of event streams.

DEFINITION 2.5. ([3]) The approximated event-bound-function

Let τ be the task triggered by the event streamΘ having the event stream elementθ
and k be a chosen number of steps which should be considered for the task exactly. Let

∆Iθ ,k = dτ +aθ +kT. We callΨ′(∆I ,θ ,τ,k) with

Ψ′(∆I ,θ ,k) =

{

Ψ(∆Iθ ,k,θ )+
cτθ
Tθ

(∆I −∆Iθ ,k) ∆I > ∆Iθ ,k

Ψ(∆I ,θ ) ∆I ≤ ∆Iθ ,k

the approximated event bound function for taskτ.

The function is shown in figure 4. The firstk events are evaluated exactly, the remain-

ing events are approximated using the specific utilizationUθ =
cτθ
Tθ

. The interesting point

of this function is that the error can be bounded toεθ ,k = 1
k and therefore does depend

on the selectable number of steps only, and is independent ofthe concrete values of the

parameters of the tasks.

The complete approximated event-bound function for the event stream model is the

sum of the approximated event-bound function for the singletask:

Ψ′(∆I ,Γ,k) = ∑
∀τ∈Γ

∑
∀θ∈Θτ

Ψ′(∆I ,θ ,k)

The hierachical event stream model [1] extends the event stream model and allows a

more efficient description of bursts. In this model an event element describes the arrival
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not only for just one periodic event but also of a complete setof periodic events. This set

of events can also be modeled by an event sequence having a limitation in the number of

events generated by this event sequence. One limit of this model is that it can only describe

discrete events. For the approximation it would be appropriate for the model to be capable

also to describe the continuous part of the approximated event bound function.

3. Contribution

In this paper we will present an event model covering both, the discrete event model of

Sympta/S and the continuous functions of the real-time calculus. It makes the elegant de-

scription of event bursts in a more tighter way than in the Sympta/S approach possible and

allows a tighter modeling of the continuous function of the real-time calculus by integrat-

ing an approximation with a chooseable degree of exactness into the model. This does not

only lead to more flexible and simpler analysis algorithms, but it also allows to propagate

the approximation together with the event models through the distributed system leading

to an efficient, flexible and powerful analysis methodology for the distributed real-time

systems. The new model can, of course, also model the servicefunctions of the real-time

calculus in the same flexible way and allows therefore the integration of the discrete event

model of Sympta/S with the continuous service functions.

We will also propose a simple but flexible and powerful approximative model for the

explicit description of the curves of the real-time calculus. This model combines the de-

scription of arrival and service curves efficiently and allows to model them with a selectable

degree of exactness. This approximation follows the same scheme than the existing approx-

imation for event models as proposed in [3]. Therefore it is possible to transfeer previously

existing event models, like the periodic or the sporadic task model, the event stream model,

the sporadically task model, the model of Sympta/S or the hierarchical event stream model

in this new model. This allows the integration of the approximative analysis for the event

models and the real-time calculus to a new powerful overall analysis for the distributed

systems.

We will outline this transfer methods for the various event models and the resulting

real-time analysis for the new model for EDF and static priority scheduling. For the real-

time calculus the new model provides a flexible and efficient approximative description of

the curves. We will give the concrete algorithm for this model for all operationen necessary

to implement the real-time calculus. This is the first concrete implementation of the real-

time calculus which is not based on three line-segments for each curve only.

4. Model

We will define the hierachical event sequence first. The hierarchical event stream is

only a specialised hierachical event sequence fulfilling the condition of sub-additivity and

can therefore be described by the same model.
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DEFINITION 4.1. A hierachical event sequenceΘ̂ = {θ̂} consists of a set of hierar-

chical event elementŝθ each describing a pattern of events or of demand which is repeated

periodically. The hierarchical event elements are described by a 5-tuples:

θ̂ = (T,a, l ,G,Θ̂)

whereTθ is the period,aθ is the offset,lθ is the limitation of the number of events

or the amount of demand generated by this element during one period,Gθ̂ andΘ̂θ̂ are the

time pattern showing how the events respectively how the demand is generated.

The gradientGθ̂ describing a constantly growing set of events, gives the number of

events occurring within one time unit. A valueGθ̂ = 1 means that after one time unit one

event has occured, after two time units two events and so on. The gradient allows modeling

approximated event streams as well as modeling the capacityof resources. Both cases can

be described by a number of events which occurs respectivelycan be processed within one

time unit.Θ̂θ̂ is again a hierarchical event stream (child event stream) which is recursively

embedded in̂θ .

CONDITION 4.2. Either Θ̂θ̂ = /0 or Gθ̂ = 0.

Due to this condition it is not necessary to distribute the limitation between the gra-

dient and the sub-element. This simplifies the analysis without restricting the modelling

capabilities.

The arrival of the first event occurs aftera time units and ata+T, a+2T, a+3T, ...,

a+ iT (i ∈ N) the other events occurs.

DEFINITION 4.3. A hierarchical event stream fulfills for every∆I ,∆J the condition

ϒ(∆I + ∆J,Θ̂)≤ ϒ(∆I ,Θ̂)+ ϒ(∆J,Θ̂)

In the following we will give a few examples to show the usage and the possibilities

of the new model. A simple periodic event stream as outlined in figure 5 with period 5 can

be modeled by :

Θ̂1 = {(5,0,1,0,e)}
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LEMMA 4.4. Let Θ be an event stream withΘ = {θ1, ...,θn}. Θ can be modeled by

Θ̂ = {θ̂1, ..., θ̂n} with θ̂i = (Tθi ,aθi ,1,∞, /0)

PROOF. Each of the hierarchical event elements generates exactlyone event at each

of its periods following the pattern of the corresponding event element. �

Θ̂1 approximated after 10 events would be modeled by:

Θ̂10
1 = {(∞,0,10,0,{(5,2,1,0,e)}),(∞,47,∞,

1
5
, /0)}

Note that 47t.u. = 2t.u. + (10− 1) · 5t.u. (t.u. = timeunit ) is the point in time in

which the last regular event occurs and therefore the start of the approximation.

One single event is modeled by:

Θ̂2 = {(∞,0,1,∞, /0)}

A gradient of∞ would lead to an infinite number of events but due to the limitation only one

event is generated. An event bound function requiring constantly 0.75 time units processor

time within each time unit can be described by:

θ̂2 = (∞,0,∞,0.75, /0)

With the recursively embedded event sequence any possible pattern of events within a burst

can be modeled. The pattern consists of a limited set of events repeated by the period of

the parent hierarchical event element. For example a burst of five events in which the

events have an intra-arrival rate of 2 time units which is repeated after 50 time units can be

modeled by:

Θ̂3 = {(50,0,5,0,{(2,0,1,∞, /0)})}

The child event stream can contain grand-child event streams. For example ifΘ̂3 is used

only for 1000 time units and than a break of 1000 time units is required would be modeled

by

Θ̂4 = {(2000,0,100,0,Θ̂3)}

The length∆Iθ̂ of the interval for which the limitation of̂θ is reached can be calculated

using a interval bound functionI (x,Θ̂) = min(∆I |x= ϒ(∆I ,Θ̂)) which is the inverse func-

tion to the event bound function(I (l , /0) = 0):

∆Iθ̂ = I (l ,Θ̂θ̂ )+
lθ̂
Gθ̂

Note that this calculation requires the condition of the model that eitherGθ̂ = 0 or

Θ̂θ̂ = /0 and that the calculation of the interval bound function requires the distribution of

lθ̂ on the elements of̂Θθ̂ .
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4.1. Assumptions and Conditions. For the analysis it is useful to restrict the model

to event sequences having no overlapping periods. For example (figure 6):

θ̂5 = {(28,0,15,0,{(3,0,1,∞, /0)})}

The limitation interval∆Iθ̂6
has the length:

∆Iθ̂6
= (15−1) ·3= 42

The first period[0,42] and the second period[28,70] of the event sequence element over-

lap.

CONDITION 4.5. (Separation Condition)̂θ fulfills the separation condition if the in-

terval in which events are generated by Gθ̂ or Θ̂θ̂ is equal or smaller than its period Tθ̂ :

I (lθ̂ ,Θ̂θ̂ )+
lθ̂
Gθ̂
≤ Tθ̂

or

Tθ̂ ≤ ϒ(Tθ̂ ,Θ̂θ̂ )+
Tθ̂
Gθ̂

The condition 4.5 does not reduce the space of event patternsthat can be modeled by

a hierarchical event sequence.

LEMMA 4.6. A hierarchical event sequence elementθ̂ that does not meet the sepa-

ration condition can be exchanged with a set of event sequence elementŝθ1, ..., θ̂k with

k =

⌈

I (lθ̂ ,θ̂)

Tθ̂

⌉

andθ̂i = (kTθ̂ ,(i−1)Tθ̂ +aθ̂ , lθ̂ ,Gθ̂ ,Θ̂θ̂ ).

PROOF. The proof is obvious and therefore skipped. �

Θ̂5 can be transferred intôΘ′5 meeting the separation condition:

Θ̂′5 = {(56,0,15,0,{(3,0,1,∞, /0)}),(56,28,15,0,{(3,0,1,∞, /0)})}

The separation condition prohibits events of different event sequence elements to over-

lap. We also do not allow recursion, so no event element can bethe child of itself (or a

subsequent child element).

4.2. Hierarchical Event Bound Function. The event bound function calculates the

maximum number of events generated byΘ̂ within ∆I .
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LEMMA 4.7. Hierarchical Event Bound Functionϒ(∆I ,Θ):

Let for any∆I ,T definemod(∆I ,T) = ∆I −
⌊∆I

T

⌋

T andϒ(∆I , /0) = 0.

ϒ(∆I ,Θ̂) = ∑̂
θ∈Θ̂

∆I≥aθ̂

ϒ(∆I , θ̂ )

ϒ(∆I , θ̂ ) =



































































lθ̂ Tθ̂ = ∞,Gθ̂ = ∞
⌊

∆I−aθ̂
Tθ̂

+1
⌋

lθ̂ Tθ̂ 6= ∞,Gθ̂ = ∞

min(lθ̂ ,(∆I −aθ̂ )Gθ̂

+ϒ(∆I −aθ̂ ,Θ̂θ̂ )) Tθ̂ = ∞,Gθ̂ 6= ∞
⌊

∆I−aθ̂
Tθ̂

⌋

lθ̂ +min(lθ̂ ,

mod(∆I−aθ̂ ,Tθ̂ )Gθ̂

+ϒ(mod(∆I −aθ̂ ,Tθ̂ ),Θ̂θ̂ )) Tθ̂ 6= ∞,Gθ̂ 6= ∞

PROOF. Due to the separation condition it is always possible to include the maxi-

mum allowed number of events for completed periods
(⌊

∆I−aθ̂
Tθ̂

⌋

lθ̂

)

. Only the last in-

complete fraction of a period has to be considered separately (min(...)). This remaining

interval is given by subtracting all complete periods, and the offseta from the interval

∆I
(

mod(∆I−aθ̂ ,Tθ̂
)

. It has to be distinguished whether the gradient or the childevent

stream generates the events. In case of the child event stream, the number of events is

calculated by using the same function with the remaining interval and the new embedded

event sequence. In case of the gradient the number of events is simply the product of the

gradient and the interval length. The limitation bounds both values. �

Independently of the hierarchical level on which an event sequence element is located

it is considered only once during the calculation for one interval. This allows bounding the

complexity of the calculation. It is not necessary for the sequences to be homogeneous.

EXAMPLE 4.8. Θ̂6 = {(20,6,10,0,{(3,0,2,1, /0)}. ϒ(∆I ,Θ̂7) is shown in figure 7.

ϒ(33,Θ̂6) is given by

ϒ(33,Θ̂6) =

⌊

27
Tθ̂

⌋

lθ̂ +min(lθ̂ ,mod(27,Tθ̂ )Gθ̂ + ϒ(mod(27,Tθ̂),Θ̂θ̂ ))

=

⌊

27
20

⌋

·10+min(10,0+ ϒ(7,Θ̂θ̂)) = 10+min(10,ϒ(7,Θ̂θ̂ ))

ϒ(7,Θ̂θ̂ ) = ϒ(7, θ̂ ′) =

⌊

7
3

⌋

·2+min(2,mod(7,3) ·1+0)= 4+1= 5

ϒ(33,Θ̂6) = 10+min(10,5) = 15

4.3. Reduction and Normalization. In the following we will reduce event streams

to a normal form. The hierarchical event stream model allowsseveral different description
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for the same event pattern. For example an event stream

Θ̂ = {(100,0,20,0,Θ̂a)}

with

Θ̂a = {(5,0,2,∞, /0),(7,2,3,1, /0)}

can be rewritten as

Θ̂ = {(100,0,10,0, θ̂a,1),(100,0,10, θ̂a,2)}

with

θ̂a,1 = (5,0,2,∞, /0)

and

θ̂a,2 = (7,2,3,1, /0)

Event streams having child event streams with several eventelements can be transformed

into streams having only child streams with one element. This allows a better comparison

between different hierarchical event streams:

LEMMA 4.9. An event stream̂Θa = {(Ta,aa, la,0,Θ̂′a)} with a child element̂Θ′a =

{(T ′1,a
′
1, l
′
1,G

′
1,Θ̂1), ...,(T ′k ,a′k, l

′
k,G

′
k,Θ̂k)} can be transferred into an equivalent event stream

Θ̂b with Θ̂b = {θ̂a,1, θ̂a,2, ..., θ̂a,n, θ̂a,x} having only child event sequences with one element

where

θ̂b,i = (T,a,ϒ(∆Ia, θ̂ ′a,i),0, θ̂ ′a,i)

∆Ia = lim
ε→0
ε>0

(I (la,Θ̂′a)− ε)

θ̂a,x = (∞,I (la,Θ̂′a), la− ∑
∀θ̂∈Θ̂′a

ϒ(∆Ia, θ̂ ′a,i),∞, /0)
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PROOF. We have to distribute the limitationla on the elements of the child event

sequence. First we have to find the interval∆I ′ for which the limitation of the parent

elementla is reached by the child event sequenceΘ̂′a. ∆I ′ is given byI (la,Θ̂′a). We have

to calculate the costs required for each of the child event sequence elements for∆I ′. It is

given byϒ(∆I ′, θ̂i). The problem is that several elements can have a gradient of∞ exactly

at the end of∆I ′. In this situation the sum ofϒ(∆I ′, θ̂ ) may exceed the allowed limitation

la of the parent element. The total costs is bounded by the global limitation la rather

than the limitationsl ′i . To take this effect into account we exclude the costs occurring

exactly at the end of∆I ′ for each hierarchical event element and we handle these costs

seperately modeling them with the hierarchical event element θ̂a,x. To do so we calculate

the limitation not byϒ(∆I ′, θ̂ ′i ) but by ϒ(∆I ′− ε, θ̂ ′i ) whereε is an infinitly small value

excluding only the costs occurring at the end of∆I ′ exactly. �

4.4. Capacity Function. The proposed hierarchical event stream model can also model

the capacity of processing elements and allows to describe systems with fluctuating capac-

ity over the time. In the standard case a processor can handleone time unit execution time

during one time unit real time. For many resources the capacity is not constant. The rea-

sons for a fluctuating capacity can be such as operation-system tasks or variable processor

speeds due to energy constraints.

Assuming the capacity as constant also does not support a modularization of the anal-

ysis. This is especially needed for hierarchical scheduling approaches. Consider for exam-

ple a fixed priority scheduling. In a modular approach each priority level gets the capacity

left over by the previous priority level as available capacity. The remaining capacity can be

calculated step-wise for each priority level taking only the remaining capacities of the next

higher priority level into account. Such an approach is onlypossible with a model that can

describe the left-over capacities exactly.

DEFINITION 4.10. The service functionβ (∆I ,ρ) gives the minimum amount of pro-

cessing time that is available for processing tasks in any interval of size∆I for a specific

resourceρ for each interval∆I . It can also be modeled with the hierarchical event sequence

model.

The service function is superadditiv and fulfills the inequation β (∆I +∆J)≥ β (∆I)+

β (∆J) for all ∆I ,∆J. The definition matches the service curves of the real-time calculus.

We propose to use the hierarchical event stream model as an explicit description for service

curves.

In the following we will show, with a few examples, how to model fluctuating service

functions with the hierarchical event streams. The constant capacity, as shown in 8 a) can

be modeled by:βbasic= {(∞,0,∞,1, /0)}

Blocking the service for a certain timet (figure 8 b) is done by:βblock= {(∞,t,∞,1, /0)}
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FIGURE 8. Example service bound functions

A constantly growing service curve in which the service is blocked periodically every

100 time units for 5 time units (for example by a task of the operating system):βTblock=

{(100,5,95,1, /0)} (figure 8 c) )

The service for a processor that can handle only 1000 time units with full speed and

than 1000 time units with half speed (figure 8 d)):

βvary = {(2000,1000,500,
1
2
, /0),(2000,0,1000,1, /0)}

These are only a few examples for the possibilities of this new model.

4.5. Operations. In the following we will introduce some operations on hierarchical

event sequences and streams. These are operations to add sequences, to shift them by

certain time values, for example the deadlines, and to scalethem with for example costs

values. The operations are necessary for the schedulability tests.

4.5.1. Adding(+). The add operation for two event streams can be simply realized

by a union of the sets of event elements of the two event streams:

DEFINITION 4.11. (+ operation) LetΘ̂A,Θ̂B,Θ̂C be hierarchical event streams. If

Θ̂C is the sum ofΘ̂A and Θ̂B (Θ̂C = Θ̂A + Θ̂B) than for each interval∆I the equation

ϒ(∆I ,Θ̂C) = ϒ(∆I ,Θ̂A)+ ϒ(∆I ,Θ̂B) is true.

LEMMA 4.12. (+ operation) The sum̂ΘC = Θ̂A + Θ̂B can be calculated by the union

of the event stream elements ofΘ̂A,Θ̂B:

Θ̂C = Θ̂A∪ Θ̂B

PROOF.

ϒ(∆I ,Θ̂C) = ϒ(∆I ,Θ̂A)+ ϒ(∆I ,Θ̂B)
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= ∑
θ̂∈Θ̂A

ϒ(∆I , θ̂ )+ ∑
∀θ̂∈Θ̂B

ϒ(∆I , θ̂ )

= ∑
∀θ̂∈Θ̂A∪Θ̂B

ϒ(∆I , θ̂ )

= ϒ(∆I ,Θ̂A∪ Θ̂B)

�

The operation works with hierarchical event sequences as well as with hierarchical

event streams. It inherits the properties of the+ operation, so the function is commutative

as well as associative.

4.5.2. Shift Operation(←,→). The shift operation can be realized by adding or sub-

tracting the shift-value from each offset of all top-level elements of the event stream. When

subtracting, the shift value has not necessarily to be equalor smaller than the smallest off-

set. The event bound functionϒ(∆I ,Θ̂) with ∆I ≥ 0 can handle negative offsets even

though that negative intervals are not defined.

DEFINITION 4.13. (→ shift-operation) Let̂Θ be an event sequence that is shifted right

by the valuet resulting in the event sequenceΘ̂′ = Θ̂→ t . Thus the event bound functions

have the following relationship:

ϒ(∆I ,Θ̂′) =







ϒ(∆I − t,Θ̂) ∆I ≥ t

0 else

LEMMA 4.14. ϒ(∆I ,Θ̂)→ t = ϒ(∆I ,Θ̂′) if Θ̂′ contains and only contains for each

elementθ̂ of Θ̂ an element̂θ ′ ∈ Θ̂′ having the following relations tôθ : Tθ̂ ′ = Tθ̂ , aθ̂ ′ =

aθ̂ + t , nθ̂ ′ = nθ̂ , Θ̂θ̂ ′ = Θ̂θ̂ , Gθ̂ ′ = Gθ̂

The operation̂Θ′ = Θ̂→ t can be performed by adding the valuet to the offsetaθ̂ for

each event elementθ̂ ∈ Θ̂ for its corresponding counter-elementθ̂ ′ ∈ Θ̂′.

PROOF.

ϒ(∆I − t,Θ̂) = ∑̂
θ∈Θ̂
∆I≥t

ϒ(∆I − t, θ̂)

= ∑
θ̂∈Θ̂

∆I≥aθ̂ +t

ϒ′(∆I − t−aθ̂ , θ̂ )

= ∑
θ̂∈Θ̂

∆I≥aθ̂ +t

ϒ′(∆I − (aθ̂ + t), θ̂)

= ∑
θ̂∈Θ̂

∆I≥aθ̂ +t

ϒ′(∆I −aθ̂ ′, θ̂ )

= ϒ(∆I ,Θ̂′)
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�

The operation to shift a value left by the value t (Θ̂← t) can be defined in a similar

way.

DEFINITION 4.15. (← shift-operation) Let̂Θ be an event sequence that is shifted left

by the valuet resulting in the event sequenceΘ̂′ = Θ̂← t . The event bound functions have

the following relationship:

ϒ(∆I ,Θ̂′) = ϒ(∆I + t,Θ̂)

LEMMA 4.16. ϒ(∆I ,Θ̂)← t = ϒ(∆I ,Θ̂′) if Θ̂′ contains and only contains for each

elementθ̂ of Θ̂ an element̂θ ′ ∈ Θ̂′ having the following relations tôθ : Tθ̂ ′ = Tθ̂ , aθ̂ ′ =

aθ̂ − t , nθ ′ = nθ , Θ̂θ̂ ′ = Θ̂θ̂ , Gθ̂ ′ = Gθ̂

PROOF.

ϒ(∆I + t,Θ̂) = ∑
θ̂∈Θ̂

ϒ(∆I + t, θ̂)

= ∑
θ̂∈Θ̂

∆I≥aθ̂−t

ϒ′(∆I + t−aθ̂ , θ̂ )

= ∑
θ̂∈Θ̂

∆I≥aθ̂−t

ϒ′(∆I − (aθ̂ − t), θ̂)

= ∑
θ̂∈Θ̂

∆I≥aθ̂−t

ϒ′(∆I −aθ̂ ′, θ̂ ) = ϒ(∆I ,Θ̂′)

�

This operation also works on both sequences and streams. It is associative with the

(+) operation so we have(Θ̂A + Θ̂B)→ t = (Θ̂A→ t)+ (Θ̂B→ t) and(Θ̂A + Θ̂B)← t =

(Θ̂A← t)+(Θ̂B← t) as well as(Θ̂A− Θ̂B)→ t = (Θ̂A→ t)− (Θ̂B→ t) and(Θ̂A− Θ̂B)←

t = (Θ̂A← t)− (Θ̂B← t). Having(Θ̂→ t)→ v we can rewrite it aŝΘ→ (t + v), having

(Θ̂→ t)← v we can rewrite it aŝΘ→ (t−v).

4.5.3. Scaling with a cost value(·). Another operation on event streams is to scale

the total stream by a cost value. This is, for example, necessary for the integration of the

worst-case execution times into the analysis. If the event stream uses the number of events

as unit, it is necessary to scale it for analysis with the worst-case execution time.

DEFINITION 4.17. LetΘ̂′ be the hierarchical event stream̂Θ scaled by the cost value

c (Θ̂′ = cΘ̂). Than for each interval∆I the corresponding event bound functions have the

relationship

ϒ(∆I ,Θ̂′) = cϒ(∆I ,Θ̂)
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LEMMA 4.18. ϒ(∆I ,Θ̂′) = cϒ(∆I ,Θ̂) if the child set ofΘ̂′ contains and only contains

for each element̂θ of the child set of̂Θ an element̂θ ′ ∈ Θ̂′ having the following relations

to θ̂ : Tθ̂ ′ = Tθ̂ , aθ̂ ′ = aθ̂ , nθ̂ ′ = cnθ̂ , Θ̂θ̂ ′ = cΘ̂θ̂ , Gθ̂ = cGθ̂

All parts of the hierarchical event sequence elements related to the amount of events

are scaled by the variablec.

PROOF.

cϒ(∆I ,Θ̂) = ∑
θ̂∈Θ̂

∆I≥aθ̂

cϒ(∆I , θ̂ )

cϒ(∆I , θ̂ ) =































min(clθ̂ ,cGθ̂ (∆I −aθ̂ )+cϒ(∆I ,Θ̂θ̂ ) Tθ̂ = ∞

clθ̂ |Gθ̂ |= ∞
⌊

∆I−aθ̂
Tθ̂

⌋

clθ̂ +min(clθ̂ ,cGθ̂ mod(∆I −aθ̂ ,Tθ̂ )+

+cϒ(mod(∆I−aθ̂ ,Tθ̂ ),Θ̂θ̂ )) Tθ̂ 6= ∞

=































min(lθ̂ ′ ,Gθ̂ ′(∆I −aθ̂ )+ ϒ(∆I ,Θ̂θ̂ ′) Tθ̂ = ∞

lθ̂ ′ |Gθ̂ |= ∞
⌊

∆I−aθ̂
Tθ̂

⌋

lθ̂ ′+min(lθ̂ ,Gθ̂ ′mod(∆I−aθ̂ ,Tθ̂ )+

+ϒ(mod(∆I−aθ̂ ,Tθ̂ ),Θ̂θ̂ ′)) Tθ̂ 6= ∞

= ϒ(∆I , θ̂ ′)

�

The operation works with both, streams and sequences.

4.6. Utilization.

LEMMA 4.19. The utilization UΓ of a task set in which the event generation patterns

are described by hierarchical event streams is given by((∀τ ∈ Γ)Λ (∀θ̂ ∈ Θ̂τ)|(lθ̂ 6= ∞∨
Tθ̂ = ∞)):

UΓ = ∑∀τ∈Γ ∑∀θ̂∈Θ̂τ
Tτ 6=∞

nθ̂
Tθ̂

+ ∑∀τ∈Γ ∑∀θ̂∈Θ̂τ
lθ̂ =∞
Tθ̂ =∞

(

UΘ̂θ̂
+Gθ̂

)

Note that event-elements with an infinite period and a finite limitation do not contribute

to the utilization.

5. Schedulability tests

For the schedulability tests of uni-processor system usingthe hierarchical event stream

model analysis, we can integrate the approximation and the available capacity into the

analysis.
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In the following we will show how an efficient schedulabilitytest can be realized with

the introduced model and operations. We will first discuss the schedulability test for a uni-

processor system using EDF (Earliest Deadline First) scheduling. Later we will extend the

result to fixed priority scheduled systems.

5.1. Schedulability tests for dynamic priority systems. The general schedulability

analysis for EDF is the processor demand criterion but usingthe demand bound function

for the hierarchical event streams. A system scheduled withEDF is feasible if for all inter-

vals∆I the demand bound function does not exceed the service functionΨ(∆I)≤C (∆I ,ρ).

Both, the demand bound and the service function can be described and calculated out of

hierarchical event streams. This leads to the test:

∑
∀τ∈Γ

∑
∀θ̂∈Θ̂τ

ϒ(∆I −dτ , θ̂ )cτ ≤ C (∆I ,ρ)

The analysis can be done using the approximation as proposedin [3]. For the exact analysis

an upper bound for∆I , a maximum test interval is required to limit the run-time ofthe test.

For the hierarchical event stream model one maximum test interval available is the busy

period. An upper bound for it is given by:

B(Γ) = min(∆I |C (∆I)≥ ∑
∀τ∈Γ

ϒ(∆I ,Θ̂τ )cτ)

5.2. Response-time calculation for static priority scheduling. In the following we

will show how a worst-case response time analysis for scheduling with static priorities can

be performed with the new model. The request bound function calculates the amount of

computation time of a higher priority task that can interfere and therefore delays a lower-

priority task within an interval∆I . In contrast to the event bound function the request

bound function does only contain the events of the start, notthe events of the end point of

the interval. The request bound function can be calculated using the event bound function

in the following way:

Φ(∆I ,τ) = lim
∆→∆I

0≤∆<∆I

(ϒ(∆,Θτ )cτ)

For the hierarchical model it is only necessary to handle thecases∆I = 0 differently than in

the calculation of the event bound function:Φ(∆I ,Γ) = ∑∀τ∈Γ cτ ∑∀θ̂∈Θ̂τ
Φ(∆I , θ̂ ,τ) with

Φ(∆I , θ̂ ,τ) =































⌈

∆I−aθ̂
Tθ̂

⌉

lθ̂ Tθ̂ = ∞

0 ∆I −aθ̂ ≤ 0
⌊

∆I−aθ̂
Tθ̂

⌋

lθ̂ +min(lθ̂ ,Gθ̂ (∆I −aθ̂+

Φ(mod(∆I −aθ̂ ,Tθ̂ ),Θ̂θ̂ )) else

With this function it is possible to calculate the worst-case response times for the tasks:
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LEMMA 5.1. Let τ be scheduled with fixed priorities andΓhp(τ) containing all task

with a higher priority thanτ. The response time r(τi,1) for the first event ofτi is given by:

r(τi,1) = min(∆I |C (∆I)≥ cτ + Φ(∆I ,Γhp(τ)))

The value for∆I can be calculated by a fix-point iteration starting with∆I = cτ . To

calculate the maximum response time it is necessary to do thecalculation for all events

within the busy period.

The busy period of a task set is the maximum interval in which the resource is com-

pletely busy, so in which does not exists idle time for the resource:

B(Γ) = min(∆I |C (∆I)≥Φ(∆I ,Γ))

LEMMA 5.2. The worst-case response time ofτ can be found in the busy period of

any task set containingτ andΓhp(τ). It is the maximum response time of all r(J,τ) where:

r(J,τ) = min
∀0≤∆I<∞

(∆I |C (J+ ∆I)≥ ϒ(J)cτ + Φ(J+ ∆I ,Γhp(τ)))

r(τ) = max∀0≤J≤B(Γ)(r(J,τ)

J is less or equal than the busy period (J≤B(Γ)). This minimum response time has

to be lower than the deadline of the task.

6. Approximation

To limit the number of test intervals and therefore the computational complexity we

integrate the approximation approach of [3]. We can now integrate the approximation

directly into the model. We allow the approximation of an event element to start after the

necessary number of test intervals are reached globally forthis element, independently in

which period of the parent event element this happens. In case that the event elementθ̂ is

a child element of another (parent) event elementθ̂ ′ we have to distinguish for̂θ ′ between

those periods in whicĥθ is evaluated exactly and those in whichθ̂ is approximated. To do

this it is necessary to split̂θ ′ at the last exactly considered interval ofθ̂ .

6.1. Case simple sequence with gradient. Let us consider first a simple hierarchical

event element:̂θ = {(T,a, l ,G, /0)}

θ̂ k is the approximative counter-part for̂θ starting with the approximation afterk

exactly considered test intervals.θ̂ k is modeled by:

θ̂ k = {(∞,0, lA,0, θ̂ ),(∞,aA, l ,G, /0),(∞,aB,∞,
l
T

, /0)}

with lA = kl, aA = a+kT, aB = aA+ l
G. For the special case withG= ∞ we haveaA = aB.

EXAMPLE 6.1. Let us, for example considerΘ̂ = {(10,0,3,
1
2, /0)}. The approximation

Θ̂5 for Θ̂ afterk = 5 exactly considered test intervals is given by

Θ̂5 = {(∞,0,15,0,{(10,0,3,
1
2
, /0)}),(∞,50,3,

1
2
, /0),(∞,56,∞,

3
10

, /0)}
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wherelA = 5·3= 15,aA = 0+5·10= 50,aB = 50+ 3
1
2

= 56. We can simplify this example

to:

Θ̂5 = {(∞,0,18,0,{(10,0,3,
1
2
, /0)}),(∞,56,∞,

3
10

, /0)}

Consider another examplêΘ = {(10,2,3,∞, /0)} with G = ∞. The approximation̂Θ10

is given by:

Θ̂10 = {(∞,0,30,0,{(10,2,3,∞, /0)},(∞,103,3,∞, /0),(∞,103,∞,
3
10

, /0)}

or shorter:

Θ̂10 = {(∞,0,33,0,{(10,2,3,∞, /0)},(∞,103,∞,
3
10

, /0)}

6.2. Approximation of one-level child element. Let us consider a hierarchical event

sequence with one child element:

θ̂ = (T,a, l ,0, θ̂ ′)

θ̂ ′ = (T ′,a′, l ′,G′, /0)

Θ̂k is given in this case by:

Θ̂k = {(∞,0, lA,0, θ̂ ◦),

(∞,aA,kl− lA,0,{(T,a′, l ′,G′, /0),

(T,a′+
l ′

G′
, l − l ′,

l ′

T ′
, /0)}),(∞,aB,x,∞, /0),(∞,aB,∞,

l
T

, /0)}

The first element of̂Θk models the part in which the child-elementθ̂ ′ is considered

exactly. In case that the first possible approximation interval for θ̂ ′ occures within the first

period ofθ̂ , we have to start the approximation within this first period of θ̂ . Otherwise it

would not be possible to find a reasonable bound for the numberof considered test intervals

for θ̂ ′. Soθ̂ ◦ depends on whetherl ≤ kl′ or l > kl′. We have

θ̂ ◦ =







θ̂ l ≤ kl′

{(T,0, l ,0, θ̂ ′k)} l > kl′

θ̂ ′k = {(∞,0,klθ̂ ,0, θ̂ ),(∞,kTθ̂ , lθ̂ ,Gθ̂ , /0),(∞,kTθ̂ +
lθ̂
Gθ̂

,∞,
lθ̂
Tθ̂

, /0)}

The calculation oflA, lB, aA, aB andaC are done as follows:

lA =







⌈

kl′
l

⌉

l l ≤ kl′

l l > kl′

aA =







⌈

kl′
l

⌉

T +a l ≤ kl′

T +a l > kl′

aB = kT+a+a′
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FIGURE 9. Caseθ̂ ′ approximated,̂θ not approximated

The approximation of̂θ ′ can be done by an elementθ̂ ′k with a gradientGθ̂ ′k = l ′

T ′ .

When starting finally the approximation ofθ̂ a cost-offsetx is required to ensure that

the approximated functionϒ(∆I , θ̂ k) is always equal or higher than the exact function

ϒ(∆I , θ̂ ). Figure 9 outlines this situation. This cost-offset is necessary as a new period of

the parent element splits the approximation of the child element. The calculation ofx can

be done as follows:

l −x = y
l
T

x = l
(

1−
y
T

)

y gives the interval between the start of the child elementθ̂ ′ and the point in time

in which the limitation ofθ̂ is reached. The reaching of the limitation is calculated us-

ing the approximative description of the child elements ofθ̂ with the seperate consid-

eration of every first event of̂θ . For a simple child element̂θ = {(T,a, l ,0, θ̂ ′)} with

θ̂ ′ = {(T ′,a′, l ′,∞, /0)} this valuey is given by

(y−a′) · (
l ′

T ′
) = l − l ′

y =
l − l ′

l ′
T ′

+a′ = T ′
l
l ′
−T ′+a′
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Hence forx:

x = l −
T ′l2

T l′
+

T ′l
T
−

a′l
T

EXAMPLE 6.2. Let us consider the example hierarchical event sequence:

Θ̂ = {(80,2,16,0,Θ̂′)},Θ̂′ = {(10,2,3,∞, /0)}

For the approximation̂Θ10 we get the values:

lA =

⌈

kl′

l

⌉

l =

⌈

10·3
16

⌉

16= 32

aA =

⌈

kl′

l

⌉

T +a =

⌈

10·3
16

⌉

80+2= 162

aB = kT+a = 10·80+2= 802

y = T ′
l
l ′
−T ′+a′ = 10

16
3
−10+2= 45.3333

x = l
(

1−
y
T

)

= 16

(

1−
45.333

80

)

= 6.9333

Θ̂10 = {(∞,0,32,0,{(80,2,16,0,{(10,2,3,∞, /0)})}),

(∞,162,128,0,{(∞,2,3,∞, /0),(∞,2,∞,
3
80

, /0),

(80,2,13,
3
10

, /0)},(∞,802,6.9333,∞, /0),(∞,802,∞,
16
80

, /0)}

6.3. Approximation of n-level child element. Let us consider the following hierar-

chical event element with two levels of child elements

θ̂ = {(T,a, l ,0, θ̂ ′)}

θ̂ ′ = {(T ′,a′, l ′,0, θ̂ ′′)}

θ̂ ′′ = {(T ′′,a′′, l ′′,G′′, /0)}

We consider the approximation̂θ k. θ̂ k is given by

θ̂ k = {(∞,0, lA,0, θ̂ ◦1),(∞,aA, lB,0, θ̂◦2),

(∞,aB, lC,0,{(T,a′,x′,∞, /0),(T,a′, l −x′,
l ′

T ′
, /0)}),

(∞,aC,x,∞,0),(∞,aC,∞,
l
T

, /0)}

θ̂ ◦1 depends on whetherl ≤ kl′′ or l > kl′′. We have

θ̂ ◦1 =







θ̂ l ≤ kl′′

{(T,0, l ,0, θ̂ ′k)} l > kl′′

θ̂ ′k = {(∞,0,klθ̂ ,0, θ̂ ),(∞,kTθ̂ , lθ̂ ,Gθ̂ , /0),(∞,kTθ̂ +
lθ̂
Gθ̂

,∞,
lθ̂
Tθ̂

, /0)}
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θ̂ ◦2 depends on whetherl ≤ kl′ or l > kl′. We have

θ̂ ◦2 =







/0 l ≤ kl′

{(T ′,a′′, l ′′,G′′,0),(T ′,a′′+ l ′′
G′′ , l

′− l ′′, l ′′
T ′′ , /0)} l > kl′

The calculation oflA, aA andlB is easy and straight forward:

lA =







⌈

kl′′
l

⌉

l l ≤ kl′′

l l > kl′′

lB =







⌈

kl′
l

⌉

l − lA l ≤ kl′

0 l > kl′

lC = kl− (lA + lB)

aA =







⌈

kl′′
l

⌉

T +a′+a l ≤ kl′′

T +a′+a l > kl′′

aB =







⌈

kl′
l

⌉

T l ≤ kl′

T l > kl′

aC = kT +a

The calculation ofx′ is the same as the calculation forx in the previous section. We

have

y′ = T ′′
l ′

l ′′
−T ′′+a′′

x′ = l ′
(

T ′−y′

T ′

)

The calculation ofx and y is similar but using the approximation ofθ̂ ′′. We have

(y−a) · (
l ′

T′
) = l −x′

y =
lT ′

l ′
−

x′T ′

l ′
+a′

x = l

(

T−y
T

)

Note that, if settingx′′ = l ′′ the calculation ofx′ andy′ on the one side andx andy on

the other side are the same. Therefore the proposed description for Θ̂k can be generalized

to handle event sequences with n-level child event sequences. The calculation is visualized

in figure 9.

In the following we will demonstrate a example by extending the example 6.2.

EXAMPLE 6.3. Let us consider the example hierarchical event sequence Θ̂:

Θ̂ = {(1000,10,100,0,Θ̂′)}
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Θ̂′ = {(80,2,16,0,Θ̂′′)}

Θ̂′′ = {(10,2,3,∞, /0)}

For an approximation̂Θ10 in whichk = 10 test intervals are considered exactly we get

the values:

y′ =
16−3
( 3

10

) +2 = 45.3333

x′ = 16·

(

80−45.3333
80

)

= 6.9333

y =
100−6.9333

(16
80

) +2 = 467.333

x = 100·

(

1000−67.3335
1000

)

= 53.2667

Θ̂10 = {(∞,0,100,0,Θ̂10
2,1),(∞,1012,100,0,{(∞,2,3,∞, /0),(∞,2,∞,

3
80

, /0),

(80,2,13,
3
10

, /0)}),(∞,2010,800,0,{(∞,2,6.9333,∞, /0),(∞,2,∞,
6.9333
1000

, /0),

(1000,2,93.0667,
16
80

, /0)}),(∞,10010,53.2667,∞, /0),(∞,10010,∞,
100
1000

, /0)}

Θ̂10
2,1 = {(∞,0,32,0,{(80,2,16,0,{(10,2,3,∞, /0)})}),(∞,162,3,∞, /0),

(∞,162,∞,
3
80

, /0),(80,162,13,
3
10

, /0)}

6.4. Approximation of element with several child elements. A hierarchical event

sequence with several child elements can be transferred into a normalized hierarchical

event sequence in which each event sequence element has onlyone child element. Each

element matches one of the previous pattern and can therefore be approximated following

the rules for this pattern. The overall approximation of theevent sequence is than only a

merge of the event sequences of the single pattern.

6.5. Required number of test intervals. In those cases in which the approximation

of the child element starts within the completion of the firstperiod of the parent element

we cannot postpone it until the first period of the parent. It would not be possible to bound

the number of test intervals for the child hierarchical event element.

EXAMPLE 6.4. Consider the following example:

θ̂10 = {10000,0,4000,0,{θ̂11}}

θ̂11 = {10,0,5,∞, /0}



6. APPROXIMATION 26

Again the approximation may start after 100 test-intervals. The approximated event

element can be written as follows:

θ̂ 100
10 = {(∞,0,4000,0,{θ̂ 100

11 }),

(∞,10000,396000,0,{(∞,0,5,∞, /0),(∞,0,∞,
5

10000
, /0),

(10000,0,3995,
5
10

, /0)}),

(∞,1000000,804,∞, /0),(∞,1000000,∞,
4000
10000

, /0)}

θ̂ 100
11 = {(∞,0,500,{(10,0,5,∞, /0)}),(∞,1000,5,∞, /0),(∞,1000,∞,

5
10

, /0)}

Postponing the approximation of the child up to the end of thefirst period of the parent

would cost 3000 additional test intervals. We can still find asimple bound on the required

number of test intervals. For those cases in which the approximation does not start within

the first period, the number of test intervals for one period of the parent event element has

to be less than the approximation boundk. Otherwise the approximation would be allowed

somewhere within the first period. Therefore the maximum number of test intervals we

have to additionally consider due to the postponing is bounded also byk, leading to a total

bound of 2k.

6.6. Splitting points. The splitting points are the points in which the parent element

is splitted to destinguish between the non-approximated and the approximated part of one

of its child elements. In general, the parent element is splitted at the first of its completed

period which is greater than the first possible approximation interval of the child element.

Each element can require as many splitting points as its total child-set has members. The

total child-set contains its children, the children of its children and so on. The parent chain

contains the parent element of an element, the parent of the parent element and so on.

For reason of simplification we consider only normalized hierarchical event sequences,

in which eachθ̂ can only have one direct child element at most.

Let θ̂1 be the lowest-level child element andθ̂n be the highest level parent element.

The splitting point for an element̂θi is determined by the upper-most memberθ̂ j of a

parent chain for which the first possible approximation interval for k exactly considered

test intervalstθ̂i ,k
of θ̂i is larger than the end of the first completed period ofθ̂ j . This first

complete period is given byaθ̂ j
+Tθ̂ j

, sotθ̂i
> aθ̂ j

+Tθ̂ j
. The splitting point is the first start

of a new period of̂θt aftertθ̂ , so

sk
i, j = min(∆I |∆I = ati +kTti ∧∆I ≥ tθ̂ j ,k

)

It is necessary to split each element of the parent-child chain betweenθ̂t andθ̂c at this

point. All members of the parent chain ofθ̂ti , which are of cause also member of the parent
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chain ofθ̂i , are splitted at their first period instead, so

∀ j > t | si, j = aθ̂ j
+Tθ̂ j

In general we get a matrix of possible splitting points:

LEMMA 6.5. (Splitting points) Letθ̂1, .., θ̂n be a set of hierarchical event elements

with θ̂1 = (T1,a1, l1,G1, /0) andθ̂i = {Ti ,ai , l i ,0, θ̂i−1) for 0 < i ≤ n. Let ski, j be the splitting

points for element j on the event elementΘ̂i with the minimum number of k test-intervals

considered exactly for̂θ j . Let tj ,k denote the first possible approximated test interval ofθ̂ j

after k exact test intervals. sk
i, j can be calculated:

sk′
i, j = min(x|x = ai +yTi,y∈ N,x≥ t j ,k)

sk
i, j =







sk′
i, j sk

i, j < ai+1 +Ti+1

sk
i+1, j else

sk
i,0 = ai

sk
n, j = sk′

n, j

PROOF. The first completed period of the hierarchical event element θ̂i after the first

possible approximation start for the hierarchical event elementθ̂ k
j gives the potential split-

ting pointsk′
i, j . The resulting splitting pointsi, j is only in those cases identical to the po-

tential splitting pointsk′
i, j in which eitherθ̂i is the top-level parent element(i = n) or sk′

i, j

is smaller than the end of the first period of the parent element θ̂i+1. In all other cases,

the completion pointsk
i, j is identical to the corresponding completion point of the parent

element ofθ̂i , si+1, j , which can again be identical to the splitting points of the(i + 1)-th

parent element and so on. �

We can calculate the approximated hierarchical event streams using these splitting

points.

LEMMA 6.6. Let us consider a chain of hierarchical event streamsΘ̂1, ...,Θ̂n with

Θ̂ j
j<n

= {(Tθ̂ j
,aθ̂ j

, lθ̂ j
,0,Θ̂ j+1)} andΘ̂n = {(Tθ̂ j

,aθ̂ j
, lθ̂ j

,Gθ̂n
, /0)}. The approximated event

elements are given by the following equations (s0, j = 0):

Θ̂k
j = {θ̂ ′i, j |i + j ≤ n∧si, j 6= si, j−1}∪ Θ̂ j , j+1

Θ̂k
i,i = {(∞,si, j−1,xθ̂i

,∞, /0),(∞,si, j−1,∞,
lθ̂i

Tθ̂i

, /0)}

Θ̂k
i,i+1 = {(∞,si,i ,xθ̂i

,∞, /0),(∞,si,i ,∞,

lθ̂ j

Tθ̂ j

, /0)}
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θ̂i, j =



















(∞,si, j−1,
si, j−si, j−1

Tθ̂i
lθ̂i

,0, si, j 6= si+1, j

{(Tθ̂i
,0, lθ̂i

,Gθ̂i
,Θ̂i−1, j

(Tθ̂i
,aθ̂i

, lθ̂i
,Gθ̂i

,Θ̂i−1, j si, j = si+1, j

Θ̂′i, j =







{θ̂ ′i, j} si+1, j 6= si+1, j+1

{θ̂ ′i, j}∪ Θ̂′i, j+1 si+1, j = si+1, j+1

xθ̂i
= lθ̂i

(

1−
yi, j

Tθ̂i

)

yθ̂i
=

lθ̂i
−xθ̂i−1
lθ̂i−1
Tθ̂i−1

+aθ̂i−1

xθ̂1
= lθ̂1

PROOF. Only for those splitting pointssk
i, j being different from their predecessor split-

ting pointsk
i, j−1 a hierarchical event element can be constructed. The other splitting points

would lead to elements generating no events. For the construction of the element we have

to distinguish, whether the splitting point is identical tothe corresponding splitting point

of the parent element or whether it is a new value on its own. Inthe first case(sk
i, j = sk

i+1, j),

the limitation is simply inherited from the parent element,in the second case(sk
i, j 6= sk

i+1, j),

the limitation has to be calculated by distributing the previous limitation on the new parts.

Note that
sk
i, j−sk

i, j−1
Tθ̂i

∈ N by definition and therefore the limitation of the new parts are mul-

tiple of the limitation of the single elements. �

The lemma summarizes (and simplifies) the results of the previous sections. Each

element of the top-parent event sequence and therefore eachchain of elements can be

considered seperately.

7. Example

EXAMPLE 7.1. Fig. 10 shows the advanced approximation for the event bound func-

tion of the event stream̂Θ7 = {(20,0,10,0,(2,0,2,∞, /0))} and compares it with the de-

scription by Sympta/S and by the real-time calculus. For Sympta/S we have used an exe-

cution time of 2, a period of 4, a jitter of 10 and a minimum distance between two events

of 2 time units. The lines of Sympta/S and the real-time calculus are nearly identical with

the exception that Sympta/S models discrete events. The line for the new model in is exact

form is always equal or below both other lines and in its approximated form it is below and

the beginning and than equal to the real-time calculus curve. The degree of approxima-

tion is freely selectable. Note, that the event discrete modeling of the Sympta/S approach

requires additional effort for the analyis.
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Costs

Sympta/S
real−time calculus

original event bound function, exact case of new model
approximate event bound funon, new model

Intervall−length

FIGURE 10. Approximated hierarchical event bound function

The event stream embodies of bursts with five events. The advanced approximated

event stream with an approximation after three events is hasthe following separation

points:s1,0 = 0, s1,1 = 20,s2,0 = 0, s2,1 = 4, s2,2 = 60.

Forx andy we have the values:

y =
l − l ′

l ′
T ′

+a′ =
10−2

2
2

+0 = 8

x = l
(

1−
y
T

)

= 10

(

1−
8
20

)

= 6

It is given by the following description:

Θ̂3
7 = {(∞,0,10,0,{(20,0,6,0,(2,0,2,∞, /0)),(∞,10,4,1, /0)}),

(∞,20,12,0,{(20,0,2,∞, /0),(20,0,8,
2
20

, /0)}),(∞,60,6,∞, /0),(∞,60,∞,
1
2
, /0)}

Such a description limits the maximum number of test intervals for each hierarchical

event element separately. In the example five test intervalsfor the child element and four

test intervals for the parent element are required. This approximation does also hold with

event sequences as child elements instead of a simple event element as in the example.

EXAMPLE 7.2. We have an event elementθ̂8 = {1000,0,150,0,{θ̂8,b}} with a child

event element̂θ8,b = {10,0,5,∞, /0}. The approximation is allowed after 100 test intervals,

that means within the 4-th period of theθ̂8.

y =
lθ̂8
− lθ̂8,b

lθ̂8,b
Tθ̂8,b

−aθ̂8,b
=

150−5
5
10

−0 = 290

x = lθ̂8

(

1−
y

Tθ̂8

)

= 150

(

1−
290
1000

)

= 106.5
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For the example the resulting approximated event streamθ̂ 100
8 reads as follows:

θ̂ 100
8 = {(∞,0,600,0, θ̂8),(∞,4000,14400,0,{(∞,4000,5,∞, /0),(∞,4000,∞,

5
1000

, /0),

(1000,0,145,
5
10

, /0)}),(∞,100000,106.5,∞, /0),(∞,100000,∞,
150
1000

, /0)}

8. Integration with Real-Time Calculus

In the following we will propose a new approximative model for the curves of the

real-time calculus allowing a less pessimistic modelling of the curves. It guarantees the

approximation error. In [3] such an approximation was proposed for the periodic task

model with EDF scheduling. It is now extended to distributedsystems and is integrated in

the model itself.

8.1. Model. We model each curve of the real-time calculus by a test listTe= {te}

consisting of a set of test-list elementste= (∆I ,c,G) each modelling one segment of the

curve.∆I is an interval determining the start point of the segment,c are costs additionally

occuring at the start of the segment andG determines the gradient within the segment and is

the increment between the gradient within the segment and the gradient within the previous

segment. The total gradient is the sum of all gradients of previous test list elements with

an interval∆I ′ < ∆I .

For example four events with a distance of 10 to each other anda execution time of 2

can be modeled by a test listTe= {(0,2,0),(10,2,0),(20,2,0),(30,2,0)}. The proposed

model is not limited to model time discrete events, it can also model the capacity and

allows to describe systems with varying capacity over the time. The gradient is usefull to

model the capacities or the remaining capacities of processing units (PUs). The standard

case in which a PU can handle one time unit execution time in one time unit can be modled

by te = (0,0,1). More sophisticated service functions like a case in which only half of

the processor capacity is available during the first 100 timeunits can also be described

by a few elementsTe= {(0,0,
1
2),(100,0,

1
2)}. Note that the gradients are always only

the differences between the resulting gradient and the previous gradient. Therefore in the

example the functions has a gradient of1
2 for the first 100 time units and after them a

resulting gradient of 1 for the remaining time.

8.1.1. Approximation.General event models generates an infinit set of events and

would therefore require an infinit number of test-list elements. In the periodic task model

for example each taskτ = (T,c,d) represents an infinit number of jobs sharing the same

worst-case execution timec and relative deadlined and having a periodic release pattern

with periodT. An approximation is necessary to bound this number of elements and to

allow a fast analysis. The idea for the approximation is to consider the firstn jobs of a task

exactly and to approximation the following jobs by the specific utilization of the task. This

approximation can be represented by the test-list model. The selection of the parametern
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allows a trade-off between the exactness and the analysis effort. For example a taskτ =

(10,2,6) is represented by a test listTe= {(0,2,0),(10,2,0),(20,2,0),(30,2,
2
10)}with 4

as degree of exactness.

DEFINITION 8.1. ([3]) Let Γ be any taskset bound on any resourceρ . Let ρl be the

resource with the minimum capacity on whichΓ is scheduable. An approximation with

approximation errorε is a test algorithm which

(1) returns “non-scheduable” in those cases in whichΓ on ρ is non-scheduable

(2) returns scheduable in all those scheduable cases in whichC (ρ)≥ 1
1−ε C (ρl )

(3) can returns either “scheduable” or “non-scheduable” in allcases withC (ρl )≤

C (ρ)≤ 1
1−ε C (ρl )

This idea can be used in a similar way for all other task and event models. Formally, a peri-

odic taskτ with τ = (T,c,d) and a degree of exactness ofn can be transfeered into a test list

Tewith the elementsTe= {(0,cτ ,0),(Tτ ,cτ ,0),(2Tτ ,cτ ,0), ...,(nTτ ,cτ ,
cτ
Tτ

)}with deadline

dτ . We can transfeer this test list further in a test representing the demand bound function

Ψ(∆I ,τ) for τ by shifting it by the deadline(Te′ = {(dτ ,cτ ,0),(Tτ + dτ ,cτ ,0), ...,(nTτ +

dτ ,cτ ,
cτ
Tτ

)}).

The service functions might also require an approximation.But in contrary to above

it is necessary to underestimate the original functions. A service function of a processor

which is not available every 100 time units for 2 time units due to operation system pro-

cesses can be modeled with an degree of exactness of 4 byTe= {(2,0,1), (100,0,−1),

(102,0,1), (200,0,−1), (202,0,1), (300,0,−1), (302,0,
98
100)}.

8.1.2. Event bound function.The amount of events occuring in some intervals∆I ,

therefore the value of the real-time calculus curves can be calculated with the following

event bound function.

DEFINITION 8.2. An event bound functionϒ(∆I) gives the amout of event which can

occure at most in any interval of length∆I .

The calculation can be done as follows:

ϒ(∆I ,Te) = ∑
∀tei∈Te
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

8.2. Real-Time Analysis. In the following we will show how an efficient schedula-

bility analysis can be realized with the introduced model easily.

8.2.1. EDF. Schedulability analysis for EDF can be done using the processor demand

criteria which was introduced by Baruah et al. [5], [6].

DEFINITION 8.3. ([5]) The demand bound functionΨ(∆I ,Γ) gives the cummulated

execution requirement of those jobs having release time anddeadline within∆I.
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LEMMA 8.4. A task set scheduled with EDF keeps all deadlines if for every inter-

vals ∆I > 0 the demand bound functionΨ(∆I ,Γ) does not exceed the available capacity

C (∆I ,ρ) for ∆I :

Ψ(∆I ,Γ)≤ C (∆I ,ρ)

This can be rewritten as:

C (∆I ,ρ)−Ψ(∆I ,Γ)≥ 0

PROOF. See [5] and [3] �

Both, the demand bound and the service function can be described by test lists as

we have already seen.C (∆I ,Γ)−Ψ(∆I ,Γ) can be simplified to one test list. The overall

demand bound function of the taskset is the sum of the demand bound functions of the

single tasks:

Ψ(∆I ,Γ) = ∑
∀τ∈Γ

∑
∀te∈Teτ

Ψ(∆I ,Te)

The demand bound function of a single task can be derived out of the events bound

function of this task by shifting this function by the value of the deadline:

Ψ(∆I ,Γ) = ϒ(∆I −d,Γ)

So the resulting analysis for EDF reads:

∀∆I ≥ 0 ϒ(∆I ,Te′) = C (∆I ,ρ)− ∑
∀τ∈Γ

∑
∀te∈Teτ

ϒ(∆I −dτ ,Te)≥ 0

For the demand bound function a test list can be calculated out of the test lists of the

event bound functions using the shift and add functions as wewill defined in section 8.3.

In algorithm 1 we give the short implementation to proof the conditionϒ(∆I ,Te)≥ 0

for all ∆I ≥ 0 and therefore to do the real-time analysis.

The best way to do this is to calculate and check the intervalsof the test-list elements

step-wise in rising order starting by∆I = 0. We have to test each element twice, once

after the costs resulting of the previous gradient are addedand once after the costs of the

element are added. Otherwise, the situation can occure thatthe costs value can compensate

a negative value of the functions which would therefore be undetectable.

8.2.2. Analysis for static priorities.The real-time analysis of systems with static pri-

ority scheduling requires another function, the request bound functionΦ(∆I ,Γ).

DEFINITION 8.5. ([5]) The request bound functionsΦ(∆I) contains the amount of

execution time requested by those events having occured within ∆I.

Events occuring exactly at the end of∆I are excluded:

Φ(∆I ,Te) = lim∆I ′→∆I ϒ(∆I ′,Te) = ∑ ∀tei∈Te
∆Itei <∆I

[(∆I −∆Itei ) ·Gtei +ctei ]

For the analysis it is necessary to consider each task seperatly.
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Algorithm 1 Feasibility AnalysisAlgorithm SuperpositionGiven: testList Te (sorted with rising ∆I)
r = 0; G = 0; ∆Iold = 0;FOR ALL (te∈ Te)

r := r +(ate−∆Iold)GIF (r < 0) THEN
⇒not s
heduableEND IF

r := r +cteIF (r < 0) THEN
⇒not s
heduableEND IF

∆Iold := ∆Ite; G := G+GteEND WHILEIF (G < 0) THEN
⇒not s
heduableELSE
⇒s
heduableEND IF

LEMMA 8.6. (similar to [8]) The worst-case response time of a task is given by:

rτ = min(∆I |∀∆I ′ > 0 : C (∆I ′,τ)−Φ(∆I ′,τ)≥ 0)

Schedulability for a job of a taskτ is given if rτ ≤ dτ .

PROOF. See [5]. �

The schedulability analysis can also simply be done by checking for each∆I ≥ 0 and

eachτ ∈ Γ: Ψ(∆I ,τ)≤ C (∆I ,τ)

C (∆I ,τ) denotes the capacity available for taskτ within ∆I . For the task with the

highest priority this is the capacity of the resourceC (∆I ,ρ). For all other task it is the

remaining part of the capacity after all tasks with a higher priority have been processed.

The calculation of this remaining capacity can be done for each task seperatly. The problem

is that an amout of capacity reached for some intervals∆I is also available for each larger

interval∆I ′ even if between∆I and∆I ′ a large amount of computation request occures, so

that Φ(∆I ′,τ)−Φ(∆I ,τ) > C (∆I ′,τ)−C (∆I ,τ). No part of this requested computation

time can be processed within∆I as this would require to process it before it is requested.

For the calculation of this remaining capacity the exceeding costs function is useful:

DEFINITION 8.7. ([2]) Exceeding costsϒ(∆I ,Γ) denotes those part of the costs re-

quested within the interval∆I by the tasksetΓ which cannot be processed within∆I with

either scheduling due to the late request times.

See figure 11 for some examples for exceeding costs. For example for the jobψ1,i

arriving at time 18 and requesting 4 time units computation time at least 2 time units cannot
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FIGURE 11. Exceeding costs

be processed within∆I = 20 even if the job fully gets the remaining processor time. The

exceeding costs gets an even higher value taking other jobs into account. Jobψ2, j alone

would not contribute to the exceeding costs, but together with jobψ1,i the contribution gets

even higher than the contribution of jobψ1,i alone. The reason is that the jobs steal the

capacity from each other. Only the sum of the exceeding computation time is relevant not

from which task it is requested. The value and the calculation of the exceeding costs is

independent of the concrete scheduling.

The exceeding cost function can be used for a simple schedulability analysis for sys-

tems with static priorities [2].

LEMMA 8.8. A task setΓ is scheduable if for each taskτ ∈ Γ and each∆I > 0:

Ψ(∆I ,τ)+ Φ(∆I ,hp(τ))−ϒ(∆I ,hp(τ))≤ C (∆I ,ρ)

or if τi−1 is the task with next higher priority thanτi :

Ψ(∆I ,τi)+ Φ(∆I ,τi−1)−ϒ(∆I ,τi−1)≤ C (∆I ,τi−1)

The calculation of the remaining capacity can be therfore done by

C (∆I ,τi) = C (∆I ,τi−1)−Φ(∆I ,τi−1)+ ϒ(∆I ,τi−1)

PROOF. See [2]. �

This allows a step-wise calculation of the remaining capacity and also an integration

of the analysis for EDF and for fixed priority scheduling to one hierachical schedulability

analysis. The algorithm 2 generates the test-list for the exceeding costs funtionϒ(∆I ,τ).
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Algorithm 2 Exceeding-costs calculationAlgorithm ex
eeding 
ost 
al
ulationGiven: Tein // The result of Φ−C// initialize values
Teresult := {}; G := 0; c := 0; ∆Iold := 0FOR all te∈ TeinIF ((c > 0)∨ (G > 0)) THEN

c := c+(∆Ite−∆Iold)GEND IFIF(c≤ 0) THEN
∆Isplit := ∆Ite+ c

(−G)

Teresult := Teresult∪ (∆Isplit,0,−G)
c := 0END IF

cnew := c+cteIF (c > 0∧cnew> 0) THEN
Teresult := Teresult∪ teELSE IF (c≤ 0∧cte > 0)
Teresult := Teresult∪ (∆Ite,cte,Gte+G)ELSE IF (c > 0∧cnew≤ 0)
Teresult := Teresult∪ (∆Ite,−c,−G)ELSE IF (c > 0∧cnew≤ 0∧G+Gte < 0)
Teresult := Teresult∪ (∆Ite,−c,−G)ELSE IF (c > 0∧cnew≤ 0∧G+Gte≥ 0)
Tenew := Tenew∪ (∆Ite,−c,Gte)ELSE IF (c≤ 0∧cnew≤ 0∧G+Gte≥ 0)
Tenew := Tenew∪ (∆Ite,0,G+Gte)END IF

G := G+Gte

c := max(cnew,0)
∆Iold := ∆IteEND FORRETURN Teresult

Figure 12 visualizes its calculation. The exceeding cost function starts equal to the

difference of the request bound function and the available capacity (Φ(∆I ,τ)−C (∆I ,τ)).

It remains equal to this function until it drops below zero for the first time, e.g. more

capacity is available than required by requested jobs. Thanthe exceeding cost function

remains zero until the difference function starts rising again, e.g. new request arrives.

Than the exceeding costs function will also rise and run further in parallel to the difference

function but with a higher value.

8.2.3. Practical issues.Blocking time, scheduling overhead and the priority inher-

itance protocol can easily be integrated in the above equations. A blocking timeb can
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FIGURE 12. Calculation of the exceeding cost functions

be integrated by either addingb to the equations or by integrating the test-list element

te= (0,b,0).

8.3. Operations and Basic Functions. In the following we will introduce some op-

erations on test-lists and their implementations.

8.3.1. Adding(+). The add-operation for two test lists can be simply realized by a

union of the sets of test list elements of the two test lists:

DEFINITION 8.9. (+ operation) LetTeA,TeB,Tenew be test lists. IfTenew is the sum

of TeA andTeB (Tenew= TeA +TeB) than for each interval∆I the equationϒ(∆I ,Tenew) =

ϒ(∆I ,TeA)+ ϒ(∆I ,TeB) is true.

LEMMA 8.10. (+ operation) The sum Tenew = TeA + TeB can be calculated by the

union of the event stream elements of TeA,TeB:

Tenew= TeA∪TeB

PROOF. The proof can be done using the definition of the hierarchical event bound

function:
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ϒ(∆I ,Tenew) = ϒ(∆I ,TeA)+ ϒ(∆I ,TeB)

= ∑
∀tei∈TeA
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]+ ∑
∀tei∈TeB
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ∑
∀tei∈TeA∪TeB

∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ] = ϒ(∆I ,TeA∪TeB)

�

8.3.2. Substracting (−). The subtraction can be led back to the addition by exchang-

ing TeB with its negation−TeB. So we only need to define the negation of the test list.

DEFINITION 8.11. (− operation) LetTe′ =−Te. The negation ofTeis defined by the

negation of its corresponding hierarchical event bound functionϒ(∆I ,−Te) =−ϒ(∆I ,Te).

It is therefore only the substraction of two functions.

LEMMA 8.12. (− operation) Te′ = −Te if for each test list element te of Te exists a

corresponding counter element te′ of Te′ and vice versa differing only in the negation of

the one-time costs and the gradient. We have∆Ite′ = ∆Ite, cte′ =−cte and Gθ̂ ′ =−Gθ̂ .

In other words for each test list elementte of Te the costscte and the gradientGte are

exchanged by their negation−cte and−Gte.

PROOF.

−ϒ(∆I ,Te) = − ∑
∀tei∈Te
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ∑
∀tei∈Te
∆Itei≤∆I

[(∆I −∆Itei )(−Gtei )+ (−ctei )]

= ∑
∀tei∈Te′
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ϒ(∆I ,Te′)

�

The operation(+) is cumulative, same as with the hierarchical event sequences, so we

haveTeA +TeB = TeB +TeA and also(TeA +TeB)+TeC = TeA +(TeB+TeC).

8.3.3. Shift Operation(→,←). The shift operation can be realized by adding or sub-

tracting the shift-value from each interval of all test listelements. We may get test list

elements with negative intervals, which can be handled despite that the negative interval

values are not defined.



8. INTEGRATION WITH REAL-TIME CALCULUS 38

DEFINITION 8.13. (→ shift-operation) LetTebe a test list that is shifted right by the

valuet resulting in the test listTe′= Te→ t . The event bound functions have the following

relationship:

ϒ(∆I ,Te′) =







ϒ(∆I − t,Te) ∆I ≥ t

0 else

LEMMA 8.14. ϒ(∆I ,Te)→ t = ϒ(∆I ,Te′) if Te′ contains and only contains for each

element te of Te an element te′ ∈ Te′ having the following relations to Te:∆Ite′ = ∆ITe+ t,

cte′ = cte, Gte′ = Gte

The operationTe′ = Te→ t can be performed by only adding the valuet to the interval

∆Ite of each event elementte∈ Te for its corresponding counter-elementte′ of Te′:

∆Ite′ = t + ∆Ite

PROOF.

ϒ(∆I − t,Te) = ∑
∀tei∈Te
∆Itei≤∆I

[((∆I − t)−∆Itei)Gtei +ctei ]

= ∑
∀tei∈Te
∆Itei≤∆I

[(∆I − (∆Itei + t))Gtei +ctei ]

= ∑
∀tei∈Te′
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ϒ(∆I ,Te′)

�

The operation to shift a value left by the value t (Te← t) can be defined in an equal

way.

DEFINITION 8.15. (← shift-operation) LetTebe a test list that is shifted left by the

valuet resulting in the test listTe′= Te← t . The event bound functions have the following

relationship:

ϒ(∆I ,Te′) = ϒ(∆I + t,Te)

LEMMA 8.16. ϒ(∆I ,Te)← t = ϒ(∆I ,Te′) if Θ′ contains and only contains for each

test list element te of Te an element te′ ∈ Te′ having the following relations to Te:∆Ite′ =

∆ITe− t, cte′ = cte, Gte′ = Gte

PROOF. The proof is similar to the proof for the right shift .

ϒ(∆I + t,Te) = ∑
∀tei∈Te
∆Itei≤∆I

[((∆I + t)−∆Itei)Gtei +ctei ]
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= ∑
∀tei∈Te
∆Itei≤∆I

[(∆I − (∆Itei − t))Gtei +ctei ]

= ∑
∀tei∈Te′
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ϒ(∆I ,Te′)

�

8.3.4. Scaling with a cost value(·). Another operation on test lists is to scale it by a

cost value. This is, for example, necessary for the integration of the worst-case execution

times into the analysis. If the test lists uses the number of events as unit, it is necessary to

scale it for analysis with the worst-case execution time.

DEFINITION 8.17. LetTe′ be the test listTescaled by the cost valuec. (Te′ = cTe)

Than for each interval∆I the corresponding event bound functions have the relationship

ϒ(∆I ,Te′) = cϒ(∆I ,Te)

LEMMA 8.18. ϒ(∆I ,Te′) = cϒ(∆I ,Te) if Te′ contains and only contains for each test

lists elementθ of the child set of Te an element te′ ∈ Te′ having the following relations to

Te: ∆Ite′ = ∆ITe, cte′ = ccTe, Gte′ = cGte

All parts of the test list elements related to the amount of events are scaled by the

variablec.

PROOF. The proof of this lemma is quite similar to the proofs above.

ϒ(∆I ,Te)c = ∑
∀tei∈Te
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]c

= ∑
∀tei∈Te
∆Itei≤∆I

[(∆I −∆Itei ) · (Gtei c)+ (ctei c)]

= ∑
∀tei∈Te′
∆Itei≤∆I

[(∆I −∆Itei )Gtei +ctei ]

= ϒ(∆I ,Te′)

�

8.3.5. Utilization. An important value for the feasibility analysis is always the uti-

lization of an task set.

LEMMA 8.19. The utilization UTe of a test-list is given by:

UTe = ∑
te∈Te

Gte
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FIGURE 13. Real-Time Calculus of single task

Note that only the total gradient determines the utilization. All test list elements only

influence a certain interval being small compared to the infinite interval.

PROOF. The proof is based on the fact that in the long run the contribution of the last

period gets infinite small compared to the rest.

UTe = lim
∆I→∞





∑ ∀te∈Te
∆Ite≤∆I

[(∆I −∆Ite)Gte+cte]

∆I





= ∑
∀te∈Te

lim
∆I→∞

(

[(∆I −∆Ite)Gte+cte]

∆I

)

= ∑
∀te∈Te

lim
∆I→∞

(

Gte−
∆Ite
∆I

+
cte

∆I

)

= ∑
∀te∈Te

Gte

�

8.3.6. Operations of the real-time calculus.A scheduling network is a system con-

sisting of several chains of tasks and a set of resources. Each taskτ of the task chain is

mapped to one resourceρ . Tasks mapped on the same resource are scheduled with fixed

priority scheduling. Different tasks of a chain can be mapped on different resources. In the

figure 1 the tasksτ1, τ4, τ6 forms a task chain and the tasksτ1, τ4, τ7 forms another task

chain. Each taskτ is triggered by an upper and lower arrival curveRu
τ(∆I) andRl

τ(∆I) and

the available computational effort for this task is described by an upper and lower service

curveβ u
τ (∆I) andβ l

τ(∆I).

Figure 13 gives a closer look at one single taskτ and their curves. For each task

we have an incoming (upper and lower) arrival curveRu
τ(∆I) andRl

τ(∆I) modelling the

workload forτ. It includes and is based on the arrival times of those eventsgenerating

workload for τ. We also have an (upper and lower) service curveβ u
τ (∆I) and β l

τ(∆I)

modeling the amount of workload that can be handled by the task.

The analysis of a task generates outgoing (upper and lower) arrival (Ru
τ(∆I)′ and

Rl
τ(∆I)′) and service curves (β u

τ (∆I)′ andβ l
τ(∆I)′). The outgoing arrival curve is a modifi-

cation of the incoming arrival curves and is also the incoming arrival curve of the following
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Algorithm 3 inf-splitAlgorithm inf-split // inf0≤∆I ′≤∆I (R(∆I ′)+ β (∆I−∆I ′))testlist R,βtestlist S= /0FOR all te∈ R and all te∈ β
S:= min(S,subAddOneList(R,∆Ite,β ))
S:= min(S,subAddOneList(β ,∆Ite,R))END FORRETURN SAlgorithm subAddOneList Te, ∆I, Te′testlist tmp:= /0

tmp:= Te+ ∆I
c := ∑ ∀te′∈Te′

∆Ite′<∆Ite
[cte′ +(∆I −∆Ite′)Gte′ ]

tmp:= tmp∪{(∆I ,c,0)RETURN tmp;
task in the chain. The outgoing service curve is the incomingservice curve reduced by the

workload handled by the task. It is the incoming service curve for the task with the next

lower priority on the same resource.

The real-time calculus provides the equations to describe the relationships between the

incoming and outgoing curves [7]. For the calculation the functions sup and inf are needed

provinding upper and lower bounds. Their value can be reachable, but need not to be.

The outgoing service curves, giving the available capacityfor the task with the next

lower priority on the same processor, can be calculated by:

β l
τ(∆I)′ = min( sup

0≤∆I ′≤∆I
{β l

τ(∆I ′)−Ru
τ(∆I)},0)

β u
τ (∆I)′ = sup

o≤∆I ′≤∆I
{β u

τ (∆I ′)−Rl
τ(∆I ′)}

For our model we have already provided equation for calculating the remaining capac-

ity based on the exceeding cost function. They can be used in the real-time calculus:

C
l (∆I ,τi) = C

l (∆I ,τi−1)−Φu(∆I ,τi−1)+ ϒu(∆I ,τi−1)

C
u(∆I ,τi) = C

u(∆I ,τi−1)−Φl (∆I ,τi−1)+ ϒl (∆I ,τi−1)

We can setβ x
τ (∆I) = C x(∆I ,τ) andRx

τ(∆I) = Φx(∆I ,τ).

The outgoing lower arrival curve is given by:

Rl
τ(∆I)′ = inf

0≤∆I ′≤∆I
{Rl

τ(∆I ′)+ β l
τ(∆I −∆I ′)}

In algorithm 3 gives a concrete implementation for this operation based on test lists.

The idea is to keep either∆I ′ or ∆I −∆I ′ fixed, calculate the fixed value for eitherRl
τ(∆I ′)

or β l
τ(∆I −∆I ′) and complete this value to every possible interval∆I with the test list of

the other function. The resulting test list for this completion operation can be calculated
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and the overall resulting test list is given by the infimum over the test lists of all possible

fixed values for∆I ′ and ∆I − ∆I ′. Necessary for them is a algorithm to find the step-

wise minimum or infimum of two test lists. The implementationof such an algorithm is

very straight forward and therefore skipped here. It is simply processing both list in the

ascending order of their test-list elements and to registeralways the dominating element

(the element leading to the lower overall cost value). In case of different gradients of

the corresponding elements the domination can change at an interval ∆I ′ between two

intervals. The calculation of∆I ′ is simply the calculation of the crossing point of two lines.

The outgoing upper arrival curve is given by:

Ru
τ(∆I)′ = min( inf

0≤∆I ′≤∆I
{ sup

0≤v≤∞
[Ru

τ(∆I ′+v)−β l
τ(v)]+ β u

τ (∆I −∆I ′)},β u
τ (∆I))

We define the sup-add operation handling the inner part of theequation:

sup
0≤v≤∞

[Ru
τ(∆I ′+v)−β l

τ(v)]

Its implementation for test lists is given in algorithm 4.

The idea is similar as for the inf-split operation, we also hold an interval and build a

test list for all possible completions. But we usesv here always as fixed value. The im-

plemetation of the sup or maximums operation is similar to the inf or minimum operation.

9. Conclusion

In this work we presented a new advanced event model especially suitable for the

modeling of distributed systems. Such a system consists of several tasks bound on differ-

ent processing elements, triggering each other. To divide the problem of real-time analysis

of the whole system to a problem of real-time analysis of the single tasks, a model effi-

ciently describing the densities of the events triggering the tasks (incoming events) and

those events generated by the tasks to trigger other tasks (outgoing events) was required.

Additionally, a model for the capacity of the processing elements available for the tasks

was necessary. This is especially complicated in the cases with a higher priority tasks al-

ready having used up a part of the capacity. In this paper we proposed an unified model as a

whole. Additionally this model is capable to introduce approximations into the description

of the event densities which guarantees a fast evaluation aswell as an upper bound on the

approximation error.

The new model integrates the efficient modeling of periodic and aperiodic events, burst

of events in various kinds, approximated event streams, theinitial capacity and the remain-

ing capacites of processors in one single model. It can be seen as an explicit description

for the arrival, service and capacity curves of the real-time calculus having the necessary

modeling capabilies for them. We have presented the real-time analysis for this model for

both, systems with dynamic or static priorities.
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Algorithm 4 sup-addAlgorithm sup-add // sup0≤v<∞(R(I +v)−β (v))TestList R,βtestList S= /0FOR all te∈ R and all te∈ β// ∆Ite = v
di f f =

∑ te′∈R
∆Ite′≤∆Ite

[cte′ +(∆Ite−∆Ite′)Gte′ ]−∑ te′∈β
∆Ite′<∆Ite

[cte′ +(∆Ite−∆Ite′)Gte′ ]//di f f = R(∆Ite)− lim∆I ′→∆Ite
∆I ′<∆Ite

β (∆I ′)// Hold the point of β
GR = ∑ ∀te′∈R

∆Ite′≤∆Ite
Gte′

Tetmp := {te′|te′ ∈R∧∆Ite′ > ∆Ite}
Tetmp := Tetmp−∆Ite
Tetmp := Tetmp+{(0,di f f ,GR)}
S:= sup(S,Tetmp)// Hold the point of R// Needed inverse β
Gβ = ∑ ∀te′∈β

∆Ite′<∆Ite

Gte′

Tetmp := {te′|te′ ∈R∧∆Ite′ < ∆Ite}
Tetmp2 := {(0,di f f ,Gβ )}FOR ea
h tei ∈ Tetmp

Tetmp2 := Tetmp2∪{(∆Ite−∆Itei ,cte′i
,Gtei−1)}END FOR

S:= sup(S,Tetmp2)END FORRETURN S

We have also propose an efficient approximative model to describe stimulations of

tasks in a distributed real-time system. It was shown that this model integrates many other

models describing stimulation in a system and delivers due to a chooseable degree of ap-

proximation a general description of stimulation. In the next step we described how a

efficient real-time analysis for the model can be done for static and dynamic priorities. In

order to show the relevant impact of our model and methods we use the real-time calcu-

lus. We give an efficient way to integrate the real-time calculus in our model. Thereby we

show how the abstract described functions can be implemented in a concrete manner. In

future we will use this model for further applications in order to improve methods for the

real-time analysis.
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∆I interval

T period
a offset
l limitation
k number of test intervals
Θ event stream

θ = (T,a) event element
Θ̂ hierachical event stream

θ̂ = (T,a, l ,G,Θ̂θ̂ ) hierachical event stream element
s separation point

ϒ(∆I ,Θ̂) event bound function
Ψ(∆I ,Θ̂) demand bound function
I (∆I ,Θ̂) interval bound function

Te test list
te= (∆I ,c,G) test-list element

c costs
B busy period

TABLE 1. List of symbols
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