
Situation Aware Scheduling for Energy-Efficient
Real-Time Systems

Frank Bodmann
INCHRON GmbH
Potsdam, Germany

Nina Mühleis
University of Erlangen-Nuremberg
Department of Computer Science

Erlangen, Germany

Frank Slomka
University of Ulm

Institute of Embedded Systems/Real-Time Systems
Ulm, Germany

Abstract—The aim of an energy-efficient real-time
scheduler is to reduce power consumption by reducing the
voltage and the frequency of a processor while preserving
temporal correctness. Most of the research in this area
is restricted to the periodic task model. In this paper we
present an energy-efficient dynamic scheduling algorithm
that uses the more expressive event spectrum model for the
description of task activations. The additional information
available through this model is used to gain a better
understanding of the system’s situation and allows an
accurate assessment of future system activity. This enables
the scheduler to adjust the processor speed more energy-
efficiently than previous approaches. Descriptive examples
are provided to illustrate the mechanisms and the effect
of the proposed scheduling strategy.

I. INTRODUCTION

Innovation in the field of mobile computing devices
is currently limited by power consumption and battery
life. For real-time systems however it is important to
remember that these systems do not necessarily have to
work fast, but just fast enough. For every task in the
system time constraints are given which must never be
violated. In order to meet these time constraints it is
not always required to use the full computing power of
the system. For complex real-time systems the required
computing power may vary strongly during run-time
depending on its task activity. By dynamically recog-
nizing the required computation power at run-time, the
processor frequency can be adapted and energy preserved
based on the system’s present situation.

A powerful model to describe task activations in a
system is the event spectrum model also known as the
event stream model. In this model a set of minimum time
intervals and the respective number of task activations
that may occur within them is specified. As the given
intervals are minimum time intervals, task activations
in the running system may occur more diffused. An

online scheduler can compare past task activations to the
specified intervals and conclude when future activations
may occur at the earliest. From this the future processor
load can be calculated and the processor frequency may
be adjusted.

In addition to changing the processor frequency the
operating voltage can also be adapted. In CMOS logic,
used in most microprocessors today, the voltage depends
on the operating frequency. When the frequency is re-
duced the processor can be supplied with lower voltage.
This is highly effective because the systems energy con-
sumption grows quadratically with the operating voltage.
A wide range of processors across all domains offer the
opportunity to adjust the operating frequency and voltage
dynamically.

II. RELATED WORK

The event spectrum model has been used in the context
of dynamic energy aware real-time scheduling in [1],
where power consumption was deferred for the optimal
use of a regenerative energy source. An overall reduction
of the power consumption however was not intended in
that work. In [2] the event spectrum model is used to
determine the permissible slowdown factor for a real-
time system. The work describes an analysis to be
performed during the design phase and does not examine
its use for an on-line scheduling algorithm.

A set of real-time scheduling algorithms using dy-
namic voltage scaling for low-power embedded systems
can be found in [3]. Using a simple periodic description
of task activations however leaves the scheduler with
limited information, so the scheduler may be either too
hesitant to slow down the processor or the saved energy
by slowing down the processor early may be more than
used up again as the processor speed may have to be
increased later to catch up on the deferred work.

The sporadic task model is used in [4] to describe a
dynamic scheduling algorithm. The sporadic task model
describes the minimum time interval between two task
activations whereas the event spectrum model describes
the minimum time intervals for an arbitrary number
of activations. A scheduling algorithm using the event
spectrum model can therefore assess future activations
beyond the next one more accurately.

Trying to cope with the limited information provided
by the periodic task model, [5] uses a control loop to
adjust to the task activity of the system as it is running.
This approach considers varying execution times instead
of varying task activation times.

III. EVENT SPECTRUM MODEL

In this section the task activation model used by this
approach, introduced in [6] as the event stream model,
is described. A task is activated by an event. The event
spectrum model is used to describe the timing of these
events. The key question this approach answers is: How
many events can at most occur within any time span
of a given length? This allows an abstraction from the
absolute time towards a description in arbitrary time
intervals. This provides a powerful way to describe the
timing of events and at the same time allows an efficient
analysis of the real-time properties of a system.

An event spectrum is a set of event elements:

ES =

{(
p1
a1

)
,

(
p2
a2

)
, ...,

(
pn
an

)}
. (1)

Each element represents an additional event that can
occur when the observed interval has a size equal to
or larger than ai. The period pi allows the event to be
repeated every pi time units.
If all event elements have the same period the event
spectrum is called homogeneous. In this paper only
homogeneous event spectra are considered.

In Fig. 1 only one event occurs concurrently so there
is a maximum of one event in any interval with a size
towards zero. As the interval grows, the number of
events that can occur within it increases. Two events
can occur in an interval sized two, etc. So the depicted
sequence of events adheres to the event spectrum ES =
{
(p
0

)
,
(p
2

)
,
(p
10

)
,
(p
16

)
,
(p
21

)
}. The period p indicates that a

set of events following the same constraints may occur
every p time units. A sequence of events that matches
this event spectrum could be more relaxed: e.g. the event
at time 10 may occur at 11 instead.

1

2

3

4

5

2

10

16

0 5 10 2119

0

21

#
 o

f
E

v
e
n
ts

Absolute

Time
In

te
rv

a
ls

Fig. 1. Event spectrum model

The maximum number of events that can occur in time
interval I can be calculated by the event bound function
where n is the number of event elements describing the
event spectrum:

E(I) =
n∑

i=1

⌊
I − ai
pi

+ 1

⌋
(2)

The inverse function of the event bound function pro-
vides the minimum interval in which a given number of
events m may occur:

a (m) = p ·
⌊

m

n+ 1

⌋
+ ai, with i = m modulo n + 1

(3)
By scaling the event bound function by the maximal

computation time c each event causes, the amount of
requested computation time for intervals can be deter-
mined. By reducing the size of the given interval by
the deadline d the computation time of those events that
have to be completely processed during the interval is
retrieved. So the demand bound function C(I) expresses
how much demand for computation time is at most
possible for any interval [7].

C(I) = E(I − d) · c (4)

Event spectra do not have to be specified manually, but
can automatically be derived from a system description
given in arbitrary programming language [8].

IV. SITUATION AWARE SCHEDULING USING THE

EVENT SPECTRUM MODEL

In many situations real-time systems do not need
the full computing power of their processors. Situation
Aware Scheduling is based on Earliest Deadline First
(EDF) scheduling. After activation every task must be
completed before a defined deadline is reached. If there
is more than one task in the system that needs access
to the processor, the task with the earliest deadline gets
access to the processor first. The idea of Situation Aware

Fig. 2. Demand bound function

Scheduling is to adjust the processor’s frequency so that
no task violates its deadline while the system runs as
slow as possible thus maximizing the load: the system
can perform the tasks at hand but no more. This is done
by assessing upcoming task activations.

A possible way to gain information about future task
activations is the event spectrum model. This model
provides the event bound function (Equation 2) that char-
acterizes the maximum number of events that may occur
in any time interval. If past task activations of a running
system are taken into consideration, the event bound
function can be used to calculate the worst possible time
for future events. In other words time intervals provided
by the event bound function are mapped to absolute time.
So the processor load for the future can be calculated
as it depends on these future events, their deadlines
and their Worst Case Execution Times (WCET). The
processor load can be expressed by the demand bound
function of the event spectrum model (Equation 4).

Consider a task with expected task activations as
shown in Fig. 2. A step in the demand bound function
occurs when the deadline of a task activation is reached
because up to this point in time the computation time
must have been made available. The height of the step
is equal to the WCET of the task. The bisecting line
represents time available for calculations. The minimal
distance from the function to the bisecting line is equiv-
alent to time that is not used by EDF scheduling but
could have been used as not all deadlines have passed
while the processor is already idle. This time is called
slack.

A. Determining the remaining computation time

In order to calculate the maximal expected processor
usage, it is necessary to keep track of the remaining
calculation times from past activations. At the moment
an event occurs, the complete WCET of the task is
its remaining computation time. Whenever the task gets
access to the processor this time is decremented.

B. Determining the lists of future events

For every task the scheduler sustains a sorted list of
earliest points in time tj when the next, 2nd to next,
3rd to next,... activation may occur. It is initialized by
the event bound function, with: tj = aj . All times are
stored in relation to a point in time told. The list has to
be updated whenever an event occurs and whenever the
future processor load is calculated. The length of this
list depends on the length of the event spectrum (n).
The list always contains one more element than the set
of elements of the event spectrum (n+ 1).

1) Updating the list of future events of task Ti:
An occurring event implicates that the first element
in the list may be deleted as the occurring event was
represented by that element. All following elements
move up accordingly: Before the update times t1 to tn−1
were relative the moment in time when the list was last
updated (told). Since the last update tp = tnow − told
time units have passed. So the new relative points in
time are t′j = tj+1 − tp. In Fig. 3 this is shown in
the first line. When updating the list, the information
available in the list has to be again combined with
the constraints provided by the event bound function.
The inverse function a(m) of the event bound function
represents the minimum interval in which m activations
may occur. Thus the following events can occur at the
earliest at:

t′j = max((tj+1 − tp), a(j)) ∀ 0 ≤ j < n (5)

The process is illustrated in Fig. 3.

Fig. 3. Update following Events

The new value for the last element tn of the list
has to be determined from scratch. As it represents the
(numberOccuredEvents + n + 1)ths activation of the
task it can be computed as:

tn = a(numberOccuredEvents+ n+ 1)− tnow (6)

If fewer than the allowed number of events occur within
a period, the event bound function can be reset to its
origin at the start of the new period.

2) Updating the lists of future events of all other tasks:
When an event occurs, also the list of the following
events of the tasks on the same processor that the event
did not belong to have to be updated. If the next possible
events are still in the future, their expected arrival times
are simply decremented by tp. If one or more expected
events of the task did not occur at the earliest possible
time, a new event can occur at any time. The distance to
the following event is 0. For the second, third,... event
the algorithm must again ensure that the event bound
function is not violated. So the following events can
occur at t′j = max(tj , a(j)).

C. Calculating the Processor Frequency

The minimal processor frequency allowed without vi-
olating a deadline depends on the predicted future events
for every task in the system, their deadlines, WCETs and
the remaining computation time of past task activations.
The demand bound function of the whole system is the
sum of the individual demand bound functions of every
task. In order to find the minimal slack, the slack for
every step in the demand bound function of the system
must be calculated. Due to different relative deadlines
of individual tasks the order of occurring events may
not match the order of steps in the individual demand
bound functions. In order to reduce the complexity
of examining the demand bound function a sorted list
of steps in the function is used. The steps occur at
sj = tj + Di. When examining the function for every
task it is known which step in the function occurs next.
This way the next step in the function can be found by
comparing the next steps of all tasks to each other in
their demand bound function. The complexity is linear
to the number of tasks in the system.

The slack has to be computed at every point in time a
step occurs. Occurring steps mean that the value of the
demand bound function is increased by the WCET of the
task the step belongs to. The value of the demand bound
function at timek is demandk = demandk−1+wcet and
thus slackk = timek − demandk. Remaining computa-

tion times from previous task activations are added to the
demand bound function at their accompanying deadlines.

An implementation for building the demand bound
function is shown in listing 1.

Listing 1. Code for slack calculation
Time s l a c k (s t e p C o u n t){

Time s l a c k = MAX TIME;
Time demand = 0 ;
f o r (k = 0 ; k < s t e p C o u n t ; k ++){

Time t ime k = t imeOfNex tS tep () ;
Time wcet = wce tOfNextS tep () ;

/ / Value o f demand bound
/ / f u n c t i o n a t t i m e k
demand = demand + wcet ;
s l a c k = min (s l a c k , t ime k−demand) ;

}
re turn s l a c k ;

}

When computing the minimal slack a time tterm is
needed at which the calculation can be terminated safely.
At this time the processor speed must be inferred from
the slack with the guarantee that no deadline will be
violated before or after. This guarantee can be given if
all activations before tterm have to be completed before
tterm. This condition can be expressed as: ∀ ti < tterm :
si ≤ tterm. For an event spectrum with n elements n+1
steps are considered for slack calculation. The last saved
step of task Ti occurs at ti last = pi + Di. The sum
of steps for every task within the smallest ti last can be
used as the maximum number of steps to be considered.
If no termination situation is found within the maximum
number of steps, the slack must be assumed to be zero.

The processor time used by the scheduler itself can be
accounted for as additional steps in the demand bound
function. The minimum processor frequency for task Ti

depends on the slack at the point in time when the
task gets access to the processor the first time and the
WCET of the task Ti. The scale factor for the processor
frequency is:

FrequencyScale =
wcet

wcet + slack
. (7)

This formula can in turn be used to select the appropriate
frequency form a finite set of working points of the
processor. Reducing the tasks frequency implicates a
longer execution time for the task. The initial remaining
computation time for a task is its WCET.

ComputationT imeRemaining′

=
ComputationT imeRemaining

FrequencyScale
(8)

V. EVALUATION

We have developed a test environment to evaluate the
effect of Situation Aware Scheduling. The load of the
system is compared to the maximal load possible and to
that generated by an EDF scheduler. The maximal load
possible is lower than 100% when there are times when
no task can work: all deadlines have passed while all
following activations are still in the future.

In the following a set of three tasks is analyzed with
these characteristics:

Task 1: ES1 =

{(
40

0

)
,

(
40

9

)
,

(
40

20

)}
wcet1 = 2 ms, deadline1 = 7 ms

Task 2: ES2 =

{(
20

0

)
,

(
20

6

)
,

(
20

13

)}
wcet2 = 2 ms, deadline2 = 4 ms

Task 3: ES3 =

{(
10

0

)
,

(
10

5

)}
wcet3 = 1 ms, deadline3 = 2 ms

Thus the earliest possible activations [ms] are:

• Task 1: 0, 9, 20, 40, 49, 60, 80,...
• Task 2: 0, 6, 13, 20, 26, 33, 40,...
• Task 3: 0, 5, 10, 15, 20,...

The maximum number of steps for calculating the
slack was set to 5. Fig. 4 shows the simulation results
of several activation patterns. In Table I the load of
the system in these cases when using the algorithm
for Situation Aware Scheduling (SAS) is compared to
the load that is reached by a common EDF scheduler
and the maximum load possible. The best results are
achieved when events occur as expected. In the majority
of these cases the maximal possible load is reached.
The least significant improvements are achieved if an
event occurs significantly later than expected. In this case
the algorithm must expect an event for this task at any
moment. Enough computation time must be remaining
so no deadline will be violated if the event finally occurs.

We compared these results to dynamic voltage scal-
ing algorithms using the periodic task model. However
performing a real-time analysis on a task system that
has been transferred from a description by event spectra
to a description by periodic tasks, usually results in a
predicted system utilization of more than 100%. Conse-
quently algorithms such as the Look-Ahead RT-DVS [3]
in fact try to set the processor to frequencies well above
100%, rendering comparisons like these meaningless.

Case 1: All tasks are activated at t = 0, all following
events occur as soon as possible

0 5 10 15 20 25 30 35 40 45 50

Processor
speed:

50%

0%

100%

Task 3
wcet = 1
Deadline = 2

Task 2
wcet = 2
Deadline = 4

Task 1
wcet = 2
Deadline = 7

Case 2: The first activations of the tasks are dephased,
all following events occur as soon as possible

0 5 10 15 20 25 30 35 40 45 50

Processor
speed:

50%

0%

100%

Task 3
wcet = 1
Deadline = 2

Task 2
wcet = 2
Deadline = 4

Task 1
wcet = 2
Deadline = 7

Case 3: All tasks are activated at t = 0, following
activations may arrive later than possible

0 5 10 15 20 25 30 35 40 45 50

Processor
speed:

50%

0%

100%

Task 3
wcet = 1
Deadline = 2

Task 2
wcet = 2
Deadline = 4

Task 1
wcet = 2
Deadline = 7

Case 4: Some activations do not occur within their
periods (skipped activations)

0 5 10 15 20 25 30 35 40 45 50

Processor
speed:

50%

0%

100%

Task 3
wcet = 1
Deadline = 2

Task 2
wcet = 2
Deadline = 4

Task 1
wcet = 2
Deadline = 7

Fig. 4. Example with three tasks

TABLE I
ANALYSIS RESULTS

Case Execution Time [ms] Load max. Load Load Average Processor Speed

EDF SAS EDF SAS SAS

1 26 33 82,5% 65% 82.5% 80%

2 33 45 95,7% 70% 95.7% 68.6%

3 30 41 80,4% 58% 80.4% 80.4%

4 21 33 76,4% 41% 64.7% 78.4%

VI. CONCLUSION

In this paper we have shown how a dynamic real-
time scheduler can gain an improved situation awareness
allowing improved dynamic voltage scaling. This situa-
tion awareness is achieved by matching comprehensive
information on possible task activation patterns against
actual past task activations. As a result the scheduler has
an insight into possible future task activations and can
adjust the processor speed in order to minimize power
consumption while ensuring that all real-time guarantees
are met.

We demonstrated the effectiveness of the Situation
Aware Scheduler in a simulation. The degree of energy
savings depends on the actual task activations. Best
results are achieved when events occur alongside their
initial specification.

Currently the objective of the algorithm is to minimize
the required working frequency of the processor. With
the increasing importance of leakage in current proces-
sors, in some situations power consumption can be fur-
ther reduced by temporarily deactivating the processor.
Future work should consider extending the scheduler to
find these situations and drive the processor accordingly.

REFERENCES

[1] C. Moser, L. Thiele, L. Benini, and D. Brunelli, “Real-Time
Scheduling with Regenerative Energy,” Proceedings of the 18th
Euromicro Conference on Real-Time Systems (ECRTS), pp. 261–
270, 2006.

[2] H. Lipskoch, K. Albers, and F. Slomka, “Fast calculation of
permissible slowdown factors for hard real-time systems,” Inte-
grated Circuit and System Design. Power and Timing Modeling,
Optimization and Simulation, pp. 495–504, 2007.

[3] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” Proceedings of the
eighteenth ACM symposium on Operating systems principles, pp.
89–102, 2001.

[4] A. Qadi, S. Goddard, and S. Farritor, “A dynamic voltage scaling
algorithm for sporadic tasks,” Real-Time Systems Symposium,
2003. RTSS 2003. 24th IEEE, pp. 52–62, 2003.

[5] Y. Zhu and F. Mueller, “Feedback EDF scheduling exploiting
dynamic voltage scaling,” Real-Time and Embedded Technology
and Applications Symposium, 2004. Proceedings. RTAS 2004.
10th IEEE, pp. 84–93, 2004.

[6] K. Gresser, “An event model for deadline verification of hard
real-time systems,” in 5th Euromicro Workshop on Real-Time
Systems, Finland, 1993.

[7] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Gener-
alized multiframe tasks,” Real-Time Systems, vol. 17, no. 1, pp.
5–22, 1999.

[8] F. Bodmann, K. Albers, and F. Slomka, “Analyzing the timing
characteristics of task activations,” Proceedings of the first IEEE
Symposium on Industrial Embedded Systems (SIES), 2006.

