
A new delay specification for cyber-physical systems
development

Tobias Bund, Frank Slomka
Institute of Embedded Systems and Real-time systems

Ulm University
{tobias.bund | frank.slomka}@uni-ulm.de

ABSTRACT
One application of cyber-physicals systems are embedded
control systems. A physical process is stabilized by a digital
controller implemented on computation units. The control
unit gathers sensor data over a communication network and
sends the calculated control value in order to stabilize the
physical system. Such distributed control loops are highly
sensitive to delays that occur in the control loop. There are
different methods and techniques to obtain these delays, in-
cluding analysis methods or simulations. So far, these delays
are reannotated in the functional model, where the control
system is validated and if necessary revised.

With the method described in this paper, we make this step
invalid. The delay density is an expressive specification for
the allowed amount of delay in an interval and defined in the
functional design. If the the specification of the delay density
can be validated during the platform design, one can be
sure to fulfill the required performance. This paper defines
the delay density and how it can derived from a functional
behavior. Afterwards, real-time analysis methods are used
to validate the specification.

1. INTRODUCTION
When developing a digital control system, a control engineer
designs the algorithms and also specifies the rate a new con-
trol value is calculated. This rate is often known as sampling
rate or sampling frequency. In general this sampling rate is
strict periodic, which means the gathering of the sensor val-
ues and the following calculating is done in equidistant time
intervals. As a further requirement, the control engineer
defines a deadline, when the calculation of the new control
value has to be finished. This deadline is typically chosen
for the same duration as the sampling rate.

This is an established method to develop a digital control
system, because the control engineer does not need to con-
sider any timing effects introduces by the implemented soft-
ware and the underlying platform. On the other hand, the

software engineer, who implements the control functionally,
does not need to know anything about control theory, as
he treats the algorithms as tasks. A paradigm, which im-
plements the above described method is the Time-Triggered
Architecture (TTA) [?]. The TTA design paradigm sepa-
rates the design from the implementation.

When developing resource constraint systems, there is an
effort to reduce the computation resource. From smaller
computation units follow reduced cost, smaller energy con-
sumption and less wasted heat. To obtain a efficient resource
usage, multiple tasks share one computation unit. Addi-
tional, in the context of distributed control systems, there is
a limited amount of communication bandwidth. Therefore
multiple message share the same communication network.
As a consequence, the execution time of tasks and messages
influence each other, resulting in response times greater than
their execution times.

A further possibility to decrease the system utilization is to
reduce the sample rate. Unfortunately, a small sample rate
makes the control system more sensitive to response times
[?]. This fact makes it rather difficult to co-design control
functionality and control platform for resource constrained
distributed systems.

How to connect the platform introduced timings from plat-
form model and a functional model was introduced in [?].
In the work is described how to map functional blocks and
their execution order to a platform model. In the platform
model, tasks are assigned a scheduler and a priority. Based
on a real-time analysis on the platform model, worst-case re-
sponse times are calculated. These response times are back-
annotated to the appropriate place in the functional model.
Afterwards, the control system can be validated and if nec-
essary redesigned, taking the response times into account.
This procedure is repeated until a sufficient setting of con-
trol algorithm, task priorities and platform is found. This
design flow is sketched in figure 1. It is clear, that such a de-
sign flow produces a highly integrated design of functionality
and platform but could be very time-consuming. A further
negative aspect of this design flow is, that in an industrial
environment several departments with different expertises
are involved. That makes it even more time-consuming.

There are other works, which in general practice the same
design flow, as the control performance is elaborated, re-
garding platform introduced timing effects. In [?] [?] and

[?] tools and methods have been developed, that show the
effect of different sampling rate and delay on the control
performance. There are also stability criteria, taking into
account the influence of time-varying delays, also called jit-
ter [?]. In [?] a more detailed design flow was proposed.
Average response times are included, to design the control
loop performance for states in which it is most commonly.
Additionally the worst-case performance for jitter is derived.

As mentioned above, such a design flow is costly and time-
consuming. In order to break the iterative design flow, a new
expressive delay specification from the functional model is
derived. Such a specification describes the timing bounds a
platform designer has to fulfill, otherwise the system will not
work properly. One simple approach to specify the allowed
delay in a control system is done in [?]. In this work, a
sample is defined as stable, when it’s end-to-end delay (from
sensor to actor) is under a certain limit. Stable samples
stabilize the control system. On the other hand, a sample
is defined as unstable, when the end-to-end delay exceeds
the limit. The requirement for a valid platform design is to
keep the ratio between unstable samples and stable samples
under a certain threshold.

In our opinion, this specification is imperfect. The described
specification would allow an arbitrary amount of consecutive
unstable samples, if followed by enough stable samples. The
missing reference to the number of consecutive unstable sam-
ples could cause an unacceptable performance. Further more
time delays should be represented as continuous values. The
discretization of delays in multiple samples is a pessimistic
simplification. Both restrictions are to be improved through
our work.

In the following section, we define a new expressive delay
specification for digital control systems. The idea behind
the specification is to define the maximum allowed delay
for an amount of consecutive samples. The result is an ab-
stract, but powerful description, which we call delay density.
In the third section, we show how to derive such a delay den-
sity from an arbitrary cyber-physical system. Section four
presents real-time analysis methods and describes how to
validate the specified delay density. In section five an exam-
ple is shows the performance of our defined delay density.
The paper finishes with a conclusion and an outlook on fur-
ther work.

2. DELAY DENSITY
In this section we define a new and powerful specification for
delays in distributed embedded systems, the delay density.
The main idea behind our approach is to specify an amount
of maximum and minimum allowed delay for a number of
consecutive samples. For systems with periodic task stim-
ulation this corresponds with the allowed delay in a spe-
cific time interval. This makes it an abstract and universal
specification for delays and defines an interface between the
design of functionality and platform design.

From here on we refer to a message as a task. Every task
has a response time (ri(k)), defined as the time interval from
task activation until it finishes its job. Due to interference
between tasks, that share a resource, response times vary
in a certain range between consecutive tasks k. As we will

Controller Design

Platform Design

Real-Time Analysis

Validate Control Stability
and Performance

Functional
Model

Platform
Model

Figure 1: Design flow, which contains elements of
the functional and the platform model.

see in section 4, one can obtain a maximum and a minimum
response time (r+, r−), that bound the response time in an
interval. When the response time of all tasks involved in a
task chain are summarized, one obtain the end-to-end delay
δ(k) =

∑
ri(k). Figure 2 displays a sequence of events and

their corresponding end-to-end delays.

The delay density can be seen as an interface between the
functional behavior of a system and the platform design.
Depending on which perspective you look at the delay den-
sity, it has a different meaning. From the view of a control
engineer, the maximum delay density defines the minimum
delay in an interval, that causes a barely acceptable level of
performance. From the perspective of a software engineer or
a platform designer, the maximum delay density represents
the maximum acceptable delay in a specific interval.

In the following a formal definition of the delay density is
given from the perspective of the platform design. The max-
imum delay density (ζ+(∆)) is defined as the maximum sum
of ∆ successive delays that can occur at any time

ζ+(∆) = max
k∈N

{
k−1+∆∑

i=k

δ(i)

}
∀∆ ∈ N (1)

In a similar manner the minimum delay density (ζ−(∆)) is
defined as the minimum sum of successive delays that may
occur at any time

ζ−(∆) = min
k∈N

{
k−1+∆∑

i=k

δ(i)

}
∀∆ ∈ N (2)

The delay density is a powerful representation of the al-
lowed delay in the appropriate time interval. Therefore the
loose sequence of end-to-end delays is reorder in a way, that
maximum and minimum cumulative delay for a number of
consecutive samples is displayed.

Figure 2: A sequence of event and their correspond-
ing end-to-end delays.

Figure 3: Maximum and minimum delay density.

Figure 3 shows a possible delay density. As a consequence of
equations (1) and (2), the minimum and the maximum delay
density is always a monotonic increasing function. The first
bar (ζ(1)) is defined as the maximum/minimum end-to-end
delay that may occur in the system, which is an important
parameter in the platform design. Moreover it must be en-
sured in the system validation that the maximum occurring
delay density is under the specified in each value. Different
methods, how this can be ensured is described in section 4.

3. DERIVE DELAY DENSITY FROM SYS-
TEM DYNAMICS

In this section we explain the steps to derive a delay density
from system dynamics. First we need a kind of performance
metric the system must fulfill. For control systems a mini-
mum control performance is required, at least stability. The
most common definitions are:

• as maximum overshoot of the step response

• as phase margin

• as integral of absolute error (IAE) or integral of squared
error (ISE)

• as settling time in the step response

From the performance criteria a system designer has to de-
cide the threshold value, which determines the acceptable
range. In addition to a performance criteria a functional
model of the system is needed. This can be in the form of
transfer functions, or build out of functional basic blocks as
for example in MATLAB/Simulink [?]. As the last infor-
mation one need the maximum stimulation that is exposed
to the system, in order to react. This could be a change

in the reverence value of a control system, or a disturbance
on a physical process. Would otherwise the system rest in a
stable state, delays would not effect the control performance.

The way the system is stimulated also defines the region
of interest (roi). As we are not able to analyze an infin-
ity amount of samples, defined in equations (1) and (2), we
have to focus on a relevant time interval, named as roi. For
a step in the reverence value or disturbance, the roi includes
all samples from the step until the system reaches steady
state. Outside the range, delays have no effect on the sig-
nal sequence. For periodic stimulation, the roi is the time
interval for the duration of a period. This requires a time-
invariant system, which is true for most systems.

Without introducing further details in system theory, we
present a very simple heuristic, to find the maximum delay
density of the system. We construct the delay density step-
wise, beginning with the delay for one sample. Therefore we
increase the delay of one sample ε, while all other samples
have a delay of zero. Notice that we search for the maximum
delay in the platform designers view. In the perspective of
a control designer, this is the minimum delay, for which our
defined performance criteria is barely met. When this sam-
ple in the roi is found, it consequently defines the first value
on the maximum delay density and therefore the maximum
delay of one sample ζ+(1) = max{δ(k)}.

To obtain the second value of the maximum delay density
(ζ+(2)), we again analyze the roi, but with two consecutive
samples delayed. One of the samples is delayed by the max-
imum delay of one sample (δ(k) = ζ(1)). For the second
delayed sample (δ(k + 1) = ε), ε is increased until perfor-
mance criterion is no longer satisfied. The search is repeated
vice versa, whereby the delay of sample (delta(k) = ε) is in-
creased, while the following sample is delayed by (δ(k+1) =
ζ(1)). We receive two results, where we choose the smaller
sum of the two delays for the second value of our delay den-
sity (ζ+(2)). A restriction, that bounds this value is,

ζ+(2) ≤ 2 · ζ+(1)

Otherwise equation (1) would not be satisfied.

The number of constellations we have to analyze increases
for each additional value in the delay density. For the third
value there are four possible arrangements. The reason is,
that we search for constellations depending on already iden-
tified values. The values ζ+(1) and ζ+(2) − ζ+(1) remain
neighbors. The third value is determined, by placing a de-
lay (ε) before or after the group of ζ+(1) and ζ+(2)− ζ+(1).
Table reftable:constellation lists all four possible constella-
tions.

δ(k) δ(k + 1) δ(k + 2)

ζ+(1) ζ+(2)− ζ+(1) ε
ζ+(2)− ζ+(1) ζ+(1) ε

ε ζ+(2)− ζ+(1) ζ+(1)
ε ζ+(1) ζ+(2)− ζ+(1)

Table 1: Possible constellations of delays that need
to be analyzed to obtain ζ+(3).

It is easy to recognize that the amount of constellations
increases exponential with the number of delayed samples.
The computation effort would therefore also increase expo-
nentially. Fortunately, there are restrictions, that bound the
problem. First, we only need to consider the amount of sam-
ples for the length of the roi. The second restriction is given
by the already identified values of the delay density. A sam-
ple shall not be delayed longer than the identified maximum
delay for one sample

ε ≤ ζ+(1)

Furthermore, for three delays, it must apply that ε ≤ ζ+(2)−
ζ+(1). The procedure, for a greater number of delayed sam-
ples is analogous. For a greater amount of samples, there
are also more restrictions.

All these restrictions reduce the search space and retain the
heuristic practicable. There exist probably more elegant
ways to derive the delay density from the system behavior,
including system theory knowledge or a kind of sensitivity
analysis. In section 5, our heuristic is applied to a digital
control system.

4. REAL-TIME ANALYSIS
The idea behind the delay density is, that it is no longer
necessary to reannotate the timing in the functional model
of the control system, to validate the control performance.
After a delay density is extracted, the platform design and
the associated real-time analysis can validate the correct be-
havior of the system.

There are different methods to obtain the timing of control
task, executed on a platform. What they all have in common
is, that they determine the response time of a task or a
message. The delay, as used in previous sections, is the
summed response time of all tasks and messages involved in
the control loop.

We differ from analytically calculated response times and
from simulated values. Both require information about the
tasks and the platform they are executed on. These proper-
ties are explained hereafter.

execution time c. The execution time of a task or a mes-
sage is the time it needs to complete it’s job, when it holds
the resource exclusively. The execution time is not a static
value, as tasks can execute different commands, depending
on the input data. There exist tool that determines the
worst case execution time, for example the worst case exe-
cution analyzer aiT [?].

stimulation η(∆t). The stimulation is a measure of how of-
ten a task or a message is activated in a specific time inter-
val. Depending on the analysis method, there exist different
models to describe a task stimulation [?], [?].

task chain and binding. Tasks rely on computations of
previous executed tasks. Such dependencies produce task

response time

test simulation analysisprobabilistic

Figure 4: Results of different timing analysis meth-
ods.

chains, on which the next task is activated, when the previ-
ous one has finished its job. The time when a task starts it
execution is therefor event-activated. In distributed system
architectures, every task is assigned a resource, on which it
is executed.

priority and scheduling. On every resource a task is as-
signed a priority or a time slot. The operating system has
a scheduler, that allocates computation time to a task, de-
pending on its priority and the scheduling strategy.

Analysis methods
Analytic methods calculate from the listed information the
maximum and minimum response time of the involved tasks.
These are absolute bounds which are not exceeded. These
values are theoretical, as it is not sure, if this bound is ever
reached in reality. The maximum response times of tasks
in the signal path can be summed to build the minimum
and maximum end-to-end delay (δ+, δ−). If these values are
available, the system performance is fulfilled, if the following
inequality holds

ζ+(∆) ≥ δ+ ·∆, ∀∆ ∈ N (3)

Simulation methods
Beside real-time analysis, there exists simulation methods.
The real-time simulation is an event-triggered simulation,
with a stepwise execution. The longer the simulation runs,
the more values for task’s response times are obtained. The
disadvantage of the real time simulation is the coverage
problem [?]. The problem describes, that it is not possi-
ble to find the worst case in a simulation run. To validate a
given delay density we have to proceed in the same way, as
if measurements would be available and apply equation (1).

Figure 4 shows the difference of analysis results, simulation
results and results obtained from a device under test.

Stochastic methods
New trends in real-time analysis take into account proba-
bilistic parameter variations [?], [?] and [?]. Probabilistic

plantcontroller

reverence
value output

control
difference

Figure 5: Structure of the control System.

approaches obtain in general less conservative results than
the above mentioned real-time analysis. The work of [?]
results in a stochastic real-time analysis to obtain typical
worst-case response time. In the paper, a method is pre-
sented, that calculates “an exact bound of the maximum
worst case response time occurrences in a given number of
instances”. This method is quite related to the delay density
specification. By varying the number of instances and the
threshold for maximum worst case response time, a maxi-
mum delay density can derived.

5. EXPERIMENTAL RESULTS
To show the beneficial effect of the presented methods, we
derive the delay density for a real-world digital control sys-
tem. The system consists of an unstable plant in form of an
IT1-element with transfer function G(s)

G(s) =
KI

T1 · s2 + s
(4)

with parameters KI = 1 and T1 = 0.1. The plant is stabi-
lized by a discrete PID-controller C(z) with discrete transfer
function in z-domain

C(z) = P · I · Ts ·
1

z − 1
+D · N

1 +N · Ts · 1
z−1

(5)

with proportional factor P = 34.63, integral factor I =
49.34, differential factor D = 2.97 and a filter-coefficient
of N = 60. The sampling rate is chosen to Ts = 10ms.
The complete control system and it’s signals is displayed in
figure 5.

To derive a delay density form the system, we must stimulate
the system to react. This is done by a step in the reference
value from zero to one, leading to the step response of the
closed loop system on the output of the plant. From the step
in the reference value until the output has settled, it takes
150ms. As explained in section 2, our roi has an interval
of 15 samples. The performance criteria for this example is
chosen as a maximum overshot of 1.3 on the output.

As described in section 3, we begin to search for the min-
imum delay of one sample, that causes the step response
to reach an overshoot of y = 1.3. Meanwhile all other
samples are not delayed. For our system, a single delay of
δ(k) = 7.7ms brings the output to the bound of our speci-
fied performance criteria. This delay defines the first value
for our maximum delay density ζ+(1) = 7.7ms. To obtain
the next values, we search for a further delay on adjacent
samples. In this example, no further delay is allowed for
the next samples, as the output would fail the criteria. Af-
ter three samples with no further delay (ζ+(2) = ζ+(3) =
ζ+(4) = 7.7ms), a relative high additional delay would be
allowed. Since we have the restriction, that a sample must

Figure 6: Maximum delay density for the presented
control system and appropriate maximum delay for
real-time analysis.

not be delayed longer than ζ+(1) = 7.7ms, the maximum
delay density for five samples are ζ+(5) = 15.4ms. The
following three values in the delay density keep again the
same, based on the restrictions. This sequence repeats, so
that the final maximum delay density can expressed in the
following equation.

ζ+(∆) = 7.7 ·
⌈

∆

4

⌉
ms (6)

When verifying the maximum delay density in equation (6)
by a real-time analysis, we have to find the maximum al-
lowed (δ+). With equation (3), we can identify the maxi-
mum delay as

δ+ =
7.7ms

4
= 1.925ms (7)

The derived delay density of equation (6) and the allowed
maximum delay form equation (7) is displayed in figure 6.

When verified the delay density with real-time analysis meth-
ods, an end-to-end delay of δ+ = 1.925ms fulfills our spec-
ification on the overshoot under all circumstances. There
may be a higher delay, that also satisfies our performance
criteria. For example a constant delay of δ(k) = 9ms re-
sults in an acceptable performance. However, a mechanism
is needed, that guarantees that no shorter delays are pos-
sible. Without such a mechanism, the defined performance
criteria would fail, whereas delays that fulfill equation (7)
meet the criteria under all circumstances.

6. CONCLUSION
There exist a lot of systems, where timing negatively effects
the functional behavior. The problem in many cases is, that
in the deign process many developers are involved and tim-
ing issues appear in a late phase of the design phase. The
problems could be avoided, if the system engineer would
have a description with which he can express the system’s
timing requirements. With the delay density introduced in
this paper it is possible to express the timing requirements
in an early design phase and to serve a platform design as
bounds.

We showed in this paper, how to derive a delay density from
system dynamics. We also identified the relation to different
timing analysis methods and how to verify a given delay den-
sity. An example system of a digital controller was taken, to
demonstrate how a delay density can be obtained. Further
the consequences on a real-time analysis were presented.

Future work includes a more efficient direct derivation of
the delay density from the systems differential and difference
equations.

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. ait: worst-case

execution time analyzers, January 2013.

[2] T. Bund, S. Moser, S. Kollmann, and F. Slomka.
Guaranteed bounds for the control performance
evaluation in distributed system architectures. In
Proceedings of the International Conference on
Real-Time and Embedded Systems (RTES 2010),
Singapore, 2010.

[3] T. Bund, S. Moser, S. Kollmann, and F. Slomka. Jitter
considerations for worst-case performance generation
in digital controller design. Cyber-Physical Systems
– Enabling Multi-Nature Systems, 4 2012.

[4] A. Cervin, B. Lincoln, J. Eker, K. Arzen, and
G. Buttazzo. The jitter margin and its application in
the design of real-time control systems. In Proceedings
of the 10th International Conference on Real-Time
and Embedded Computing Systems and Applications,
pages 1–9. Gothenburg, Sweden, 2004.

[5] D. Goswami, R. Schneider, and S. Chakraborty.
Co-design of cyber-physical systems via controllers
with flexible delay constraints. In Proceedings of the
16th Asia and South Pacific Design Automation
Conference, pages 225–230. IEEE Press, 2011.

[6] K. Gresser. An event model for deadline verification of
hard real-time systems. In Real-Time Systems, 1993.
Proceedings., Fifth Euromicro Workshop on, pages
118–123. IEEE, 1993.

[7] D. Henriksson, A. Cervin, and K. Årzén. Truetime:
Simulation of control loops under shared computer
resources. In Proceedings of the 15th IFAC World
Congress on Automatic Control. Barcelona, Spain,
2002.

[8] D. Henriksson, A. Cervin, and K. Årzén. Truetime:
Real-time control system simulation with
matlab/simulink. In Proceedings of the Nordic
MATLAB Conference, Copenhagen, Denmark, 2003.

[9] S. Kollman, V. Pollex, K. Kempf, F. Slomka,
M. Traub, T. Bone, J. Becker, et al. Comparative
application of real-time verification methods to an
automotive architecture. In Proceedings of the 18th
International Conference on Real-Time and Network
Systems, pages 89–98, 2010.

[10] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, 91(1):112 – 126,
jan 2003.

[11] B. Lincoln and A. Cervin. Jitterbug: A tool for
analysis of real-time control performance. In Decision
and Control, 2002, Proceedings of the 41st IEEE
Conference on, volume 2, pages 1319–1324. IEEE,
2002.

[12] MATLAB. version 8.0.0 (R2012b). The MathWorks
Inc., Natick, Massachusetts, 2012.

[13] J. Nilsson et al. Real-time control systems with delays.
PhD thesis, Ph. D. dissertation, Department of
Automatic Control, Lund Institute of Technology,
1998.

[14] S. Quinton, M. Hanke, and R. Ernst. Formal analysis
of sporadic overload in real-time systems. In Design,
Automation & Test in Europe Conference &
Exhibition (DATE), 2012, pages 515–520. IEEE, 2012.

[15] L. Santinelli, P. Yomsi, D. Maxim, and
L. Cucu-Grosjean. A component-based framework for
modeling and analyzing probabilistic real-time
systems. In Emerging Technologies & Factory
Automation (ETFA), 2011 IEEE 16th Conference on,
pages 1–8. IEEE, 2011.

[16] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun,
L. Wu, and J. Liu. Probabilistic performance
guarantee for real-time tasks with varying
computation times. In Real-Time Technology and
Applications Symposium, 1995. Proceedings, pages
164–173. IEEE, 1995.

[17] E. Wandeler. Modular performance analysis and
interface-based design for embedded real-time systems.
PhD thesis, SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH, 2006.

