| mproved Feasibility Testsfor Asynchronous Real-Time
Periodic Task Sets*

Daniel Jelkmann Karsten Albers, Frank Slomka
OFFIS Institute for Information Department of Embedded / Real-Time

Technology, Oldenburg, Germany Systems, University of Ulm, Germany
Daniel.Jelkmann@offis.de {Karsten.Albers, Frank.Slomka}@uni-ulm.de

Abstract

The feasibility test for synchronous task systems scheduled by EDF is a well known problemin
the literature. However, the analysis of task systems with deadlines shorter than the periods of
the tasks has a high runtime complexity. This problem increases if we consider asynchronous
task sets. In this paper, the runtime complexity of Pellizzoni’s approach to the analysis of asyn-
chronous task sets scheduled by EDF is analyzed. In our experiments, we can show that most
of the runtime problem results by mapping the problem to the synchronous case and solving
this by using the demand bound feasibility test. To overcome this, we combine Pellizzoni’s al-
gorithm with a new approximation approach. Using the superposition algorithm as feasibility
test reduces the runtime of the original algorithm given by Pellizzoni in orders of magnitude.

1. Introduction

The correctness of real-time systems depends apart from the functionality on the temporal be-
havior of the system. Usually, real-time systems are defined by several tasks, which are run-
ning on the given system resources. Among other parameters, each task is characterized by a
deadline at which the task’s execution must be completed. In order to guarantee the temporal
correctness of a real-time system, it must be verified that all deadlines are met. An algorithm,
which examines exactly this, is called a feasibility test.

A feasibility test, which determines whether all deadlines are met in a general real-time system,
has exponential complexity [7]. In special cases the test is of less complexity. For example
Baruah et al. presented in [3] their processor demand test. The test is necessary and sufficient
for synchronous systems and has a pseudo-polynomial complexity. In such synchronous sys-
tems, all tasks are released simultaneously and request their first execution at the same time (i.e.
t = 0). If this constraint does not hold, the system is called asynchronous.

In this paper, we present an improved analysis for asynchronous systems. We developed new
algorithms by combining the test proposed by R. Pellizzoni [8, 9] and the superposition ap-
proach [1, 2].

The task model used in this paper is introduced in section 2. Section 3 gives an introduction to
the existing feasibility tests and algorithms further needed in this paper. In section 4, we show
the evaluation results of Pellizzoni’s algorithm and analyze how much time the different parts
of the algorithm will need. We will combine the described tests and present the new algorithms
in section 5. In section 6 the new algorithms are evaluated and compared to Pellizzoni’s original
algorithm, followed by a conclusion in section 7.

*The research described has been supported in part by the Deutsche Forschungsgemeinschaft under grants
S 47/1-1 and S 47/2-1.

2. Task model

We consider asynchronous real-time systems characterized by periodic tasks. A task is defined
by a tuple (¢;, C;, D;, T;), where C; is the worst-case execution time of task 7;, D; the relative
deadline and T; the period. ¢; is called the offset of the task and indicates when the task gets
ready for the first time. The task starts its first execution at time ¢; and periodically gets ready
all 7; time units. So the task requests its k-th execution at time ¢, , = ¢; + (k — 1)7; with
ke {1,2,3,...}. These times are called the release times. Each release time is assigned an
absolute deadline, d; , = t;, + D;, at which the task’s execution must be completed. A sys-
tem characterized by such tasks is called asynchronous, since the tasks have offsets and are not
ready simultaneously. In a synchronous system, all offsets are zero and all tasks are released at
timet = 0.

In this work we analyze the feasibility of real-time systems with a single processor using pre-
emptive Earliest Deadline First (EDF) scheduling. EDF is optimal for such systems [6], since
EDF provides a valid schedule, if a valid schedule exists for the given task set. So a valid sched-
ule can be constructed with the EDF scheduling algorithm, after the feasibility of a task set is
proven.

We assume the following definitions: U = "V, % s the total utilization of the task set,
gcd(T;, ;) is the greatest common divisor of 77 and T] lem(T;,T;) is the least common multiple
of T, and 7}, and H = lem(T, ..., Ty) is the hyperperiod of the task set. We use the short
term ratio for the ratio between the largest and the smallest period in a task set, and the term
gap for the difference between deadline and period.

3. Background and related wor k

In [3] Baruah et al. present a necessary and sufficient feasibility test for synchronous systems
with pseudo-polynomial complexity. The test computes the amount of time needed for the suc-
cessful execution of all tasks and compares it to the available processor time. Since the test
calculates the demand requested by the tasks, the test is called processor demand test. The cri-
terion for feasibility is given by VI > 0 : D,(I) < I, where D,(I) is the demand requested
by all tasks in the interval . The value of the demand bound function D,(I) changes at the
absolute deadlines of the tasks, therefore exactly these deadlines must be checked during the
test. There are known different test borders where the test can be terminated. One possible test
border is the calculation of the busy period (see e.g. [10]). Baruah et al. give in their work [3]
the formula 1,,,,, = % -maxy<;<y (1; — D;) as a test border, where U is the total utilization
of the task set and /V is the number of tasks. The runtime of the algorithm depends not only on
the utilization but also on the ratio of the different periods and deadlines in the task set. If the
task sets contain tasks with small periods and tasks with large periods, the runtime can become
quite large [1, 2].

In order to reduce the number of test points and to accelerate the test, different approximation
algorithms were developed. One of them is the superposition approach introduced in [1]. The
test is based on the processor demand test, but it does not compute the exact demand bound
function. Instead, the algorithm analyzes the demand bound function for each task separately.
After examining & test points, these functions are approximated by a straight line. % is a pa-
rameter of the algorithm and affects the runtime and also the error, which occurs due to the
approximation. The total demand bound function is the superposition of the demand bound
functions of all tasks (see figure 1). A detailed description of the algorithm can be found in
[1]. The Superposition algorithm has a polynomial complexity and is only sufficient due to the
approximation error. The error is limited by % where k is the number of test points before the

PN W A O N ® © O

Dy, (1)

’—’—F 1 2 3 4 5 6 7 8 9
— e

AN w s oo O

Figure 1. Approximation of the total demand bound function by superposition

approximation begins.

In [2], two improved versions of the Superposition algorithm are presented: the Superposi-
tion Dynamic Error and Superposition All Approximated. Both algorithms use a dynamic error
which is adapted during the test if necessary. The Superposition Dynamic Error begins with
just a few test points (maybe only one test point) and increases this number, if the approximated
demand bound function exceeds the available processor time. In this case, the approximation
(and thus the error) is eliminated by increasing the number of test points so that the exact de-
mand bound function is calculated. If the exact function exceeds the available processor time,
the test terminates with a negative feasibility result. Otherwise, the analysis is continued with
the increased number of test points.

The Superposition All Approximated algorithm reduces the average number of analyzed test
points even further by approximating the demand bound function as much as possible. Only if
the test fails for an interval, the approximation is cancelled gradually. The tasks, whose approx-
imation was cancelled, are immediately approximated again in the next test interval.

Since both algorithms cancel the approximation completely if necessary and return only a neg-
ative result if the exact demand bound function exceeds the available processor time, both tests
are necessary and sufficient for synchronous systems (like the processor demand test). The
complexity of both algorithms is pseudo-polynomial, since in the worst case the approxima-
tions are cancelled and the same number of test points as with the usual processor demand test
are analyzed. Pseudocode and an evaluation of the algorithms can be found in [2].

In general, the analysis of asynchronous systems is more complex than the analysis of syn-
chronous systems. As shown in [7, 4], a necessary and sufficient test for asynchronous sys-
tems has an exponential complexity, while for synchronous task sets there are known pseudo-
polynomial tests. The reason for the higher complexity of the analysis of asynchronous systems
is that the time interval with the highest demand is unknown. Since an exponential test is prac-
tically not useable for a rising number of tasks, other test algorithms are needed.

Such an algorithm for the analysis of asynchronous systems was presented by Rodolfo Pelliz-
zoni [8, 9]. The algorithm is only sufficient and has a pseudo-polynomial complexity. The idea
of the algorithm is to analyze the tasks’ periods and offsets, in order to determine a set of critical
arrival patterns. For each of these patterns, the algorithm generates a new task set. The feasibil-
ity of these task sets is analyzed with the processor demand test. These new task sets are equal
to the original task set, only the tasks’ offsets are changed in such manner that the critical arrival
pattern starts at the beginning of the task set. In other words, the critical time interval begins
at time ¢ = 0. This is the reason why the processor demand can be terminated after the worst
case interval has been analyzed. To determine the length of this interval, Pellizzoni’s algorithm

100% 100%

. 3 fixed tasks |[Jprocessor . 3 fixed tasks |[Jprocessor
80% 7 ratio 100 demand 80% 7 ratio 1000 | gemand
test test
80% - [l busy period 80% - [l busy period
70% | [offset 70% [offset
calculation calculation
60% 60%
50% 50%
40% 40%
30% 30%
20% 20%
10% | 10% |
0% T T T T T T T 1 O% T T T T T T T
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
total utilization [in %] total utilization [in %]

Figure 2. Distribution of the computation time by percentage as a function of the utilization
for Pellizzoni’s algorithm with three fixed tasks and a ratio of 100 and 1000 (10 tasks per task
set, D € {0.37,0.8T})

uses the busy period approach [10]. The algorithm does not analyze all critical patterns in de-
tail which can occur in the task set. Such an analysis would result in exponential complexity.
Instead the algorithm uses a parameter which specifies how detailed the arrival patterns of the
tasks are examined. The parameter indicates the number of fixed tasks. The algorithm analyzes
all constellations, in which these n fixed tasks are activated. For the remaining (nonfixed) tasks,
the algorithm sets the offsets as the minimum distance to the fixed tasks. Because of this, the
task sets generated by the algorithm may be stricter than the original task set. This is the reason
why Pellizzoni’s test is only sufficient and not necessary. We will refer to these task sets as
strict task sets.

4. Evaluation of Pellizzoni’salgorithm

We generated several test runs with random task sets to analyze the distribution of the compu-
tation time of Pellizzoni’s algorithm. We tested the task sets for feasibility with Pellizzoni’s
algorithm and measured the percentage of time needed for performing the processor demand
test and for calculating the busy period and the offsets of the strict task sets. As a result it turned
out that most of the algorithm’s runtime is needed for the processor demand test. Figure 2
shows an example for the distribution of the computation time by percentage as a function of
the utilization.

The diagrams show that more than 50% of the computation time is consumed by the processor
demand test. For high utilizations this percentage increases to more than 90% of the total
computation time. Especially for task sets with a high utilization and high ratios, for which
Pellizzoni’s feasibility test requires a lot of time, most of the computation time is needed for the
processor demand test. The test runs shown in figure 2 were computed using three fixed tasks,
but the distribution looks very similar for another number of fixed tasks.

Our approach to improve Pellizzoni’s algorithm is to combine it with the Superposition test.
Since the Superposition test accelerates the processor demand test, the combination of the al-
gorithms is very promising. The concept of the combination is to replace the processor demand
test which is used in Pellizzoni’s algorithm by the efficient Superposition test. The Superpo-
sition test greatly reduces the number of analyzed test points in comparison to the original
processor demand test, so the combination of both algorithms leads to an improved algorithm
for the analysis of asynchronous systems.

5. Acceleration of Pellizzoni’s algorithm

We combined Pellizzoni’s algorithm with the three versions of the Superposition test, which are
described in section 3. The computation of the offsets for the tasks as well as the computation
of the busy period is taken from Pellizzoni’s algorithm without changes. The feasibility of the
task sets is analyzed with the Superposition test.

Pellizzoni and the simple Superposition test

The algorithm resulting from combination of Pellizzoni’s algorithm with the simple Superposi-
tion test has two parameters which both affect the error and the runtime of the algorithm. One
parameter is from Pellizzoni’s algorithm and determines the number of fixed tasks. The other
one is from the Superposition test and specifies the number of test points which are analyzed
before the approximation of the demand bound function begins.

Figure 3 shows the pseudocode of the new algorithm. The shown code uses two fixed tasks.

1 U= Zz %
2 IF U>1 => return notfeasble;
3 for each i; =1 ... N
4 ¢ =0
5 for each i, =1 ... N, is#14
6 for each k; = 0 ... ﬁ?,nz)_l
7 g, = [t T, (g + T -)
8 for each 7 = 1 ... N, j#i3,i2,01
9 0, = | ety | ged(Ty lem(Tiy Th,)) = (65, + i Ty, = 6)
10 next j
11 /| caculate max testinterval
12 IF U =1 THEN
13 BP = hyperperiod;
14 ELSE
15 BP =C;, ;
16 while BP changes
BP—¢/!
17 BP=Y", {Ti‘ﬁw yor
18 repeat
19 /1 superposition test
20 testlist={}; D;=0; Urcaay =0; Ipqa=0;
21 VjeS: teslistadd(¢; +D;, j);
22 WHILE (testlist # {})
23 j = testlist.getNextDemand () ;
24 It = testlistintervalForDemand(j) ;
25 IF (I, > BP) break;
26 D;, = Dzl; + Cj + (Iact - Iold) ' Uready
27 IF (D}, > I,.) return notfeasble;
28 IF (Iact<(M—1)~Tj+Dj+¢’ij)
30 ELSE
31 Uready = Uready + %,
32 Iold = Iact;

33 END WHILE
34 next k;

35 next i

36 next 7

37 return feasble

Figure 3. Pseudocode of the Pellizzoni+Superposition test with 2 fixed tasks

According to Pellizzoni’s algorithm, the computation of the offsets must be adapted for another
number of fixed tasks. N is the number of tasks in the task set and M (line 28) is the number of
test points for the Superposition test. The offset of the task 7; in the original task set is ¢;, and
the computed offset of the strict task set is qs;j.

First, the total utilization of the task set is computed in line 1. If it is larger than 1, the task
set is not feasible and the test ends. The remaining pseudocode essentially consists of two
parts. Lines 3 to 18 and lines 34 to 37 are from Pellizzoni’s algorithm and implement the
computation of the offsets and the busy period (compare to [8]). The remaining lines 19 to 33
implement the feasibility test by the simple Superposition algorithm. Since the test is used to
analyze asynchronous task sets, small changes in comparison to the original Superposition test
for synchronous tasks are necessary. In lines 21 and 28, we added the task’s offset (compare
to [1]). The test is terminated when the test interval gets larger than the busy period (line 25).
The Superposition algorithm analyzes M test points for each task. Since the remaining test
points are approximated and thus an error occurs, the test does not recognize all feasible task sets
as feasible. Because of this the simple Superposition test is only sufficient in the synchronous
case. This means for our new test that the feasibility rate (task sets recognized as feasible
compared to the feasible task sets) is smaller than with Pellizzoni’s original algorithm. The
error ¢ = ﬁ (and consequently the feasibility rate) depends on the number of test points used.
For an infinite number of test points (M — oo) is the new algorithm identical to Pellizzoni’s
test, since the tasks are never approximated and thus no error can occur.

1 /] superposition test 1 // superposition test
2 testlist={}; ApproxList={}; 2 testlist={}; ApproxList={};
3 D;'7=0, Uready:(); Iold=0; 3 D{):O, Uready:(); Iolri:O;
4 VjeS: t&stlist.add(qbngrDj v i) 4 VjeS: tedlistadd(¢; +D;, |);
5 WHILE (testlist # {}) 5 WHILE (testlist # {})
6 j = testlist.getNextDemand () ; 6 j = testlist.getNextDemand () ;
7 I,.; = testlistintervalForDemand(j); 7 I,.; = testlistintervalForDemand(j);
8 IF (I, > BP) break; 8 IF (Iu,e > BP) break;
9 Dll, = Dé + Cj + (Iact - Iold) : Uready 9 Dll, = Dl/; + C(j + (Iact - Iold) : Uready
10 WHILE (Dj > Isct) 10 WHILE (Dj > Ipet)
11 IF (ApproxList={}) return not 11 IF (ApproxList={}) return not
feasible; feasible;
12 increase level ; 12 r = ApproxList.
13 Vr € Srep : getAndRemoveFirstTask () ;
14 ApproxList.remove(r); 13 Uready = Urcady — % :
15 Uready - Uready - % ; 14 Dzl; = D;; - app(lacta T) ;
16 Dj, = D}, — app(Luet,7) 15 testlist.add (Nextint (e, 7) , T);
17 testlist.add (NextInt (I e, 7) , T); 16 END WHILE
18 END WHILE 17 Uready = Uready + % ;
19 IF (Ifzct < Testborder ()) 18 ApproxList.add(j); !
20 testlist.add (I, + T,]); 19 Tog = Loet
21 ELSE 20 END WHILE
22 Uready = Uready + % ;
23 ApproxList.add(j);
24 Iold = Iact)
25 END WHILE

Figure 4. Pseudocode of the feasibility
test of the Pellizzoni+Superposition Dy-
namic Error algorithm

Figure 5. Pseudocode of the feasibility
test of the Pellizzoni+Superposition All
Approximated algorithm

Pellizzoni and Superposition Dynamic Error

The combination of Pellizzoni’s algorithm with the Superposition Dynamic Error leads to a new
algorithm, which can be directly compared to Pellizzoni’s original test. The algorithm has one
parameter which specifies the number of fixed tasks. The Superposition Dynamic Error does not
use a fixed number of test points. Instead the algorithm adjusts the number of test points (and
also the error) at runtime. If necessary, the approximations are completely canceled. Because of
this, the new algorithm recognizes exactly the same task sets as feasible as Pellizzoni’s original
algorithm.

The pseudocode for the Pellizzoni+Superposition Dynamic Error is similar to the listing in
figure 3. The code for the computation of the busy period and the offsets is identical (like in
Pellizzoni’s algorithm), only the simple Superposition test in lines 19 to 33 changes. In figure 4
the feasibility test for the new Pellizzoni+Superposition Dynamic Error is given, which replaces
lines 19 to 33 of figure 3.

Testborder (j) in line 37 returns the size of the interval at which the approximation of the task 7
begins. In comparison to the synchronous case, the function must be extended by the offset, so
that the function returns (k — 1) - 7, + D; + qsgj, where £ is the number of test points (which
may be increased in line 30). To cancel the approximation of a task, the algorithm uses the
functions app(l, r) and NextInt(l, r) (lines 34 and 35). app(l, r) returns the approximation error
for task 7,. in the interval 7 and NextInt(l, r) supplies the next test interval greater than I for the
task. The functions result in:

app(l.7) = (1—D£‘—¢;T _ V—D;:qﬁérJ) c, (1)
NextInt(I,r) = (L#J) T, + D, + ¢, (2)

Pellizzoni and Superposition All Approximated

The Superposition All Approximated reduces the number of examined test points compared to
Superposition Dynamic Error even further, so that the combination with Pellizzoni’s algorithm
seems to be promising. The resulting algorithm recognizes the same task sets as feasible as
Pellizzoni’s original algorithm, since the Superposition All Approximated is exact and has no
error.

In figure 5, the pseudocode for the feasibility test of the Pellizzoni+Superposition All Approxi-
mated algorithm is shown. The computation of the busy period and the offsets is identical to the
code given in figure 3. In order to obtain the whole algorithm, lines 19 to 33 in figure 3 must be
replaced by the code from figure 5. For the functions app(l, r) and NextInt(l, r), the formulas 1
and 2 for the asynchronous case are used as given above.

5.1. Complexity

The complexity of the simple Superposition algorithm is polynomial [1]. This does not apply to
the Superposition Dynamic Error and the Superposition All Approximated, since in the worst
case both algorithms cancel the approximations. Thus, they have the same pseudo-polynomial
complexity as the processor demand test.

All three new algorithms resulted from the combination of the superposition approach with
Pellizzoni’s algorithm and use Pellizzoni’s way to compute the offsets for the strict task sets.
The offset computation has already a pseudo-polynomial complexity, since the complexity of
this part depends both on the number of tasks and on the task parameters. The busy period,
which is computed for every analyzed task set, has also a pseudo-polynomial complexity for
U < 1[10]. Thus it follows that all of the three new algorithms have a pseudo-polynomial
complexity (as Pellizzoni’s original algorithm).

6. Evaluation of the new algorithms

In this section we evaluate the new algorithms and compare them to Pellizzoni’s original test.
The random generation follows the uniform distribution proposed by Bini [5]. All algorithms
test the feasibility of the same task sets, so that we can compare the results directly in order to
determine the advantages of the new algorithms. We carried out several test runs and examined
them under different aspects. The most important results are presented below. The following
tests were performed on a AMD Athlon PC (1.9 GHz, 512MB RAM) on SuSE Linux 9.2.

Comparison of the algorithms

To compare the performance of the algorithms, we generated task sets with 8 tasks and a ratio of
50. The gap of the tasks amounted to 20% and 70% (D € {0.37’,0.87'}) and the total utilization
ranged from 1% to 99% (in steps of two percent). We have chosen these values to cover the
whole test range extensively. Pellizzoni also used gaps between 20% and 70% in his work ([8],
section 3.5). We compare Pellizzoni’s original test and the three new algorithms, each with
three fixed tasks, using different approximation levels and 20,000 task sets totally. The analysis
with the Pellizzoni+Superposition algorithm was done for 2, 6, 10 and 19 test points for each
task, which corresponds to an exactness (= 100% — error) of 50%, 85%, 90% and 95%.

The diagram in figure 6 shows the average number of test points as a function of the utilization.
The number of test points is well below the one’s of Pellizzoni’s algorithm. It is remarkable that
for Pellizzoni’s algorithm and the Pellizzoni+Superposition variants, the number of test points
clearly increases with rising utilization. In contrast, the effort for the advanced algorithms seem
to be independent from the utilization. The values of all algorithms in figure 6 drop for high
utilizations close to 100% as many infeasible task sets are generated then.

For the same test run, the average number of analyzed test points, the runtime and the feasibil-
ity rate of the different algorithms are shown in table 1. Both new exact algorithms (Dynamic
Error and All Approximated) were capable to do the feasibility test by analyzing only 20% of
the test points Pellizzoni’s algorithm needed (in average), while recognizing the same task sets
as feasible. It is noticeable that the average runtime of the algorithms does not differ so much
as one would expect due to the differences between the number of analyzed test points (i.e 20%

Average number of test points (8 tasks, ratio 50, gap 20/70%)

—=a— Pellizzoni (3 fixed tasks) 4
---x--- Pellizzoni+Superposition (3 fixed tasks, 50%)
---%--- Pellizzoni+Superposition (3 fixed tasks, 85%)

~~~~~~~ v Pellizzoni+Superposition (3 fixed tasks, 90%)
--e-- Pellizzoni+Superposition (3 fixed tasks, 95%)
--&-- Pellizzoni+Superpos Dynamic Error (3 fixed tasks)
----+ - Pellizzoni+Superpos. All Approx. (3 fixed tasks)

500000

400000

T
+

300000

200000

Average number of test points

100000

,x*%*é ".V

X3¢ X pg XKN= X pe 3¢ Ky X5 ¢
XK XX g 366 XX Bmes

B e R L R L T

O g OB 1 1 1 1 I ]
10 20 30 40 50 60 70 80 90

Utilization (%)

Figure 6. Average number of test points for Pellizzoni’s original test and the new algorithms



Algorithm % of feasible | Average run- | Average number

task sets time (in ms) of test points
Pellizzoni 78.52 363.2 126,255.8
Pellizzoni+Superpos. (50%) 76.89 258.6 35,990.7
Pellizzoni+Superpos. (85%) 77.99 314.9 70,494.0
Pellizzoni+Superpos. (90%) 78.21 3415 87,930.8
Pellizzoni+Superpos. (95%) 78.37 369.3 106,576.6
Pell.+Superpos. Dynamic Error 78.52 245.0 24,205.0
Pell.+Superpos. All Approx. 78.52 242.7 24,056.6

Table 1. Percentage of feasible task sets, runtime and number of analyzed test points for
3 fixed tasks (8 tasks, ratio 50, gap 20%/70%)

of Pellizzoni’s runtime for the two new exact algorithms). The explanation is that in the new
algorithms, only the feasibility test is accelerated, but the computation of the offsets and the
busy period needs the same time as in Pellizzoni’s original test. The distribution of the runtime
is shown in figure 7 for the All Approximated algorithm. In compare to figure 2, we notice that
the distribution is more or less independent of the utilization.

Performance for higher ratios

Table 2 shows the average runtimes and the number of analyzed test points for different ratios.
The task sets consisted of five tasks and the algorithms used one fixed task. The utilization
ranged from 1% to 99% and the gap was 20% and 70% of the task’s period. As ratios we have
chosen the powers of ten between 1,000 and 10,000,000, in order to measure the development
of the runtime for strongly increasing ratios. While for the new algorithms the number of
test points increases from ratio 1,000 to a ratio of ten million approximately by factor 1.27,
for Pellizzoni’s algorithm this factor is greater than 8,000. We suggest to use the values of
the runtime of the new algorithms in table 2 with some caution. These values are small and
therefore influence by other processes on the system cannot be excluded. The increase of the
average number of test points for rising ratios results from the fact that Pellizzoni’s algorithm
analyzes the different arrival patterns of the tasks. For a rising ratio between the largest and the
smallest period in the task set, also the number of critical arrival patterns increases. Since the
algorithm generates for every critical pattern a new task set which will be analyzed, also the
number of examined task sets grows with rising ratio. It is not possible to predict how strong
the rise of the number of test points and also the runtime will be generally, since it depends
among other aspects on the number of tasks in the task set and the number of fixed tasks.

100% 100%
. 3 fixed tasks  |[]processor . 3 fixed tasks  |[Jprocessor
90% 1 ratio 100 ornand 90% 1 ratio 1000 omand
test test
% busy period 80% busy period
80
70% - [ offset 70% | [ offset
calculation calculation
60% - 60% -

50% 50%

40% 40%

30% 30%
20% 20%
10% - 10% -

o% T T T T T T T 1 0% T T T T T T T 1
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
total utilization [in %] total utilization [in %]

Figure 7. Distribution by percentage of the runtime for the Pellizzoni+Superposition All
Approximated algorithm with three fixed tasks (10 tasks, D € {0.37,0.8T'})



Pellizzoni+Superpos. | Pellizzoni+Superpos.

Ratio Pellizzoni Dynamic Error All Approximated
runtime | test points | runtime | test points | runtime | test points
1.000 1.13ms 764 | 0.21 ms 9.29 | 0.24 ms 9.15
10.000 8.66 ms 6,859 | 0.22 ms 10.41 | 0.20ms 10.24
100.000 78.90 ms 64,733 | 0.25ms 11.02 | 0.24 ms 10.92
1.000.000 743.62 ms 619,681 | 0.25ms 11.36 | 0.21 ms 11.28
10.000.000 | 7,100.78 ms | 6,247,543 | 0.27 ms 11.79 | 0.25ms 11.66

Table 2. Average runtime and number of analyzed test points depending on the ratio for one
fixed task (5 tasks, gap 20%/70%, utilization 1-99%)

7. Conclusion

In this paper, we evaluated Pellizzoni’s algorithms to find out which part consumes most of the
algorithm’s runtime. The results in section 4 have shown that between 50% and 90% of the total
computation time (depending on the task set) is needed for performing the processor demand
test.

We accelerated Pellizzoni’s algorithm by combining the superposition test and Pellizzoni’s ap-
proach. The result of this combination are three new algorithms for the analysis of asynchronous
systems. We described the new algorithms in detail in section 5 and also provided pseudo-codes.
By evaluating the new algorithms in section 6, we found that they allow enormous speed advan-
tages in comparison to Pellizzoni’s original algorithm. The new algorithms especially accelerate
the analysis of task sets with a high utilization and a high ratio, whose feasibility test needs a
relative long time using Pellizzoni’s original algorithm. The amount of the speed advantage of
these algorithms depend on the task sets which are examined and cannot be given in general.
Two of the new algorithms, the Pellizzoni+Superposition Dynamic Error and the Pellizzoni+
Superposition All Approximated, represent a clear improvement of Pellizzoni’s original test.
Both algorithms recognize the same task sets as feasible as Pellizzoni’s algorithm and permit
due to the approximations a clear reduction of the runtime.

References

[1] K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-time
systems. Euromicro Conference on Real-Time Systems (ECRTS 04), pages 187-195, June 2004.

[2] K. Albers and F. Slomka. Efficient feasibility analysis for real-time systems with EDF scheduling.
Design, Automation and Test in Europe (DATE 05), pages 492-497, March 2005.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic tasks
on one processor. In |EEE Real-Time Systems Symposium, pages 182-190, 1990.

[4] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Systems, 2(4):301-324,
1990.

[5] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In IEEE Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 196-203, June 2004.

[6] M. L. Dertouzos. Control robotics: The procedural control of physical processes. In IFIP Congress,
pages 807-813, 1974.

[7] J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time tasks.
Information Processing Letters, 11(3):115-118, 1980.

[8] R. Pellizzoni. Efficient feasibility analysis of real-time asynchronous task sets. Master’s thesis,
Universita di Pisa and Scuola Superiore S. Anna, Pisa, Italy, 2004.

[9] R. Pellizzoni and G. Lipari. A new sufficient feasibility test for asynchronous real-time periodic
task sets. Euromicro Conference on Real-Time Systems (ECRTS 04), Catania (Italy), June 2004.

[10] M. Spuri. Analysis of deadline scheduled real-time systems. Technical Report RR-2772, 1996.



